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BAYES’ METHOD FOR BOOKIES

By Davip A. FREepMAN! AND ROGER A. PurvEs?

University of California, Berkeley

1. Introduction. Let © be a finite set, and for each 8 ¢ ©, let ps be a probability
distribution on a finite set X. Consider three players: a master of ceremonies, a
bookie, and a bettor. The master of ceremonies selects, at his pleasure, a 6 be-
longing to ©, and then an observation = ¢ X at random, according to ps. He
announces x to the bookie and the bettor. The bookie then posts odds on subsets
of ®, with the understanding that he must accept any combination of stakes the
bettor might care to make. The bettor places his stakes. Finally, 6 is revealed by
the master of ceremonies and bookie and bettor settle up.

Before the game begins, how should the bookie plan to set the odds? One
possibility is to choose a distribution on ®, and when « is revealed, to calculate
posterior odds by Bayes’ rule. There is good reason for adopting this method.
For any other procedure, there exists a system of bets with the following property:
a bettor who places his stakes according to the system can expect to win money
from the bookie, regardless of the 6 chosen by the master of ceremonies. On the
other hand, if the odds are calculated by Bayes’ method, no such system exists.
This is part of the content of Theorems 1 and 2 below. The two theorems extend
a result of Bruno de Finetti (de Finetti, 1937, especially pages 6-8) which says
(roughly) that someone who posts odds must do so on the basis of a finitely
additive probability or else be certain to lose money to a clever bettor.

Section 2 of the paper treats the easier case where the odds are all finite and
positive. The general case is developed in Section 3. Section 4, the final section,
contains a theorem similar to the theorem of Section 2, but appropriate to situa-
tions involving prediction.

2. Finite, positive odds. Throughout this and the next section, the following
assumptions will be in force. The sets ®, X are finite and not empty. For each
0 £ ©, py is a probability distribution on X. For each z € X, the function p.(z)
is defined by the rule

p.(x): 6 — po(2), 0e®.

The complement of a subset A of © is written A°, and 4 is said to be proper if
neither 4, A° is empty. Everywhere A is a subset of © and « is a member of X.
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For each z and A, the bookie must be prepared to post odds A(z, 4 ), where
Mz, A) is either a nonnegative real number, or 4. The statement
“Nz, A) = 77 means that when x occurs the bookie will post odds of seven to
one (7:1) against the occurrence of A. If the bookie happened to be setting the
odds on the basis of a probability, the corresponding probability of 4 would be
one-eighth. Odds determine the exchange of payments between the bettor and
the bookmaker. To describe certain conventions to be adopted here, consider an
event A with odds 7:1 posted. The bookie is assumed to be willing to permit the
bettor to stake both on and against 4. (Ordinary bookmakers are not so per-
missive.) When the bookie “‘accepts” stakes s = 0 on 4 and ¢ = 0 against 4,
no money changes hands. Rather, bookie and bettor enter an agreement that the
bookie will pay the bettor 7s — ¢ if A occurs, and (¢/7) — s if A does not occur.
Corresponding payments take place for any other positive odds. The bettor may,
if he wishes, simultaneously place stakes on and against a number of events. In
that case, the payment from the bookie to the bettor is simply the sum of the
payments for the individual events.

For simplicity of exposition, it is assumed in this section that the bookie only
accepts combinations of stakes on or against proper 4, and © contains at least
two members. Also, the odds A(z, 4 ) are assumed to be positive and finite for all
x and all proper A. In this situation, a strategy o (for a bettor) is a function which
assigns to each (z, A ), with A proper, a pair of nonnegative real numbers,

s(z, A), t(z, A).

These are to be interpreted as stakes to be placed on and against A respectively,»
in the event that x occurs.

