The Annals of Mathematical Statistics
1969, Vol. 40, No. 3, 1078-1082

A NOTE ON SEQUENCES OF CONTINUOUS PARAMETER
MARKOV CHAINS

By Tromas G. Kurtz
The University of Wisconsin
We will consider continuous parameter Markov chains which for convenience,
all have the same state space S = {1, 2, 3, - - -}. We will assume that the transi-
tion probabilities
pit) = P{X(t) =j1X0) =1}

satisfy the usual conditions

1) pii(t) = 0,

2) 25mpi(t) =1,

3) D pa (8)pas (t) = pii(s + 1),
and

@) limeaopii (£) = 845

These conditions imply the continuous differentiability of p.;(t) (see Chung
[1]), and we define

) gii = pi;(0).
The g¢.; satisfy
6) 0=2¢g;< for ©#7
and
(7) D i=1gi = 0.
In addition we will assume
®) gi = —¢qi < @.

For a given matrix @ = ((gi;)), whose elements satisfy (6)—(8), there exists
at least one matrix of transition probabilities P(t) = ((p+(¢))) satisfying
(1)-(5). Any such matrix is called a @-transition matrix, and a Markov chain
with these transition probabilities is called a @-process.

We are interested in the behavior of a sequence of transition matrices
P.(t) = ((p¥(t))) with corresponding matrices Q" = ((gi;)) satisfying (1 )—(8)
under the assumptions that

9) limy..qi; = qi;  exists for all < and j,
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and
(10) = —qi< o forall i.

Let X, (¢t) denote a Markov chain with transition matrix P, () and set
(11) xpii() = P{X.(t) =4, Xa(s) S K,0=s=t|X,0) =14}, 1=4j=K.

It can be shown (see Chung [1, IT.11, I1.17]) that the xp;; (¢) satisfy conditions
(1)-(4) and thatfor1 < 7,7 £ K

(12) exp {¢iit} = xpii () = pii (1),
(13) Joaiiexp {giis + ajit — 8)} ds = xpli(t) < pii(t), 1.

(we note that the first termin (13) is just P{X, (t) = j, X.(s) has only one jump
in0 < s < t|X,(0) = 4} ), and hence

(14) i 0) = gl .
Letting Q<" denote the K X K matrix ((g:;)), 1 < 1,7 < K, it follows that
(15) ((xpi;())) = exp {1Qx"} = 270 (¢'/INIQL""

For finite dimensional matrices, lim,.. Qx" = Qx implies the exponentials con-
verge also, so that lim,.. zpi;(t) = xpi;(t). Since p; () > xpii(t) for all K,
we have

(16) liminf,,e pii(t) = limg,« xps; () = Di; ()
= P{X(t) = J, suposs<t X (s) < o [ X (0) = 1},

for any Q-process X (¢). We observe that ((5.;(¢))) is just the transition matrix
for the minimal @-process. The following theorem is immediate.
TuaeEoREM 1. For each n, let ((pi;(t))) satisfy (1)-(4) and suppose

(17) liMpw plf 0) = qi;  forall 4,5 and —gu < ©  forall 4.
Let $;;(t) denote the transition probabilities for the minimal ((gi;))-process. Then

(18) My 2ogma P (E) = Dogma Dis(t)  forall 4, ¢,
implies

19) limu,e pii(¢) = D),  forall 4,7,

In particular (18) must hold if

(20) 2 pu(t) =1

ReEMARk. The equicontinuity of the p;;(¢) implies that the convergence in
(19) is uniform in compact ¢-intervals. Condition (20) implies ((p.;(¢))) is the
unique @-transition matrix. If condition (20) does not hold, then there are
infinitely many @Q-transition matrices, and clearly there exist sequences of
transition matrices satisfying (17) that do not satisfy (18) and (19).
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Now let us explore the possibility of a converse to the above theorem. Suppose,
for each n, ((p3;(t))) satisfies conditions (1)-(4) and

(21) lim,.. pii(t) = py(t) exists for all <, 7, t.
In order to eliminate obvious degenerate cases, assume that
(22) limg,o ps; (2) = 845 .
Since
Ipiit + h) — pi @) = 1 — pis(h),
we have
(23) Ipii(¢ + 1) — pii @) = 1 — pu(h)

and hence the p;;(t) are continuous.
Fatou’s lemma implies

(24) Pt + 8) = D ita pae (t)pai(s),

and without further assumptions strict inequality is possible. The existence of
derivatives

limeo (1 — pu())f = ¢ < o
and
limeso i ()6 = qij <
with
2o Qi S =g,

follows by essentially the same proofs as in the case when equality holds in (24 ).
We cannot, however, conclude that

: n
limy.e ¢i5 = gij,

as can be seen easily by considering the sequence of transition matrices cor-
responding to Q" given by

g=-1 i=j=1,
1 =1,

J=mn

= —n, 1 = ] =n,
=n, T = n, .7 = 17
=0, otherwise.

ReEmARK. The Markov chains in the sequence need not all have the same state
space in order to obtain interesting results. Suppose X, (¢) is a chain with state
space S, and that there exist a countable set S and 1-1 maps Y, from 8, into S
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such that for every ¢ ¢ S there exists N (¢) for which n > N () implies ¢ is in the
range of ¥, .

For n > max (N (), N(7)) let i(n) = Y, (i) and j(n) = Y. '(j).If
limusw @imimy = gi; exists for all 4, 7 & S, and —qs; < o for all 7 ¢S, then
By e D jes, Piemion () = Dojes Dii(t) all 1es, t=0,
implies
i Piewio (8) = Dui(t)-

For example, consider the following theorem originally proved by Stratton
and Tucker [2]:
TuEOREM 2. Let X, (1) be a branching process with offspring distribution

P{k offspring} = pi*

and exponential lifetime distribution with parameter \". Suppose

(25) limp,enN' = » < @
and
(26) liMpaw " = P with Y ppr = 1.

Then, setting v = pw,
limy e Pitn,jin () = Pi(t) for all integers 1, j,
where Pi;(t) are the transition probabilities of a spatially homogeneous process with
i 0) = viin, i #j,
and
—pi0) =» — u.
Proor. Letting ¥, () = ¢ — n and hence Y, ' (¢) = 4 + n, we note that
Qitnitn = (@ 4 0)N'pi-in 1,] = —mn, T # g,

and

v
l
3

Qitnitn = — (@ + )\ (1 — p1") g
Conditions (24) and (25) imply
limnsw @in,jon = Vimin 1 # 7,
and
limye Q?+n,i+n =y — V.
Clearly the minimal process for

Qi = Vj—it1 1% 7,
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and

Qis = V1 — Vv
satisfies

2ibu(t) = 1,
and the theorem follows.
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