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1. Introduction. The least upper bound is derived for the variance of unimodal
probability distributions, which are restricted to a finite interval of the real line
and possess probability densities with respect to Lebesgue measure. In applica-
tions the probability of some rare event is often desired, where the exact form of
a distribution and/or its variance are not readily derivable, although the distri-
bution is intuitively known to be unimodal. In such cases an upper bound for
the desired probability may be available, e.g., via Chebycheff’s inequality, as a
function of an upper bound upon the unknown variance. Variance bounds also
find use in applications of the Central Limit Theorem. Outside of such applica-
tions, it is of separate academic interest to observe the extent to which the con-
dition of unimodality limits the attainable variance.

Johnson and Rogers [2] have shown that for unimodal distributions, the vari-
ance is bounded below by (mean-mode)’/3. More recently, Gray and Odell [1]
have shown that the variance of certain piecewise continuous functions, re-
stricted to a finite interval, is maximized if taken with respect to the uniform
density compared with any other density on the interval that is unimodal, piece-
wise continuous, and symmetric about the interval midpoint. Their result in-
dicates that the uniform density has the maximum variance within the cited
class of symmetric densities.

This paper extends the results of Gray and Odell by dropping the require-
ment of symmetry—however, at the expense of restricting attention to the distribu-
tion variance. Obviously, the amount of available description of the distribution
determines the exactitude of variance bounds. Merely knowing that a distribu-
tion is restricted to [a, b] serves to bound its variance by (b — a)’/4, which
derives from the non—unimodal Bernoulli distribution with atoms of equal prob-
ability measure at © = @ and z = b. It will be shown here that the requirement
of unimodality restricts the variance to (b — a)2/9, and that this is a least upper
bound. Note that this bound exceeds the variance (b — a@)?/12 of a uniform
density on [a, b]. Some sufficient conditions are also given for the distribution
variance not to exceed (b — a)?/12. The moments of the distribution, as with the
distribution itself, are presumed unknown.

2. Preliminaries. Let C* denote the class of probability densities with respect
to Lebesgue measure on the real line, that are restricted to a finite interval [a, b],
and that are unimodal. Let C = {f &£ C*; some modes of f are in the interior (a, b)}.
If x = mis a mode of f(z), then f(x) is monotone on [a, m) and on (m, b] and can
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have only countable discontinuities. Thus we may ignore the indeterminancy of
f(x) e C* on its points of discontinuity. In particular, densities are hereby re-
defined on their discontinuities to ensure the existence of modes, to close the set
of modes, and to provide continuity from the left at z = b, and from the right at
z = a. Densities are permitted a value of + « at their (single) mode.

We write E[g(z); f] for [ ® g (2)f (x) dz where it is understood that f(z) is a
probability density. E (f) denotes the expectation Ex; f], and variance (f) de-
notes E[(z — E(f))*; f]. Finally write M (f; u, v) for the mean value of f(z) on
the interval (u, v), i.e.,

M(fu,0) = (0 —u)” [of(x)de.
For a given f(z) ¢ C define:
£ (f) =inf{toefa, b]; forall ¢ =4, f() = M(f;t b))
s’ (f) = sup {soc[a, b]; forall s=< s, f(s)= M(f;a,s)}.

(Where the identity of the argument of ¢ and s’ is clear, we write simply ¢ and
§'.) Let my = inf {modes of f(z)} and me, = sup {modes of f(z)}. Then by the
unimodality of f(z), ¢ < mands = my.If my = my = b, thenset s’ = ¢ = b.
Iftm =ms = a,sets =¢ = a.

For f(z) € C and ¢ ¢ [a, b] define:

fe@@) = f(x) z <t
=M(;tb) z =t
@) =M(f;a,8) z<s,
= f() T Z s

Lemma 2.1. For all t £ [t, b], E (f:) is non-increasing in t, and E (f,) — E(f) as
t—b. Also E(f,) 1s | in s for se[a, §'], and E(f,) — E(f) as s — a.

