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OPTIMAL AND EFFICIENT DESIGNS OF EXPERIMENTS'

By Corwin L. ATwoop
Unaversity of Minnesota, Minneapolis

0. Summary. This paper consists of new results continuing the series of papers
on optimal design theory by Kiefer (1959), (1960), (1961), Kiefer and Wolfowitz
(1959), (1960), Farrell, Kiefer and Walbran (1965) and Karlin and Studden
(1966a). After disposing of the necessary preliminaries in Section 1, we show in
Section 2 that in several classes of problems an optimal design for estimating all
the parameters is supported only on certain points of symmetry. This is applied
to the problem (introduced by Scheffé (1958)) of multilinear regression on the
simplex. In Section 3 we consider optimality when nuisance parameters are
present. A new sufficient condition for optimality is given. A corrected version is
given of the condition which Karlin and Studden (1966a) state as equivalent to
optimality, and we prove the natural invariance theorem involving this condi-
tion. These results are applied to the problem of multilinear regression on the
simplex when estimating only some of the parameters. Section 4 consists pri-
marily of a number of bounds on the efficiency of designs; these are summarized
at the beginning of that section.

1. Preliminaries.

Basic model. Let f1, - - - , fx be k continuous real-valued linearly independent
functions, called the regression functions, on a compact space . Let 6, - - - , 6
be k unknown parameters. We shall write these as column vectors f and 6. For
any z in & we may observe a random variable Y (z) with mean 6'f(x) = Z0.f:(x).
Throughout this paper primes will denote transposes. The variance o2 of Y (z)
may be known or unknown but it is fixed independent of x. The observed Y (x;)
and Y (x;) are uncorrelated. We assign various values to z and make N observa-
tions in all. A design £ is a probability measure on . If £ assigns to points proba-
bilities which are all multiples of 1/N, £(x) will be the proportion of observations
of ¥V at z.

Optimality criteria. A number of criteria for optimality of a design have been
suggested. See Kiefer (1960, page 383 ff.) for a discussion of some of these. We
consider only two. "

The information matriz of a design £, denoted M (¢), has components defined
by

mi;(£) = [ f:@)f; () di ().
We will sometimes write M (¢) = [ f(z)f (x) dé(z). If M (¢) is nonsingular,so
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that all the components of 8 are estimable under £, then "N "M " (£) is the covari-
ance matrix of the best linear estimator of 6. A design £¢* is called D-optimal if it
minimizes det M (¢).

Define the function

d(z, £) = f @M (&) @).

If M (¢) isnonsingular, the variance of the best linear estimator of EY (z) =
0'f(x) is ’N'd(zx, £). A design £* is called G-optimal if it minimizes
maX..q d(z, £). We will simply write max, d(z, £).

Kiefer and Wolfowitz (1960) proved that D-optimality and G-optimality are
equivalent, and £ is optimal if and only if max, d(z, £) = k.

Since [ d(z, £) df = Fk, it is therefore immediate that an optimal ¢ can have
points of support only where d(z, £) = k.

The model discussed so far can be generalized as follows (See Kiefer (1961)).

We write
0(1) f(l)(x)
0 = (0(2)) flz) = <f(2)(x))

where 6% and f® are s-vectors and §® and f® are r-vectors, with r = k — s. As
before EY (x) = 6'f(x), but this time we are interested in estimating only 6
rather than all of 0. If M (£) is nonsingular, so that all of 6 is estimable under §,
the inverse below can be written directly. If 6 is not estimable, i.e., Mj is singu-
lar, we understand that M is a pseudo-inverse. (This is discussed in Chernoff
(1953) and in Section 3 of this paper.) We write

Mi(§)  M,(%) MO M)
My (§) Ms(g) M®'(5) M®(%)

where M;(¢) and M® (¢) are s X s matrices. The covariance matrix of the best
linear estimator of 6% is then o’N "M ® (¢). A design £* is called D-optimal for
estimating s out of k parameters if it minimizes det M (¢). We will sometimes
write M* (§) = [M® &) = Mi(§) — M2 (8)Ms™" (§)My (§).

Although there is no natural optimality criterion analogous to G-optimality, if
M (&) is nonsingular we still define

dor(z, &) = f (@M (E)f @) — f® @M (@)F ()
= (° @) — WM @)YM® (O @) — MM @)

where in the second expression we have suppressed the £ for greater legibility.
Kiefer (1961) proved that when M (£) is nonsingular, £ is D-optimal for esti-
mating 0 if and only if max, d. (z, £) = s.
If M (&) is singular there is no simple known theorem analogous to this result.
This is discussed in connection with Theorems 3.1 and 3.2 of this paper.
Invariance. We shall refer repeatedly to the result summarized here. Suppose
@G is a compact group of transformations on %. Let G be a group of linear trans-

M(§) = M7(¢) =
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formations on the space of 6 of the form
B 0
=15 ol

where B is an s X s matrix of determinant 1. (When estimating all of 6, i.e.,
s =k, B is the entire k¥ X k matrix A.) Assume there is a homomorphism from G
to G. (Note then that 4,,, = 4,,4,,.) And suppose 6'f(z) = (4,0)'f (gz).

A design £ is called G-invariant if §(B) = £(¢B) for all g in G and Borel sets B.

Then under the above conditions, there is a G-invariant optimal design. (See
Kiefer (1959, page 296), (1960, page 387), and (1961, page 302).)