To express the amount received by a bettor using a particular strategy when
(6, z) occurs, let w4(6, z) be the amount he receives as a result of stakes placed
on and against A only. Then

(1) wa(6, ) = [\(z, A)s(z, 4) — iz, A)]1a(0)
+ [z, A)/N(z, A) — s(z, A)I(1 — 14(6))

where 1,(8) = 1for0e A, 1,(6) = 0 for § £ A. The total amount received by
the bettor when (6, z) occurs is the sum of the terms (1) taken over all proper A.
Given the occurrence of 8, the expectation of the total is

(2) 2 e 24 proper Wa (6, € )po(2).

Considered as a function of 8, this quantity will be referred to as a payoff func-
tion. The preceding calculation shows how each strategy o leads to a real-valued
function on ©, the payoff function associated with ¢. The set of all such func-
tions, obtained by letting o range over all strategies against a fixed A, will be
denoted @, . Since ® contains at least two points, @ contains a function which
is not identically zero.

TaEOREM 1. Suppose ® contains at least two points and N(x, A) is finite and
positive for all proper A.
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If @ is not the set of all real-valued functions defined on O, there is a unigque
probability = on © such that

(3) (1 + A=, 4))7 20 po(x)m(8) = D pea Po(x)7(6)

forall (x, A) with A proper. The probability m assigns positive mass to each member
of ©. Further, @y s the set of all functions f satisfying

2.0 f(8)m(8) = 0.

In other words, if the odds A are not posterior odds (in the sense that no prob-
ability = on © satisfies (3) for all (z, A) with A proper), any real-valued func-
tion on © can be obtained as a payoff function by a suitable combination of
stakes, including one that is positive for every 6. But if A is the posterior odds
determined by the prior 7, every payoff function has m-expectation zero, and so
at least one nonpositive value.

Proor. The first step consists of establishing a more convenient expression
for wa( -, ). Omitting for the moment the dependence of A, s, f on (z, 4),

wa(, ) = (s — 8)La + ((¢/N) — s)(1 — 14(6))
= (As — )14 + 2T (s — £)(1 — 14(6))
= (1 +2HAs = Ol — 1+ 27
The final expression is of the form a(z, 4 )f,, 4 , where
foa =1 — [+ Nz, )T

is a function of 8 which does not depend on the strategy o adopted by a bettor,
and a(x, A) is a scalar which ranges over the real line as ¢ ranges over the set of
all strategies. Incidentally, when f, 4 is multiplied by p.(x), the result is the
payoff function associated with the strategy using only one positive stake,
[1 4 A&, A)], to be placed on A when z occurs. These simple payoff functions
occur often in what follows.

The preceding calculation, in conjunction with (2), implies that @) is the
linear subspace (of the space V of all real-valued functions on ®) spanned by
the set of functions

(4) e — (1 4+ Az, 4))Ip.(2)

where z ¢ X and A is proper. If @, # V, thereis a # # 0 in V such that = is
orthogonal to every member of @, . In particular, =, and any scalar multiple of
m, satisfy the equations

(3) 220 m(0)[14(0) — (1 4+ N(z, 4))Ipo(z) = 0

for all (z, A) with A proper. The remainder of the proof consists in showing
that, up to a scalar multiple, 7 is a probability distribution. Once this has been
established, the equation (5), which is equivalent to (3), shows A to be the
posterior odds for the prior obtained by multiplying = by a suitable scalar.
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There is a 7 € ® such that =(7) # 0. Setting A = {7} in (5) and rearranging
slightly,

(6) p(x)m(r) = (1 4+ Nz, 7)™ 2spo(z)7()

for all z. If an z is chosen for which p,(z) is positive, the right factor on the right
side of (6) is nonzero. For any other 7, the equation (6), with 7 replacing r,
remains true, and since A(z, 7 ) is positive and finite, both (7 ) and p,(x) are
nonzero. Dividing one equation by another shows m( 7 )/m(7) to be positive. It
follows that by scalar multiplication, = can be taken to be a probability distribu-
tion on © with w(8) positive for all § ¢ ©. A similar argument shows that proba-
bilities 7y , m satisfying (5) are proportional to one another and hence equal.
Since every function (4) satisfies

220 f(6)m(8) = 0,

Gy is a subspace of the orthogonal complement of w. But the uniqueness of =
implies that the orthogonal complement of @\ has dimension 1. This completes
the proof.

