ON DISTINGUISHING TRANSLATES OF MEASURES1

By Marek Kanter

University of California, Berkeley

1. Introduction. Let X denote a completely general real valued stochastic process on an arbitrary parameter set T. Let m be any real valued function on T. The well-known statistical problem of estimating a regression parameter consistently can be formulated as follows.

For any real number α , let P_{α} denote the probability measure that is induced by the stochastic process $x(t) + \alpha m(t)$ on the set S of all real valued functions on T. Let α denote the σ -field of subsets of S generated by coordinate functionals. (Thus a typical set in α is of the form $\{x \mid x(t_1) \in [0, \frac{1}{2}], x(t_2) \in [1, \infty)\}$ for t_1 , $t_2 \in T$.) Let α be the completion of α under P_{α} . Let α be the intersection of all the α 's. Then one may rigorously restate the question "Can one estimate α consistently" by asking whether there exists a functional f defined on f, measurable with respect to f and such that for all f and f and f are f are f and f are f are f and f are f and f are f are f and f are f are f are f and f are f and f are f are f and f are f are f and f are f are f are f and f are f and f are f and f are f are f are f and f are f are f and f are f are f and f are f and f are f and f are f and f are f are f are f and f are f and f are f and f are f and f are f

In Section 2 of this paper we show how a criterion that Dudley [2] used to establish the singularity of the measures P_0 and P_1 can in fact be adapted to show the existence of such an f. To describe this criterion we need some more notation. Let S^0 denote the set of all "finitely defined" linear functionals on S. By this is meant that for any $f \in S^0$ there is a finite sequence a_1, \dots, a_n of real numbers and another finite sequence t_1, \dots, t_n of elements of T such that for all $x \in S, f(x) = \sum_{i=1}^{n} a_i x(t_i)$. Let 3 be the pseudo-metric of convergence in P_0 measure. Then (S^0, \mathfrak{I}) is a pseudo-metric linear space. For any $m \in S, f \in S^0$ let $e_m(f) = f(m)$. The criterion of Dudley is just that e_m be a discontinuous linear functional on (S^0, \mathfrak{I}) . In fact if this criterion is fulfilled then the functional f that we exhibit will be linear on the vector space S, hence the measures P_{α} are even "linearly singular."

In Section 3 we consider a certain subclass of processes with independent increments and show that all non trivial m give rise to discontinuous linear functionals on the pseudo-metric linear space just mentioned. In Section 4 we continue to treat processes with independent increments but no longer require that the functional f that distinguishes the measures P_{α} be linear. Dudley [2] under the hypotheses of Theorem 3 proves that the measures P_0 and P_1 are singular, and Gikhman and Skorokhod [3] under the hypotheses of Theorem 4 do the same. The theorems of this section extend the results of these authors in that the continuum of measures P_{α} are simultaneously distinguished.

2. Proof that the discontinuity criterion gives rise to a linear way of distinguishing the measures P_{α} .

^{*}Received 29 January 1969; revised 14 April 1969.

¹ This research is based on a subset of the author's PhD dissertation submitted to the University of California, Berkeley.

1773

THEOREM 1. If e_m is discontinuous on $(S^0, 5)$ then there exists a sequence $f_n \in S^0$ such that $P_{\alpha}\{x \mid \lim_{n\to\infty} f_n(x) = \alpha\} = 1 \ \forall \ \alpha$.

PROOF. The hypotheses imply that there are $g_n \, \varepsilon \, S^0$, with $g_n \to 0$ in 5 but $g_n(m) \to 0$. Taking a subsequence and normalizing we may assume that $g_n(x) \to 0$ for almost all x and that $g_n(m) \to 1$. Hence $P_{\alpha}\{x \mid g_n(x) \to \alpha\} = P_0\{x \mid g_n(x + \alpha m) \to \alpha\} = P_0\{x \mid g_n(x) + \alpha g_n(m) \to \alpha\} = 1 \, \forall \alpha$. \square

COROLLARY. Let $T = \{x \in S \mid \lim_{n\to\infty} f_n(x) \text{ exists}\}$. Then T is a linear subspace of S and is measurable w.r.t. α . Also $P_{\alpha}(T) = 1 \ \forall \ \alpha$, hence if a linear functional f is defined on all of S by a linear extension of $\lim_{n\to\infty} f_n(x)$ on T, then f is measurable w.r.t. α_{α} for all α and $P_{\alpha}\{x \mid f(x) = \alpha\} = 1 \ \forall \ \alpha$.