Proor. Fort' < u < v < b, the density f, may be viewed as a modification of
f» obtained by moving probability mass only to the right. Thus E(f,) = E (f,),
and E(f;) is | in ¢. That E(f;) — E(f) as ¢ — b, follows because f(z) has no
atoms. The statements for E (f,) follow analogously. []

The point ¢ (and the analogous s’) has the property that for all ¢ = ¢, there
exists in the interval [¢, b] only two intervals 4 and B such that f(x) > M][f; 1, b]
forze A, f(x) < M[f; ¢, b] for z ¢ B, and B is to the right of 4. Clearly, A4 is
non-empty if and only if B is non-empty. This property of ¢ and s is at the heart
of Lemma 2.1. Lemma 2.2 may be stated in terms of this property, but we require
this lemma, in a more general format independent of s" and .

Lemma 2.2. Suppose f(x) € C and g(x) € C are such that for some e; ¢ [a, b],
wherej = 1,--- ,8and e; > e;1,omehasf > gon (er,e) andon (er,6),f < ¢
on (es, es) and on (e, ) and f(x) = g(x) otherwise. Then for all zo € [es , e5),
Bl — 20)"; /] > El(@ — 20)"; gl.

* Lemma 2.2 becomes transparent if f(z) is viewed as a modification of ¢ (x)
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obtained by moving probability mass strictly away from the point Zo . Its proof
is omitted. Note that Lemma 2.2 also holds if ¢; = a for j = , 4, or if

= bforj = 5,---, 8. In these cases probability mass is moved on only one
side of the point z, . Finally, the lemma holds if e; = e; = .

3. Major results. A point z ¢ (a, b) will be said to be a point of increase of
f(x) if there exists a 8 > 0, such that forall v and v in g, b,z — 6 <u <2z <
v < z + 8 implies f (1) < f(v). Points of decrease are defined analogously. Conse-
quently, m; and m; are points of increase and decrease of f (2 ), respectively, when-
ever they are in the interior (a, b).

TueoREM 1. For f(x) € C there extists a g (x) € C such that

(i) for some s* and t* witha < s* < t* < b, and constants kx , k2

g@x) =k z < s¥
= ky z > t¥,
=flz) s'==z

(ii) Ifs = t* = u, then E (g) =u, and t' (f) < u < s’ (f).
(i) If s* < t* then eztlwr

(a)t _E(g)7 —s(f),andgisl,or

(b) s* = E(g), t* = {(f),and g3s T.
(iv) Variance (9) = variance (f).

Proor. Define the function f; ;(z) on [a, b] and fora < s = ¢ < b by:
foi@@) = M(f50,8)  z<s
= M(f;tb) x>t
= f(z) sz =t

Clearly, f.,; € C for all s, ¢, and E (f,,¢) is a continuous function of s and ¢ on the
compact subset a £ s =t < b of [a, b] % [a, b]. The intervals in the collection
I={[stl;sSE(fs) St,s=s "(f), t = ¢ (f)} are closed subsets of the compact
space [a, b]. The collection is non-empty because it contains [a, b] In fact I has
the finite intersection property, for if not there would be two disjoint intervals
[k, ] and [m, n] in I. (This consequence arises from intervals being connected
sets of linearly ordered points.) Suppose I < m so that E (fe,1) < E (fu,n), m = s,
and ! = ¢. But we may apply Lemma, 2.1 repeatedly to yield E (fi,;) = E (fs,n) 2
E (fn,n). This contradiction forces the conclusion that [k, ] n [m, n] # &, and
that the collection I has the finite intersection property. Thus for Eu ¢ I, Ny Eqis
non-empty, and we hereafter denote

[s%, "] = No {Ea; EaeI}.
If s* = t* = u, then E (fu) = u, and fu,« is a step function with a single step.

We propose to identify fu,.(z) as the g (z) of the theorem, for fu,u clearly satlsﬁes
the first two conditions for g (x). Furthermore, the properties of s and ¢ ensure
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that the intervals [a, u] and [u, b] each contain only two disjoint intervals of the
type needed for the application of Lemma 2.2. Lemma 2.2 then yields
El(x — u)’; fuu > E[(x — )’ f]. This fact and the basic inequality
El(x — )’ fl 2 E[(x — E(f))* f] then yield variance (f..) = variance (f).
Thus, identify f.,.(z) as the desired g (z) of the theorem.