3. Zero and infinite odds. To establish an analogue of Theorem 1 when zero
and infinite odds are posted would seem to require certain conventions. Rather
than work with a payoff of + e, we have found it convenient to interpret infinite
odds on an event A in this way: if a bettor stakes a positive amount s on 4, and
A occurs, he may ask the bookie for any nonnegative real amount . If A does
not occur, the bettor loses s. For a stake ¢ = 0 against 4, the bettor receives,
zero if A does not occur. In total, the bettor receives v — ¢ when A occurs, and
—s otherwise, with the proviso that ¥ = 0 when s = 0. In case that the odds are
0:1 against 4, analogous conventions will be observed.

With these stipulations, the strategy of a bettor includes not only the choice of
stakes for events with finite odds, but for each (z, A ) for which A(z, 4) = O or
«, the choice of a triple of nonnegative numbers

s(z, 4), Uz, 4), u(z,4)

satisfying the following conditions: if A(z, 4) = o, s(z, A) = 0 implies
u(z, A) = 0;if M(z, A) = 0, ¢(z, 4) = 0impliesu(z, 4) = 0.

To calculate the amount received by a bettor when (6, z) occurs, recall that
w4 (0, x) is given by (1) if A(z, 4 ) is positive and finite. If A(z, 4) = + o,

(7) wa(0, ) = [u(z, A) — t(z, A)]14(0) — s(z, 4)(1 — 14(8)).
If Mz, 4) = 0,
(8)  wa(6,z) = —t(x, A)14(0) + [u(z, 4) — s(z, 4)](1 — 14(0)).

The payoff function arising from a strategy is the function which assigns to each
9 ¢ © the number

(9) 2o 2oawa(f, x)pe(e)
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where the w,’s are determined by the strategy through equations (1), (7), (8)
and the inner sum is taken over all subsets, proper or not, of ©. The set of all
such payoff functions will be denoted ®, . The following theorem extends only
the first part of Theorem 1.

THEOREM 2. If ®\ is a proper subset of the set of all real-valued functions defined
on O, there is a probability = on © such that (3) holds for every (z, A).

In (3) (and elsewhere) the quantity (1 -+ A(z, 4)) ™" is taken to be zero when
Az, A) is infinite, and conversely. Unlike Theorem 1, the = of Theorem 2 need
not be unique. An example will be given in the final remark following the proof
of Theorem 3.

LemMmA 1. ®y\ is closed under pointwise addition and multiplication by non-
negative scalars.

In the next lemma, a linear subspace L of functions is introduced. In the proof
of Theorem 2, L will play the role played by @, in the proof of Theorem 1.

LemMa 2. The closure of ® includes the linear space L spanned by the set of
Sfunctions

(10) [la — (1 4+ A=, A)7']p.(x)

wherex ¢ X, A is a subset of ©.

Proor. It is sufficient to show, that for each (x, 4), the result 75,4 of multi-
plying (10) by a real scalar ¢, can be realized as a limit of functions in ®, . If
0 < A(z,4) < =, this is obvious, because r.,4 is a member of ®, . If A\(z, 4) =
+ w0, the function

(u(z, A) — t(zx, A))1s — s(z, A)(1—1,) »
when multiplied by p.(z), becomes a payoff function. If ¢ is not positive, set
s(z, A) = 0and t(x, A) = —c to obtain r,,4 as a member of @, . If ¢ is positive,

set #(z, A) = 0, u(z, A) = c. Then as s(z, A ) approaches zero, the payoff func-
tions so obtained approach 7., 4. The case A(z, A) = 0 can be handled in a
similar way.

