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ZEROES OF INFINITELY DIVISIBLE DENSITIES!

BY MICHAEL SHARPE
University of California, San Diego

In this note, we prove the following theorem, which grew out of a question
posed by R. K. Getoor.

THEOREM. Suppose {p; ;t > 0} is a convolution semigroup of probability density
functions; i.e., for all s,t > O and forallz e (— x, ©)

(1) Pori() = [Zo p(e — y)pu(y) dy.

Suppose further that p.(x) is jointly continuous int e (0, ©) andx & ( —®, »).
Then {x:p.(x) = 0} is empty for all ¢ > 0, or {z:p(x) = 0} is a
half-line (— =, ct] or [ct, ©), where ¢ is some constant.

CoroLLARY. If p is an infinitely divisible density function whose characteristic
function ¢ has the property that all positive powers |¢|* are integrable, then the set of
zeroes of p s either empty or a closed half-line.

Proor or CoroLLARY. If |¢|' is integrable, the probability measure u, corre-
sponding to ¢’ has a continuous density p, , and the p, form a convolution semi-
group. Since

pi(x) = (2m)7 [Za e %' (y) dy,
and since

le(y)| = 1, .

the dominated convergence theorem shows that if ¢, — ¢ > 0 and z, — z, then
De,(€a) — pe(2) ; in other words, p(x) is jointly continuous in ¢ and z.
Proor oF THEOREM. Let M be the Levy measure for the process

{p(2) dz; ¢ > 0},
so that the characteristic function ¢° of p, is given by
o' (u) = exp {itbu — t6"*/2 + ¢ [ [e™ — 1 — du sin x]M (dz)}.
Clearly, if 8 > 0, then p,(z) > 0 for all ¢ and z, so it may be assumed that 6 = 0.

We then have, for every bounded continuous function f such that f(z) = 0z
near 0,

(2) ff(x)t—lp,(x) dx ﬁ'ff(x)M(dx) ast— 0.

Since the distributions of the process are continuous, a well-known theorem of
Hartman and Wintner [1] tells us that M must have infinite mass near 0. With-
out loss of generality, it may be assumed that M has infinite mass on the positive
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side of 0. We now define G < (0, ©) x (— o, ©) by
= {(t, x) :p.(x) > 0}.

The equation (1) together with the continuity of the p,(-) shows that G is an
open subsemigroup of (0, ©) x (— o, »). Let H denote the closure of @ in
[0, ©) %X (—o, ). Then H is a closed subsemigroup of [0, ©) x (— o, »).

I claim that (0, d) € H for all b = 0. Firstly, if b = 0, the claim follows at once
from the fact that p.(x) dz — 8:(dx) weakly as t — 0. Secondly, if b > 0, using
(2) and recalling that M must have mass arbitrarily close to 0 on the positive
side, it follows that (¢ must possess members in each wedge { (¢, z) :x > Bt} arbi-
trarily close to 0. We use this remark to construct a sequence (¢, , z,) in G such
that

(3) z,—>0 as n— o, and
(4) t/%n —0 as n— o,

Let ¢ > 0 be given; we shall construct a member (¢, ) of G such that ¢ < ¢ and
|z — b| < ¢, thus justifying the claim. The construction proceeds as follows: we
may assume e < b; choose n so large that z, < e and ¢,/z, = €/(2b), using (3)
and (4). We may plamly then choose a positive integer m such that [mxn —-b <
and mit, < e, and we take (¢, ) = (mt, , mx,) € G.

Since H is a subsemigroup of [0, ©) x (— e, ), we notice now that if (¢, z)
H, then (t,z 4+ y) e Hforally = 0

Observe also that H contains points on every vertical line in [0, «) x
(— o, ©). Define £(¢) = inf {z: (¢, z) € H} and n(¢) = inf {z:p.(z) > 0}. We
have — o = £(t) < ®© and —» = 9(f) < . Our next task is to prove that
£(t) = n(t) = ct for some constant ¢, —» = ¢ < «. Firstly, since ¢ C H,
£(t) = n(¢). If it is the case that 9(f) = — » for some ¢, then the semigroup
property of G implies that n(s) = — o for s > ¢, and also 7(#/2) = — «. Repe-
tition of the argument gives 7(f) = — «, and therefore £(¢) = 5(f) = ct with
¢ = — ». The only other possibility is that »(¢) is finite for all ¢ > 0. Using once
again the semigroup property of G, an easy argument leads to the result that
2(t 4+ s) = 9(t) + n(s) for all¢, s > 0. Since G is open, there is an interval I in
(0, ) on which 7 is uniformly bounded above, and therefore we must have
n(¢) = ct for some finite constant ¢. Now, G is contained in the wedge
{(t, z):x > ct} and so H is contained in the wedge W = {(¢, 2):x = ct}. Thus
£(t) = ct, hence £(t) = n(t) = ctfor all t. Consequently, H = W.

What remains to be proven is that p,(z) can have no zeroes in the interior of
the wedge W. In case ¢ = — 0, if p;(z) = O for some (%, z), we choose (r, y) so
that r < ¢ and p.(y) > 0. Then, in fact, p;(z) > 0 for (s, 2) in a neighborhood of
(r, ¥), and the semigroup property of G implies that p,(z) = 0 in a neighborhood
of (t — r,x — y), contradicting the fact that H = [0, ) % (— o, «).In case ¢
is finite, we have to modify the argument slightly. If p.(x) = 0 and z > ct, the
fact that 7(¢) = ct implies that p,(2) > 0 in some open set between the rays with
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slope ¢ and /¢, and with s < ¢. The semigroup property of G then implies that
ps(2) = 0in an open set lying above the ray with slope z/¢ and hence within the
wedge W. As before, this contradicts the fact that H = W. Hence, p;(x) can
have no zeroes in the interior of W, and the proof of the theorem is complete.

RemARrks. The theorem and its corollary are open to extension in at least two
ways. Firstly, a multidimensional analogue would presumably be that the densi-
ties would be zero except on a certain family of cones. Secondly, it would be nice
if one could prove that the set of zeroes of a continuous infinitely divisible density
is either empty, or a closed half-line, without having to make any other assump-
tions. Our method of proof breaks down completely in such generality. It should
be noted that another way of stating the theorem is that if {X.; ¢ > 0} is a
process with stationary independent increments whose distributions have densi-
ties p;(z) jointly continuous in ¢ and x, then if p,(z) = 0 for some ¢ and z, then
there exists ¢such that X; — ctis either a subordinator, or the negative of a sub-
ordinator.
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