It remains only to consider the case of s* < ¢*. In this situation one must have
t* = {(f) ors* = §(f), forif s* < & and ¢* > ¢, then it is always possible to
find a smaller interval in the collection I by the continuity of E (f;,;) in s and ¢,
and by Lemma, 2.1. Suppose that s* = s’. Thenm; < 8" < t*and f,r «(z) = f(z)
for z £ [s, t*], imply that £, is non-increasing on (s, t*), and hence on (s’, b).
Furthermore, for each 8 > 0 there exists zoe (s, s + 8) such that f(xo) <
M (f; a, xo). But f | on [, b] implies M (f; a, %) < M (f; a, s’). Thus the func-
tion f,+ s+ has a point of decrease at # = s’; hence is | on [a, b]. Identify & = s’
and ky = ¢*. .

It is next claimed that t* = E (f. ), because if E (f,-.;) < t one could yet re-
duce ¢, hence increase E (f,,;) by Lemma 2.1, and by the continuity of E (f./;)
in ¢ achieve a state whereby ¢ = E (f,-,:). Thus, through the intersection over the
elements of I we must have t* = E (fu,;+), and f,,i« satisfies the third require-
ment for g (z). Finally, Lemma 2.2 may be applied as before to eventually yield
variance (f) < variance (fy,»+). Thus, set g(z) = for, o« ().

If t* = ¢, the function fu . (z) is everywhere non-decreasing, and may be
identified with g(z) through arguments similar to the above. This proves
Theorem 1.

TrEOREM 2. For f(x) & C there exists a function h(x) € C such that:

(1) for some constants d € (a, b), L, , and L

hx) = L z < d,

(i) i h(z) T onla,b], then (b + a)/2 < E(h) < d;

(iii) if h(x) | ona,b], thend < E(h) = (b + a)/2;

(iv) variance (h) = vartance (f).

Proor. If in Theorem 1 one has s* = ¢*, then the function g (z) of Theorem 1
is identified as the h(z) of Theorem 2. It thus suffices to consider the g(z) of
Theorem 1 where s* < ¢*, g(z) 1 on/[a, b], and where t* = ¢ (f). For f(z) ¢, C,
' (f) < mi < bsothata < s* < t* < b,and t* ¢ (a,b). Hence for each u ¢ [s*, t¥]
we may define A, (z) on [a, b] by

hu(@) = (@ — @)™ [*g(x) do z <t
=k G-t — W —0)]d =z ="

Clearly, A, (z) € C and E (h,) is a continuous function of u. Lemma 2.1 yields
E(hs) = E(g) = s*, and E(he) < E(g) = s* < ¢*. Thus there exists a
u* e [s% t*) such that «* = E (hs). We propose to identify A« (z) as the & (z)
of this theorem.
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Clearly, h.» satisfies the first two conditions for 4 (z). For condition iv note
that A.» may be characterized as a modification of g (z), obtained by a movement
of probability mass strictly away from the point «* & (s*, ¢*). Thus Lemma 2.2
applies to yield E[(x — u*)*; huw] = E[(z — u™)?; g]. This result, combined with
the basic inequality E[(x — u*)*; g] > E[(x — E(g))*; g] and Theorem 1, yields
variance (h.+) > variance (f). This proves Theorem 2.

Theorem 2 indicates, that in the search for an upper bound on the variance
of probability densities in C, it suffices to restrict attention to the funections in C
of the form of A (x) in Theorem 2. Such functions will be termed step functions,
where it is understood that they possess only a single step. Lemmas 3.1 and 3.2
which follow provide needed characterizations of such step functions.

LeMMma 3.1. Suppose h(z) is a step function in C with step at d, and such that
E (k) = d. Then, variance () < (b — a)’/12, and variance (h) = (b — a)?/12iff
d= (b+a)/2

Proor. By straightforward calculations one obtains

h)= b —d)d—a)b—a)" z<d,
@d—-a)b—a)b—d)]" z>d;

and variance (k) = (b — d)(d — a)/3. Thus the variance is a quadratic in d,
and has a single maximum at d = (a + b)/2 where it equals (b — )%/12. []

Lemma 3.2. Let C(d) denote the class of step functions in C with step at d & (a,b).
There exists a member of C(d) of maximum variance. This maximum variance
assumes values in [(b — a)’/12, (b — a)*/9], and equals (b — a)’/12 iff

= (b+a)/2

Proor. Let h(z) e C(d) equal L for z > d. Let w = (b — d)(b — a). Then
variance (k) = — (w/2)" + w[(b — a) + (b — d)]/6 + (d — a)?/12. Thisis a
quadratic in w with a single maximum at w = [(b — a) + (b — d)]/3, where the
variance assumes the value (b — a)’(2> — z + 1)/9, withz = (b — d)/ (b — a).
This last expression is in turn a quadratic in z with a single minimum at z = 1
where the variance equals (b — a)’/12. This maximum variance is a continuous
function of 2z, and as 2 — 1 or z — 0, the variance approaches and attains the
limit (b — a)®/9. ]

The following theorem constitutes the major result of this discussion. Recall
the definition of C* given in Section 2.