Proor or THEOREM 2. If B, is a proper subset of V, so is L. This follows from
the two lemme > and the fact that a convex dense subset of V coincides with V.
Following the proof of Theorem 1, there must be a nontrivial = satisfying (5)
for all (x, A), A = ¢ or © included. The main obstacle to continuing with the
proof of Theorem 1 is that ps(z) may be zero for some z and 6. To overcome
this, certain equivalence relations will be defined and the sign of = changed on
appropriate equivalence classes.

If T is a nonempty subset of ©, let T' be the set of pairs (6, 7) satisfying: for
somen = 0, there are 6y, 01, - - , 0,41, in T such that §, = 6, 6,41 = 7, and the
supports of po; , pe;,, are not disjoint for ¢ = 0, 1, - - - , n. The relation I' is an
equivalence relation on I'. The argument given in the proof of Theorem 1 to show
the 7(6)’s are of the same sign is easily adapted to establish the following fact.
If T is an equivalence class of T' and 7(8) 5= 0 for all 0 & T , the numbers 7(6)
have the same sign for all § in T .
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Let 8 be an equivalence class of ® and A be the set of 6 £ @ such that 7(0) = 0.
Assuming that A is nonempty, let C' be an equivalence class of A. Then = (8)
has the same sign for all 6 € C. If this were negative, #, defined by

#(0) = —x(0), 0eC,
= w(0), 6e® — C,

also satisfies (5) for all (z, A ). There are two cases to check.
Fix an z in X and let us suppose that for some 7 ¢ C, p,(z) is positive. Then

po(z)m(6) = po(x)#(6) = 0

forall 9 2 C. Indeed,if & (0 — A), 7(0) =#(8) = 0;and if 62C u (8 — A),
pe(xz) = 0 by the definition of C and . Thus, for any 4,

(11) 24 po(z)#(0) = 2ancpo(x)#(0) = — 2 ancpo(z)7(6)
= _ZA pg(x)ﬂ'(O).

I

Using (5), this equality may be continued.
= (1 4+ \=, 4))7(— 20 po(x)7(8))
= (1 4+ Nz, 4))7 (2o po()2(8)).

The last step is (11) with A = 6.

The other case, when p,(x) is zero for all 7 € C, is clear since # = = off C.

It follows immediately that = may be modified to give a solution of (5) wl:uch
is also a probability distribution.

The next theorem, which corresponds to the second part of Theorem 1, charac-
terizes the set of payoff functions available to the bettor when the odds offered
to him are posterior odds.

TaEOREM 3. Suppose that pe(x) is positive for all 6, x. If w is a probability
distribution on © which is not a point mass, and \ satisfies (3) for all (x, A ), then
®» 1s the half-space of functions f satisfying

220§(6)r(6) < 0.
Proor. (i) If f € By, the inequality holds. For
20 wa (8, )po(z)7(6)
is either ,
0, —s(z, A)(Zepo(x)n(8)),  —t(x, A)( 2o(po(x)m(6)),

depending on whether A(z, 4 ) is nonzero and finite, infinite, or zero. This follows
upon replacing w4 (6, z) by its definition and applying (3). In particular, in the
last two cases, the calculation depends on two consequences of (3):if A(z, 4) is
infinite,

D tea o(2)m(8) = 0;
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and if A(z, 4) is zero,

D tea Do(x)m(0) = D0 po(m)m(8).

(ii) The subspace L is a subset of ®, . It is clear that the subspace K spanned by
the set of functions - :

[lA - (1 + A(xy A))_I]Z?~(x),

where (z, 4 ) satisfies 0 < A(z, A) < o, is a subset of @, . Thus, it suffices to
show K = L. If AM(z; B) = oo, it will be argued that the function 1zp.(z) is in
K; the rest of the proof of ( ii) is then routine.

To see that 1zp.(x) € K, it is enough to verify that ép.(z) ¢ K for each
7 & B, where §, = 1;,) . By assumption, there is an w £ ® such that 0 < 7 (w) < L.
Let F {w, 7} and B = {w}.

