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ON DISTINGUISHING TRANSLATES OF MEASURES'

By MAREK KANTER
University of California, Berkeley

1. Introduction. Let X denote a completely general real valued stochastic
process on an arbitrary parameter set 7. Let m be any real valued function on
T. The well-known statistical problem of estimating a regression parameter
consistently can be formulated as follows.

For any real number «, let P, denote the probability measure that is induced
by the stochastic process x(¢) + am(Z) on the set S of all real valued functions
on 7. Let @ denote the o-field of subsets of S generated by coordinate functionals.
(Thus a typical set in @ is of the form {x | z(%) e [0, ], (&) €[1, » )} for
ti, e T.) Let G, be the completion of @ under P, . Let ® be the intersection of
all the @,’s. Then one may rigorously restate the question “Can one estimate o
consistently’” by asking whether there exists a functional f defined on S, meas-
urable with respect to @ and such that for all o, P,[f = «] = 1.

In Section 2 of this paper we show how a criterion that Dudley [2] used to
establish the singularity of the measures Py and P; can in fact be adapted to
show the existence of such an f. To describe this criterion we need some more
notation. Let S° denote the set of all “finitely defined”” linear functionals on S.
By this is meant that for any f & S° there is a finite sequence a, , - - - , @, of real
numbers and another finite sequence %, « -« , ¢, of elements of 7T such_that for
all ze S,f(z) = D7 a(t:). Let 3 be the pseudo-metric of convergence in P,
measure. Then (S°, 3) is a pseudo-metric linear space. For any m ¢ S, f ¢ S° let
en(f) = f(m). The criterion of Dudley is just that e, be a discontinuous linear
functional on (8° 3). In fact if this criterion is fulfilled then the functional f that
we exhibit will be linear on the vector space S, hence the measures P, are even
“linearly singular.”

In Section 3 we consider a certain subclass of processes with independent
increments and show that all non trivial m give rise to disecontinuous linear func-
tionals on the pseudo-metric linear space just mentioned. In Section 4 we con-
tinue to treat processes with independent increments but no longer require that
the functional f that distinguishes the measures P, be linear. Dudley [2] under
the hypotheses of Theorem 3 proves that the measures P, and P, are singular,
and Gikhman and Skorokhod [3] under the hypotheses of Theorem 4 do the
same. The theorems of this section extend the results of these authors in that
the continuum of measures P, are simultaneously distinguished.

2. Proof that the discontinuity criterion gives rise to a linear way of dis-
tinguishing the measures P,,.
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THEOREM 1. If en is discontinuous on (S°, 3) then there exists a sequence f, & S°
such that Po{z | limy e fa(z) = o} = 1V a.

Proor. The hypotheses imply that there are g, ¢ S°, with ¢» — 0 in 3 but
gn(m) - 0. Taking a subsequence and normalizing we may assume that
ga(z) — 0 for almost all  and that g.(m) — 1. Hence Pufz | gu(z) — o} =
Po{z | ga(z + am) — o} = Pofz | gu(2) + aga(m) —>a} = 1V a. []

CoROLLARY. Let T = {x & S| limp.e fu(x) exists}. Then T is a linear subspace
of S and is measurable w.rt. @. Also Po(T) = 1Y a, hence if a linear functional
f is defined on all of S by a linear extension of lim,. fu(x) on T, then f is meas-
urable w.rt. Gq for all @ and P{z | f(z) = o} = 1V a.

Let us give some examples of situations when this theorem and its corollary
apply. Suppose for instance that T = Z, the set of integers. Suppose E(z.}) <
© ¥ 1eZ, B(2aZm) = 0ifn = m, and E(z,) = 0 foralln ¢ Z. Let u, = E(z,’)
and let u stand for the measure on Z such that p({ns, <=+, %)) = D% ptn;
Then any me S (m = (m,)n e Z) such that m £ Ly(Z, ) has to give rise to a
discontinuous functional e, on (S8°, 3). For if f(z) = > » as; then en(f) =
Zy': a;m; .

For another example suppose that 7 = [0, 1] and that x(¢) is a stochastic
process with orthogonal mean zero increments that is continuous in probability.
Define the measure u on [0, 1] by u([tr, &)) = E((z(t) — 2(t))*). Suppose
that for some p integrable function & we have that m(t) = [¢h(¢) du(s). Then
if h 2 Ly([0, 1], u) then e, is discontinuous (S°, 3). For, let x[a, b] stand for the
characteristic function of the set [a, b]. Consider step functions of the form
Bo= D7 Gixtey_puigy — © <t < +++ < t, < ».Then Jo 1 (¢) dz(t) defines
an element f of S° and en(f) = [§h(¢)h'(t) du(t). Now just pick a sequence
ha' of step functions such that [3 (hx'(t)) du(t) —0but [3 h(¢)hy' (¢) du(t) — 1.