TaEOREM 3. Supremum {variance (f);feC*} = (b — a)*/9.

Proor. First suppose f(z) ¢ C. Then by Theorem 2, there exists a step func-
tion density in C whose variance exceeds variance (f), and whose single step is in
the interior of (a, ). Thus by Lemma 3.2, variance (f) < (b — a)*/9.

Next, suppose that f(z) e C* — C. It suffices to let the single mode of f be at b.
Define

fal@) = f(x) t<b—1/n,
=fb—-1/mn) =z20b-1/n
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for integers n exceeding 1/(b — a). Then f,(z) T f(z) at each z < b, and mono-
tone convergence yields E (z; f,) — E (f), E («*; f.) — E (2%, f), and k, — 1 where
k., = 1/E(1; f.) normalizes f, . Thus on the one hand k.f, ¢ C and variance
(kafa) < (b — a)*/9. On the other hand variance (k.f,) — variance (f). Letting
n — o« yields variance (f) £ (b — a)%/9.

That (b — a)’/9 is a least upper bound for densities in C* derives from the
fact that if /a4 (x) € C(d) is the density in C(d) of maximum variance (defined by
Lemma 3.2), then 3 ¢ C* for all d & (a, b), variance (k) is a continuous function
of d, and variance (hs) — (b — a)’/9asd »borasd —a. []

In the proofs of Theorems 1 and 2 cases arose where variance (f) was bounded
by the variance of a step function whose step and expectation locations coincided.
In such cases Lemma 3.1 yields variance (f) < (b — a)?/12. The following discus-
sion provides some sufficient conditions for this latter variance bound. Let x, de-
note the point (a + b)/2. ’

TrarorEM 4. If f(x) e C, f(xo — 0) = M (f;a, 20), and f (xo + 0) = M (f; 20, b),
then variance (f) < (b — a)*/12.

Proor. Define 4 (z) ¢ C by

h(z) = M (f; a, o) z < %,
= M (f;20,b) T = .

The comparison of the densities 4 (z) and f(z) yields through the agency of
Lemma 2.2 that E[(x — %)% f] < E[(x — %)% h]. This result, taken with
El(x — E(f))%;f1 £ E[(x — x)’; f], and the readily verifiable result

El(x — )’ bl = (b — a)*/12,

together imply variance (f) < (b — a)*/12. []

CororrARY 4.1. If f(x) € C, and f has a mode at (b + a)/2, then variance
() £ b —a)/12.

Proor. f(x,) exceeds the mean value of f(z) whether taken over [a, xo] or
[0 , b]. []

It follows from Corollary 4.1 that the variance of symmetric densities on [a, b]
cannot exceed (b — a)’/12.

CoroLLARY 4.2. If the median of f(x) is at (a + b)/2, then variance
(f) £ & — a)/12.

Proor. If o = (a 4+ b)/2 is the median of f(z), then the A (z) of Theorem 4
is the rectangular density A(z) = 1/(b — a) with variance (b — a)*/12. Now
f(x) must be monotone on either [a, x¢] or [xo, b]. Suppose f(xz) is T on [a, zo).
Then at z, — 0, f(z) must exceed or equal its mean value of 1 (b — a) on [a, xo].
If also at zo + 0, f(z) exceeds or equals its mean value of 1/(b — a) on (xo, b),
then by Theorem 4 variance (f) < (b — a)*/12. If f(xo + 0) < 1/(b — @), then
for some z; € (%o, b), f(x1) > 1/(b — a) because 1/(b — a) is the mean value of
f(x) on (xz,, b). But then f(z) has at least two modes, at (o — 0) and at z; , so
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that one must conclude f(xo + 0) = 1(b — @). The corollary thus follows by
Theorem 4.
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