Let us give some examples of situations when this theorem and its corollary apply. Suppose for instance that T=Z, the set of integers. Suppose $E(x_n^2)<\infty$ \forall $n \in Z$, $E(x_nx_m)=0$ if $n\neq m$, and $E(x_n)=0$ for all $n \in Z$. Let $\mu_n=E(x_n^2)$ and let μ stand for the measure on Z such that $\mu(\{n_1,\dots,n_k\})=\sum_{1}^k \mu_{n_i}$. Then any $m \in S$ ($m=(m_n)n \in Z$) such that $m \notin L_2(Z,\mu)$ has to give rise to a discontinuous functional e_m on (S^0, \mathfrak{I}) . For if $f(x)=\sum_{1}^n a_i x_i$ then $e_m(f)=\sum_{1}^n a_i m_i$.

For another example suppose that T=[0,1] and that x(t) is a stochastic process with orthogonal mean zero increments that is continuous in probability. Define the measure μ on [0,1] by $\mu([t_1,t_2))=E((x(t_2)-x(t_1))^2)$. Suppose that for some μ integrable function h we have that $m(t)=\int_0^t h(t) \, d\mu(s)$. Then if $h \not \in L_2([0,1],\mu)$ then e_m is discontinuous $(S^0,5)$. For, let $\chi[a,b]$ stand for the characteristic function of the set [a,b]. Consider step functions of the form $h'=\sum_1^n a_i\chi_{[t_{i-1},t_i]}, -\infty < t_0 < \cdots < t_n < \infty$. Then $\int_0^1 h'(t) \, dx(t)$ defines an element f of S^0 and $e_m(f)=\int_0^1 h(t)h'(t) \, d\mu(t)$. Now just pick a sequence h_N of step functions such that $\int_0^1 (h_N'(t))^2 \, d\mu(t) \to 0$ but $\int_0^1 h(t)h_N'(t) \, d\mu(t) \to 1$.

3. Application of Theorem 1 to processes with independent increments.

THEOREM 2. Suppose x(t), $t \in [0, 1]$ is a process with independent increments which is continuous in probability and such that its characteristic function $\varphi_t(z)$ has the form

$$\exp \{\mu([0,t]) \int_{-\infty}^{0} (e^{izs} - 1) dM(s) + \mu([0,t]) \int_{0}^{\infty} (e^{izs} - 1) dN(s) \}.$$

Here M and N are positive measures on R such that $M(-\infty, -\epsilon] + N[\epsilon, \infty) < \infty$ for all $\epsilon > 0$ and such that $\int_{-1}^{0} |s| dM(s) + \int_{0}^{1} s dN(s) < \infty$. Also μ is a continuous positive measure on [0, 1] with $\mu([0, 1]) < \infty$. Then for any real valued function m on [0, 1], either e_m is identically zero on $(S^0, 5)$ or e_m is discontinuous on $(S^0, 5)$. (We assume m(0) = 0.)

Proof. We will not use but still mention the fact that almost all sample functions of such a process are continuous except for a countable number of jumps, and are of finite variation. See Breiman [1].

Let us begin the proof of this theorem by noticing that if m is not absolutely continuous with respect to μ , then e_m is discontinuous on $(S^0, 3)$. For suppose that $\sum_{i=1}^{N} |m(s_i) - m(t_i)| > 1$ but $\sum_{i=1}^{N} \mu([t_i, s_i)) < 1/N$, where $[t_i, s_i)$ are disjoint intervals in [0, 1]. Without loss of generality we can suppose that in fact

all of the terms $m(s_i) - m(t_i)$ are positive. Suppose we can do this for all positive integers N.

Let $f_N \in S^0$ be defined by $f_N(x) = \sum_{i=1}^N x(s_i) - x(t_i)$. (The intervals $[t_i, s_i)$ depend on N.) Then $f_N \to 0$ in 3 but $f_N(m) \to 0$. We conclude that if e_m is to be continuous on $(S^0, 5)$ then m must be of the form $m(t) = \int_0^t h(s) d\mu(s)$ for some $h \in L_1([0, 1], \mu)$. Now if $\int_0^1 |h(t)| d\mu(t) > 0$, i.e. if $\int_0^1 h(t)h'(t) d\mu(t) \neq 0$ for some step function h' (which is the same thing as saying e_m is not identically zero on S^0), then $\lim_{t\to t_0, t>t_0} [m(t)-m(t_0)]/\mu([t_0,t)) \neq 0$ for some $t_0 \in [0,1]$ by a familiar theorem from measure theory. At this point we simply notice that the characteristic function of $[x(t) - x(t_0)]/\mu([t_0, t)) \rightarrow 1$ in any z neighborhood of 0 as $t \to t_0$, $t > t_0$. To prove this let us first note that the proof will not depend on the point t_0 and for simplicity let us assume $t_0 = 0$.