The next step is to see that

(12)  [lr— (1 4+ Az, F)Yp.(z),  [le — (1 + N, B))Ip.(z)

are both in K. Indeed, on setting A = E in (3), and using ps(z) > 0 and 0 <
m(w) < 1, it follows that 0 < A(z, E) < . But

(13) Mz, F) = Nz, E),

because A(z, B) = o means'zm po(2)m(8) = 0 by (3), so p,(x)w(7) =
using (3) again,

pe(2)m(7) + pa(z)m(w) = (1 + Nz, F))™ 20 po(z)7(8),

which proves (13). In particular, both functions in (12) are in K. In view of
(13), their difference is 8,p.(z), which is therefore in K. This completes the proof
of (ii).

(iii) If f satisfies > 6 f(0)m(6) = 0, f is a member of L and conversely. The
converse is established by a calculation similar to the one described in (i). The
assumption that pe(z) is everywhere positive implies that the system of equa-
tions (5) (where A is also permitted to be ¢ or ®) has, up to a scalar multiple, at
most one solution. Thus the orthogonal complement of L coincides with the set
of scalar multiples of .

(iv) The set U of all functwns f satisfying > F(0)w(0) < 07s a subset of By .
If h is a fixed member of U it is easy to verify that the set of functions of the
form g + ah where g ranges over L and « over positive scalars, coincides with U.
To exploit this, let A = —p.(z), where z is some member of X. To show & is in
® , let s(x, ¢) = u(x, ¢) = 1 and all other stakes be zero. The payoff function
resulting from this strategy is A. Since ®, is a convex cone, and every g ¢ L is in
® by (ii), U is a subset of ®, .

ReMarks. 1. If the assumption of Theorem 3 that « is not a point mass is
replaced by the assumption that = is a point mass giving probability one to
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w £ O, say, ®\ becomes the set of functions f satisfying either
flw) <0, or
flw) =0 and f(#) =0 forall 6 # w.

The proof is similar to the proof of Theorem 3. In this case, then, &, is not a
half space. ‘

2. If X has exactly one member, the bookie has to specify only one set of odds
M. Essentially, this is the problem of posting odds for an experiment about to be
performed, no other information given. Bruno de Finetti has considered this
situation and our three theorems are very close to his discussion of the theorem
of total probabilities (given on pages 6-8 of de Finetti, 1937). For example,
Theorem 1 says that if A (positive and finite) does not satisfy

(1 +AA4) = 2 (8),

for all proper A, where = is some probability on ©, then every real-valued func-
tion is available as a payoff funetion (no expectations here) to a bettor.

3. Under the assumptions of Theorem 3, if a bettor decides to bet only when a
particular z occurs, that is to adopt strategies with

s(z',A) = t(x',4) =0
for all " # z and all 4, the set of all payoff functions
2o awa(+, z)p-(2)

available to him remains the entire half-space of functions f with nonpositive
m-expectation. This follows easily from a special case of Theorem 3, already noted
in the preceding remark. Letting X be the set consisting of x alone, ps(z) = 1
for all 9, and # be the posterior distribution given x, Theorem 3 says that the set
®» of all functions of the form

ZA wA(O, x)

is the half-space of functions with nonpositive #-mean. Now if f has nonpositive
r-expectation, the quotient f/p.(z) has nonpositive #-expectation and so f/p.(z)
is in ®% . Since members of ®; , when multiplied by p.(z), become payoff func-
tions available to the restricted bettor, f is available to the restricted bettor.

4. If the assumption that pe(z) is everywhere positive is dropped, every mem-
ber of ®, will still have nonpositive, r-expectation, but the converse may not
hold. For example, suppose ® = X = {1, 2}; ;(1) = p(2) = 1, ;u(2) =
pa(1) = 0; and w(1) = w(2) = %. Then the set ®, is the set of functions on )
which are everywhere nonpositive (the lower left quadrant of the plane). In
general, ®, did not seem to us to admit of a simple description.