3. Application of Theorem 1 to processes with independent increments.

TueoreM 2. Suppose z(t), t€[0, 1] is a process with independent increments
which is continuous in probability and such that its characteristic function ¢.(z2) has
the form

exp {u([0, 1) [% (¢** — 1)dM(s) + u([0, &]) [ (¢** — 1) dN(s)}.

Here M and N are positive measures on R such that M(— o, —¢] 4+ Nle, ©) <
w for all ¢ > 0 and such that [% |s|dM(s) + [3sdN(s) < . Also pis a
continuous positive measure on [0, 1] with p([0, 1]) < . Then for any real valued
function m on [0, 1], either e is identically zero on (8%, 3) or en is discontinuous
on (8%, 3). (We assume m(0) = 0.)

Proor. We will not use but still mention the fact that almost all sample func-
tions of such a process are continuous except for a countable number of jumps,
and are of finite variation. See Breiman [1].

Let us begin the proof of this theorem by noticing that if m is not absolutely
continuous with respect to u, then e,, is discontinuous on (S°, 3). For suppose
that 2.V |m(s:) — m(t)] > 1 but D27 u(lts, s:)) < 1/N, where [t;, s;) are
disjoint intervals in [0, 1]. Without loss of generality we can suppose that in fact
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all of the terms m(s;) — m(¢;) are positive. Suppose we can do this for all positive
integers N.

Let fx &€ S° be defined by fx(z) = Y x(s;) — x(t:). (The intervals [t;, s;)
depend on N.) Then fy — 0 in 3 but fy(m) + 0. We conclude that if e,, is to
be continuous on (8%, 3) then m must be of the form m(t) = [§h(s) du(s) for
some h & Ly([0, 1], ). Now if [§ k()| du(t) > 0, i.e. if [Th(¢)A'(¢) du(t) = O
for some step function &’ (which is the same thing as saying e, is not identically
zero on S°), then lim,.+y, i1, [m(t) — m(t)]/u(lte, t)) 5 O for some # € [0, 1] by
a familiar theorem from measure theory. At this point we simply notice that the
characteristic function of [x(¢) — z(%)]/u(lto, ¢)) — 1 in any z neighborhood
of 0ast— o, ¢t > & . To prove this let us first note that the proof will not depend
on the point # and for simplicity let us assume & = 0.

Now |log ¢:(2/u([0, t])| = |I1] + |I.| where

I = ([0, 1]) [T (™" — 1) dN(s) and
I = u([0, 8]) [e (™™D — 1) dM (s).

Also |I3| = [u([0, ]) [ (e — 1) dN(s)| + 2u([0, HN ([e;, ).

Now choose e, — 0 such that u([0, {])N([e;, ©)) = 0ast— 0.

Also |u([0, £]) [&* (™1 _ 1) dN(s)| < 2r [ |es| AN (s).

But this expression goes to zero if ¢, — 0. So I goes to zero as ¢ — 0. Similarly
I, goes to zero as t — 0.

We conclude that we can choose a sequence of numbers ¢, > f , t, — & such that
1Mty (1) — m(0))/(llo, 6r]) 7 O bub limyyty [6(t) — 2(t0))/i([n, ta]) =
0 in probability. So if fu(z) = [2(t.) — 2(t)]/u(lto, t.]) then f, — 0in (S°, 3)
but f,(m) + 0. []

In the special case when x(¢) of the last theorem is a stable process with
logpi(z) = —t[2]% 0 < ¢ < 1, the theorem is just another proof of the fact
that there are no non-trivial continuous linear functionals on L, ([0, 1]). See B.
Gramsch [4] and Woyezynski and Urbanik [7] for related results.

4. Distinguishing the measures in a non linear fashion.

TurorEM 3. Let x, , n = 1 be a sequence of independent, identically distributed
random variables. Let m = (m,)n = 1 be a sequence of real numbers such that
> T m,t = . Then there exists a sequence fy of functionals defined on S, the space
of all real valued sequences, such that fy are all measurable w.r.t. @ and such that
fu(z +am) > aas Va

Proor. Choose M > 0 such that P[|z,| < M] = %.

Let

h(s) =M +1  if s>M+1,
=3 if |sf=M+1,
=-M-1 if s<—-M-—1.

Letb = E(h(x4)), ¢” = E(h(z, 4+ am,)),n = 1.
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Now .7 m,, = oo, 80 for some subsequence n;, m,; all have the same sign
and D1 (m,;)* = . So without loss of generahty we assume m, = 0V n.
Now fix a sequence A, = 0,7 = 1such that )1 A\,* < ® but D5 Aum, — 4o,

Notice now that if « = 0 then 0 = im0 < (¢,* — b) < Mmua and if a £ 0
then ma.a £ (¢ — b) £ 3ma.a £ 0.