Now $|\log \varphi_t(z/\mu([0, t])| \le |I_1| + |I_2|$ where

$$\begin{split} I_1 &= \, \mu([0,\,t]) \, \int_0^\infty \left(e^{isz/\mu([0,\,t])} \, - \, 1 \right) dN(s) \quad \text{and} \\ I_2 &= \, \mu([0,\,t]) \, \int_{-\infty}^0 \left(e^{isz/\mu([0,\,t])} \, - \, 1 \right) dM(s). \end{split}$$

Also $|I_1| \le |\mu([0,t])| \int_0^{\epsilon_t} (e^{isz/\mu([0,t])} - 1) dN(s) + 2\mu([0,t])N([\epsilon_t, \infty)).$

Now choose $\epsilon_t \to 0$ such that $\mu([0,t])N([\epsilon_t,\infty)) \to 0$ as $t \to 0$. Also $|\mu([0,t]) \int_0^{\epsilon_t} (e^{isz/\mu([0,t])} - 1) dN(s)| \leq 2\pi \int_0^{\epsilon_t} |zs| dN(s)$.

But this expression goes to zero if $\epsilon_t \to 0$. So I_1 goes to zero as $t \to 0$. Similarly I_2 goes to zero as $t \to 0$.

We conclude that we can choose a sequence of numbers $t_n > t_0$, $t_n \to t_0$ such that $\lim_{t_n \to t_0} [m(t_n) - m(t_0)] / \mu([t_0, t_n]) \neq 0 \text{ but } \lim_{t_n \to t_0} [x(t_n) - x(t_0)] / \mu([t_0, t_n]) =$ 0 in probability. So if $f_n(x) = [x(t_n) - x(t_0)]/\mu([t_0, t_n])$ then $f_n \to 0$ in $(S^0, 3)$ but $f_n(m) \leftrightarrow 0$.

In the special case when x(t) of the last theorem is a stable process with $\log \varphi_t(z) = -t |z|^q$, 0 < q < 1, the theorem is just another proof of the fact that there are no non-trivial continuous linear functionals on $L_q([0, 1])$. See B. Gramsch [4] and Woyczynski and Urbanik [7] for related results.

4. Distinguishing the measures in a non linear fashion.

THEOREM 3. Let x_n , $n \ge 1$ be a sequence of independent, identically distributed random variables. Let $m = (m_n)n \ge 1$ be a sequence of real numbers such that $\sum_{1}^{\infty} m_n^2 = \infty$. Then there exists a sequence f_N of functionals defined on S, the space of all real valued sequences, such that f_N are all measurable w.r.t. α and such that $f_N(x + \alpha m) \rightarrow \alpha \text{ a.s. } \forall \alpha.$

PROOF. Choose M > 0 such that $P[|x_n| < M] \ge \frac{1}{2}$. Let

$$h(s) = M + 1$$
 if $s > M + 1$,
 $= s$ if $|s| \le M + 1$,
 $= -M - 1$ if $s < -M - 1$.

Let
$$b = E(h(x_n)), c_n^{\alpha} = E(h(x_n + \alpha m_n)), n \ge 1.$$

Now $\sum_{1}^{\infty} m_n^2 = \infty$, so for some subsequence n_i , m_{n_i} all have the same sign and $\sum_{1}^{\infty} (m_{n_i})^2 = \infty$. So without loss of generality we assume $m_n \ge 0 \ \forall n$. Now fix a sequence $\lambda_n \geq 0$, $n \geq 1$ such that $\sum_{1}^{\infty} \lambda_n^2 < \infty$ but $\sum_{1}^{k} \lambda_n m_n \to +\infty$. Notice now that if $\alpha \geq 0$ then $0 \leq \frac{1}{2}m_n\alpha \leq (c_n^{\alpha} - b) \leq m_n\alpha$ and if $\alpha \leq 0$

then $m_n\alpha \leq (c_n^{\alpha} - b) \leq \frac{1}{2}m_n\alpha \leq 0$. So if $\alpha \geq 0$ then $[\sum_1^k \lambda_n(c_n^{\alpha} - b)]/\sum_1^k \lambda_m m_n$, $k = 1, 2, \cdots$, is an infinite sequence of numbers in the interval $\left[\frac{1}{2}\alpha, \alpha\right]$ and if $\alpha \leq 0$ then it is an infinite sequence of numbers in the interval $[\alpha, \frac{1}{2}\alpha]$. In either case let $g(\alpha)$ be the lim inf of the sequence.