5. In the example described in the preceding remark, where X is the posterior
o0dds for the uniform prior, any probability on © will be a solution of (3). Thus
the probability of Theorem 2 need not be unique. When py(2) is positive for all



BAYES’ METHOD FOR BOOKIES 1185

6, z, however, it is unique, as already mentioned in part (iii) of the proof of
Theorem 3.

4. Prediction. Let ®, X, Y be finite, nonempty sets and for each 6 ¢ ©®, ps a
probability distribution on X x Y. In this situation, the master of ceremonies
selects a 6 belonging to ©, and then, according to the distribution ps , a point of
X x Y. He reveals the first coordinate of this point to the bookie and the bettor.
The bookie proceeds to post odds on events depending only on the second co-
ordinate (the future) and the bettor places bets on those events. The game ends
with the master of ceremonies revealing the second coordinate of the point and
bookie and bettor settling up.

The notation of Section 3 can be carried over to this section, with the excep-
tion that A here will be a subset of ¥ rather than ®. The amount received by a
bettor as the result of stakes placed on and against 4 only, if 6, z, y occurs, is no
longer a function of 8. If A(z, 4 ) is positive and finite, this quantity is given by

wa(z, y) = (M(z, 4)s(z, 4) — t(z, 4))14(y)
+ (t(z, A)/ Nz, A) — 8(z, 4))(1 — 1a(y)).

If A(z, A) is either infinite or zero, the substitution of ‘4’ for ‘¢’ in the right hand
side of (7) and (8) will give the correct expression for w.(z, ¥).
The payoff function arising from a strategy is now defined by

Doex Dover Doa wa(Z, ¥)p-(2,Y)

where A ranges over all subsets of V. Letting ®, be the set of all such payoff
functions, we have

TuEOREM 4. Either ®, contains a function which is positive for every 6 ¢ ©, or
there is a probability distribution = on © for which

(14) (14 Nz, 4)) () 2o pe(z, )7(8)) = Dea 220 Po(z, y)(6)

for every x € X and A a subset of Y.

SkEercH OoF Proor. It can be verified that ®, is a convex cone of real-valued
functions defined on ®. If this cone contains no everywhere positive function, it
is disjoint from the convex set of all such functions. By a well-known separation
theorem for convex sets (Dunford, (1958), page 412) there is a nontrivial linear
functional II and a real number b such that if f is everywhere positive, b < II(f);
and if f € ® , II(f) < b. It is easily argued that b is zero and there is a probability
distribution = for which

(f) = 26 f(6)m(8)

for all real-valued f on ©.

By choosing certain f in ®) and examining the inequality II(f) < 0, it becomes
clear that \ is the odds computed on the basis of =, that is (14 ) holds. For exam-
ple, let A(z. A) be positive and finite and consider the strategv with

s(z, A) =1, t(z,4) = 0.
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and
s(z',A") =t(z',4") =0, forall (z,A4") # (z. A\
For this strategy, the payoff function is given by
f= 22z, A)Lu(y) = (1 = Lw)lp-(z, u).
The inequality II(f) < 0 becomes

200 2 M=, A)Lu(y) — (1 = 1u(y))po(z, y)m(8) < 0.

This implies the left side of (14) is no smaller than the right side. By consider-
ing a stake against A, the inequality can also be established in the other direction.

If A(z, A) is infinite, taking s(z, A) to be one and every other stake zero, a
similar argument leads to an inequality which implies the right hand side of
(14) also is zero. This completes the sketch of the proof.

Remargs. 1. Theorem 4 does not say that there is a unique =. This need not
be the case. For example, consider the situation where X has one member, Y has
two members and © has many members. Then a prior distribution has only to
satisfy five linear equations.

2. To return to the setting of Section 3, if Y = © and

po(z,y) = po(z) for y =16
=0 for y # 0,
Theorem 4 gives a weaker result than Theorem 2.
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