Soif @ = 0 then [D_§A(ca® — B))/ D ¥ Awmn, b = 1,2, - -+, is an infinite
sequence of numbers in the interval [fa, o] and if @« = O then it is an infinite
sequence of numbers in the interval [«, 3a]. In either case let g(a) be the lim inf
of the sequence.

If 3] > =0 then %Z‘-)\nm”(al — az) é )\,,(Cnal - Cnaa) § )\nm,.(al - az) and

if a1 < oz < 0 then Ay (1 — a3) = M(e™ — 6.™) = INma(on — az).

So g is strictly increasing with respect to its argument. So its inverse g™ is

well defined and continuous.
Now consider

[ZI{ )\'n(h(xn + amn) - b)]/Z’f Aalln
= { 21 Ml(A(@n + amy) — %) + (6™ — D)}/ 225 M

Now h(z, + am,) — c¢,* is a sequence of independent square integrable
random variables with mean zero and variance < (M + 1)% So > ¥ A(h(z,
+ am,) — ¢,*) converges almost surely and hence

1227 Ma(h(@n + ama) — ¢u®)]/ 221 Mumy — 0 almost surely.

Let fw(z) = ¢ (infizn {{ 221 Ma(h(®n + ama) — 0))/ 223 huma} )
Now {[D2_¥M\(h(z, + am,.) — D)/ 2k MMa}ps1 has the same hm inf as
(2% N (cn — )1/ 2_% M}z 21 almost surely.

So fx(z + am) — « almost surely. []

The above arguments are based on Dudley’s [2] proof of a theorem of Shepp
[6].

Now let us again consider a process z(¢), t € [0, 1] with independent increments
which is continuous in probability and such that 2(0) = 0 a.s.

As shown in Logve [5]

z(t) = £(t) + a(t) + [§ [T ylv(ds, dy) — (1 + y*)'w(ds, dy)]  as.

where a(t) is a continuous real valued function which we shall assume to be zero,
¢£(0) = 0 a.s. and ¢(%) is a continuous gaussian process with independent incre-
ments of mean zero, and = is a pos1t1ve measure on [0, 1] X R which satisfies
(i) ([0, 1] X {0}) = 0 and (ii) [¥2*(1 + ¥*)7x([0, 1] X dy) < «. In the
above formula »(4 X B) is a Poisson r.v. with mean and variance equal to
w(4 X B).

Let P; denote the probability measure that the stochastic process ¢ (¢) induces
on 8. Let 5 be the pseudo-metric on S° of convergence in P; measure.

TueoreM 4. If e, is discontinuous on (S° , 3¢), then there exists a sequence fy of
@ measurable functionals such that Pllimy.. fv(z + am) — o] = 1V a. (We can
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assume that m s a continuous function, otherwise e, is discontinuous on (S°, 3)
and Theorem 1 applies.)

Proor. Gikhman and Skorokhod [3] consider the measurable mapping T': S —
S defined by T'(z)(t) = limpse (limg.e Yi.a(z)(t), Where

Yen(2)() = (= Dttt bau(@(l/n) — a(l — 1/n))
4+ 2(t) + [5 [lsay(1 + ") 'r(ds X dy).

Here ¢(y) = yfor y| > ¢ ¥.(y) = Ofor [y| £ e and & is a sequence of positive
numbers tending to zero for which ([0, 1] X {y:|y] = &}) = 0. (The limits
are taken into the sense of convergence in measure.)

Now lipse, Ximet Yeu(@(l/n) — (1 — 1/n)) = [§ [ 1415 y2(ds, dy) a.s.

Consequently T'(z 4+ am)(t) = ¢(t) + am(t) a.s.

Now let gy £ S° be such that gy — 0 in 3; but gx(m) — 1. We can find step
functions hy such that gny(z) = [Ghy(¢)dz(t) ¥ z & S. So we have
f% hx(t) di(t) — 0 in quadratic mean.

Now consider [§hy(¢) d(yi.n(z + am)(t)).

This expression equals agy(m) + [§hy(t) di-(t) + 21, (hx) a.s., where for any
step function 4, 2 (% ) is a random variable such that limy (lim,.e 2x.4(2)) = 0
in probability.

Now let us choose for each N, k(N) and n(N ) so large that

limye 26y nn (hy) — 0 a.s.

Hence fé hy(t) A(Yrwy many (@ + am)(t)) - « a.s. by choosing a subsequence
of the sequence Ay if necessary. Now define fy(z) = [§hn(¢) d(Yicwy mem (2)(2)).
Then limy.o fy(z + am) = « a.s. []

CororrarY. If {(t) = 0 V {, then we need no condition at all on m for the
theorem to hold.
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