If $\alpha_1 > \alpha_2 \ge 0$ then $\frac{1}{2}\lambda_n m_n(\alpha_1 - \alpha_2) \le \lambda_n (c_n^{\alpha_1} - c_n^{\alpha_2}) \le \lambda_n m_n(\alpha_1 - \alpha_2)$ and if $\alpha_1 < \alpha_2 \le 0$ then $\lambda_n m_n(\alpha_1 - \alpha_2) \le \lambda_n (c_n^{\alpha_1} - c_n^{\alpha_2}) \le \frac{1}{2}\lambda_n m_n(\alpha_1 - \alpha_2)$.

So g is strictly increasing with respect to its argument. So its inverse $g^{(-1)}$ is well defined and continuous.

Now consider

$$\begin{aligned} \left[\sum_{1}^{k} \lambda_{n} (h(x_{n} + \alpha m_{n}) - b) \right] / \sum_{1}^{k} \lambda_{n} m_{n} \\ &= \left\{ \sum_{1}^{k} \lambda_{n} \left[(h(x_{n} + \alpha m_{n}) - c_{n}^{\alpha}) + (c_{n}^{\alpha} - b) \right] \right\} / \sum_{1}^{k} \lambda_{n} m_{n} \end{aligned}$$

Now $h(x_n + \alpha m_n) - c_n^{\alpha}$ is a sequence of independent square integrable random variables with mean zero and variance $\leq (M+1)^2$. So $\sum_{1}^{N} \lambda_n (h(x_n)^2)$ $+\alpha m_n$) $-c_n^{\alpha}$) converges almost surely and hence

$$\left[\sum_{1}^{N} \lambda_{n} (h(x_{n} + \alpha m_{n}) - c_{n}^{\alpha})\right] / \sum_{1}^{N} \lambda_{n} m_{n} \to 0$$
 almost surely.

Let
$$f_N(x) = g^{(-1)}(\inf_{k \ge N} \{ [\sum_{1}^k \lambda_n (h(x_n + \alpha m_n) - b)] / \sum_{1}^k \lambda_n m_n \}).$$

Let $f_N(x) = g^{(-1)}(\inf_{k \ge N} \{ [\sum_{1}^k \lambda_n (h(x_n + \alpha m_n) - b)] / \sum_{1}^k \lambda_n m_n \})$. Now $\{ [\sum_{1}^k \lambda_n (h(x_n + \alpha m_n) - b)] / \sum_{1}^k \lambda_n m_n \}_{k \ge 1}$ has the same lim inf as $\{ [\sum_{1}^k \lambda_n (c_n^{\alpha} - b)] / \sum_{1}^k \lambda_n m_n \}_{k \ge 1}$ almost surely.

So
$$f_N(x + \alpha m) \to \alpha$$
 almost surely. \square

The above arguments are based on Dudley's [2] proof of a theorem of Shepp

Now let us again consider a process x(t), $t \in [0, 1]$ with independent increments which is continuous in probability and such that x(0) = 0 a.s.

As shown in Loève [5]

$$x(t) = \zeta(t) + a(t) + \int_0^t \int_{-\infty}^{+\infty} y[\nu(ds, dy) - (1 + y^2)^{-1}\pi(ds, dy)]$$
 a.s.

where a(t) is a continuous real valued function which we shall assume to be zero, $\zeta(0) = 0$ a.s. and $\zeta(t)$ is a continuous gaussian process with independent increments of mean zero, and π is a positive measure on $[0, 1] \times R$ which satisfies (i) $\pi([0, 1] \times \{0\}) = 0$ and (ii) $\int_{-\infty}^{+\infty} y^2 (1 + y^2)^{-1} \pi([0, 1] \times dy) < \infty$. In the above formula $\nu(A \times B)$ is a Poisson r.v. with mean and variance equal to $\pi(A \times B)$.

Let P_{ζ} denote the probability measure that the stochastic process $\zeta(t)$ induces on S. Let \mathfrak{I}_{ζ} be the pseudo-metric on S^0 of convergence in P_{ζ} measure.

THEOREM 4. If e_m is discontinuous on $(S^0, \mathfrak{I}_{\zeta})$, then there exists a sequence f_N of a measurable functionals such that $P[\lim_{N\to\infty} f_N(x+\alpha m)\to \alpha]=1 \ \forall \ \alpha.$ (We can assume that m is a continuous function, otherwise e_m is discontinuous on $(S^0, 3)$ and Theorem 1 applies.)

PROOF. Gikhman and Skorokhod [3] consider the measurable mapping $T: S \to S$ defined by $T(x)(t) = \lim_{t\to\infty} (\lim_{n\to\infty} y_{k,n}(x)(t))$, where

$$y_{k,n}(x)(t) = \left(-\sum_{l/n < t} \psi_{\epsilon_k}(x(l/n) - x(l-1/n)) + x(t) + \int_0^t \int_{|u| > \epsilon_k} y(1+y^2)^{-1} \pi(ds \times dy)\right).$$

Here $\psi_{\epsilon}(y) = y$ for $|y| > \epsilon$, $\psi_{\epsilon}(y) = 0$ for $|y| \le \epsilon$ and ϵ_k is a sequence of positive numbers tending to zero for which $\pi([0, 1] \times \{y : |y| = \epsilon_k\}) = 0$. (The limits are taken into the sense of convergence in measure.)

Now $\lim_{n\to\infty} \sum_{l/n < t} \psi_{\epsilon_k}(x(l/n) - x(l-1/n)) = \int_0^t \int_{|y| > \epsilon_k} y \nu(ds, dy)$ a.s. Consequently $T(x + \alpha m)(t) = \zeta(t) + \alpha m(t)$ a.s.

Now let $g_N \in S^0$ be such that $g_N \to 0$ in \mathfrak{I}_S but $g_N(m) \to 1$. We can find step functions h_N such that $g_N(x) = \int_0^1 h_N(t) dx(t) \ \forall \ x \in S$. So we have $\int_0^1 h_N(t) d\zeta(t) \to 0$ in quadratic mean.

Now consider $\int_0^1 h_N(t) d(y_{k,n}(x+\alpha m)(t)).$

This expression equals $\alpha g_N(m) + \int_0^1 h_N(t) d\zeta(t) + z_{k,n}(h_N)$ a.s., where for any step function $h, z_{k,n}(h)$ is a random variable such that $\lim_{k\to\infty} (\lim_{n\to\infty} z_{k,n}(h)) = 0$ in probability.

Now let us choose for each N, k(N) and n(N) so large that

$$\lim_{N\to\infty} z_{k(N),n(N)}(h_N) \to 0$$
 a.s.

Hence $\int_0^1 h_N(t) d(y_{k(N),n(N)}(x+\alpha m)(t)) \to \alpha$ a.s. by choosing a subsequence of the sequence h_N if necessary. Now define $f_N(x) = \int_0^1 h_N(t) d(y_{k(N),n(N)}(x)(t))$. Then $\lim_{N\to\infty} f_N(x+\alpha m) = \alpha$ a.s. \square

Corollary. If $\zeta(t) \equiv 0 \ \forall \ t$, then we need no condition at all on m for the theorem to hold.

5. Acknowledgment. I wish to express my sincere appreciation to Professor Jacob Feldman for the constant guidance and encouragement which he gave during the course of this investigation.

REFERENCES

- [1] Breiman, L. (1968). Probability, Addison-Wesley, Cambridge.
- [2] DUDLEY, R. M. (1966). On singular translates of finite measures. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 129-132.
- [3] GIKHMAN, I. I. and Skorokhod, A. V. (1966). On the densities of probability measures in function spaces. Russian Math. Surveys, 21 83-156.
- [4] Gramsch, B. (1961). Die Klasse metrischer linearere Räume & A. Math. Ann. 171 60-78.
- [5] LOÈVE, M. (1960). Probability Theory, 2nd ed. Van Nostrand, New York.
- [6] Shepp, L. A. (1965). Distinguishing a sequence of random variables from a translate of itself. Ann. Math. Statist. 36 1107-1112.
- [7] URBANIK, K. and WOYCZYNSKI, W. A. (1967). A random integral and Orlicz spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math., Astronom. Phys. 15 161–169.