Number of points needed for optimality. When estimating 6, k-dimensional, a
direct argument shows that there is an optimal design supported on at most
k(k + 1)/2 points. (See Kiefer (1960, page 389 ), or Farrell, Kiefer, and Walbran
(1965, page 114 ff.).) An example is given in Section 4 for which all k(k + 1)/2
points are necessary.

The lower bound on the number of points needed for optimality is clearly %,
when estimating 6. We remark that if a design supported on & points is optimal,
the design must be uniform on those points.

When estimating 8 it can be shown that there is an optimal design supported
on at most s(s + 1)/2 + rs points. (See Chernoff (1953, page 590 ff.), Stone
(1959, page 68), or Kiefer (1961, page 303).) An example is given in Section 4
for which this bound is attained.

The minimum number of points needed to estimate 6 (not necessarily opti-
mally ) may be any number from s to k. It is not hard to show that if 0® is esti-
mable using an s-point design then f® is zero on the support of such a design, and
the best such design is uniform on s points. For let £ be any s-point design which
estimates 6. There is a nonsingular matrix

I L
L=
0 L
with
M*(&) 0 0
LM(&)L = 0 N; 0
0 0 0f

where N; is a square nonsingular matrix of size =0. But rank LM (%) L =
rank M (§) =< s. Since & estimates 0, rank M* (&) = s and therefore N;must
have size 0. So f® is 0 on the support of £ and M *() = M, (¢) for any £ sup-
ported on these points. The best such £ is therefore uniform.

2. Optimal designs for estimating 6. When the k regression functions are
the monomials of degree <k — 1 on an interval the optimal design is supported
on k points, as described by Guest (1958) and Hoel (1958). If more than one
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variable is present, natural generalizations of the interval might be the cube, the
ball and the simplex. Of these, the simplex seems to give the most analogous and
the most simple results. Farrell, Kiefer and Walbran (1965) compare the spaces
in some detail. If the regression functions are all the monomials of degree <= the
problem is, in general, quite difficult. However if the regression functions belong
to a more restricted class we can sometimes obtain extensive results.

We begin with three theorems in which symmetry of & and restrictions on the
regression functions enable us to make assertions about the support of the opti-
mal designs. For the difficulty in proving analogues for estimation of 8, see the
lemma, preceding Theorem 3.5.

Scheffé (1958, page 352) introduced the special n-tic polynomials, defined as the
multilinear polynomials of total degree <n. Under special n-tic regression we
may take the regression functions fi(x) to be of the form z; --- x;, ,with
i < --+ < ipand p £ n. If there are ¢q independent variables then p = 0; of
course n < ¢, and the number of regression functionsis k = >_a_o (3). If there
are ¢ + 1 variables constrained by Z z; =athenp = 1,n £ ¢ + 1, and the
number of functions & = > n_y (%1).

TueoreM 2.1. Suppose the regression is spectal n-tic on a set X in Euclidean
g-space R?. Then an optimal design & can have no points of support in the interior
of any line segment in & on which all the variables but one are constant.

Proor. Suppose £ is optimal. Then M " (¢) exists and is positive definite and
dz, £) = f @)M T (E)f(x) = Nf(x)’, where N > 0 is the smallest eigenvalue
of M7 () and |f(z)| is the Euclidean norm of f(z). As |z| — o so does |f(z)|
and therefore so does d (z, £). Since f (z) is multilinear d (z, £) is at most quadratic
in each variable. Now hold all the variables but one constant. The restriction of
d (x, £) to this line is a non-negative unbounded quadratic function. Therefore it
is strictly convex and cannot have a maximum in the interior of any segment of
the line.

For f(x) as above we list two corollaries.

Spectal cases of X.

(1) «is an arbitrary set in R%

Any optimal design is supported on the boundary of .

(2) « is a set whose convex hull is the g-cube.

Any optimal design is supported on the vertices of the cube.If n = ¢ the unique
optimal design is uniform on the vertices (because the number of regression -
functions equals the number of points of support.) If n < ¢, the design uniform
on the vertices is the unique optimal design which is invariant under the group of
symmetries of the cube.

THaEOREM 2.2. Suppose the regression is special n-tic on a set % tn R™™ satisfying
the linear constraint ) x; = o and symmetric under the interchange of some two
coordinates. Let I be any line segment in X which s tnvariant under the interchange
of those same two coordinates, and on which all coordinates but those two are constant.
Then an optimal design & can have points of support on I only at the midpoint and
at the end poinis.
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Proor. Let ¢ be optimal. As before d(z, £) — « as |x] — « and d(z, £) is at
most quadratic in each variable. Without loss of generality & and I are sym-
metric under interchange of x; and z, . The restriction of d (x, £) to the line con-
taining I, when expressed in terms of one variable, say «;, is at most quartic.
Since d (z, £) is non-negative and not constant on the line, it can have at most one
interior maximum in I.

Now if = is the permutation which just interchanges x; and z. thereis a linear
mapping L so that Lf(z) = f(zz). By the standard invariance results (see
Section 1) there is an optimal design ¢ which is invariant under . Since £ is
optimal, M (¢) = M (£'). (See Kiefer and Wolfowitz (1960).) It follows that
d(x,£) = d(z, &) = d(zxz, £') = d(az, £). Thatis, d(x, £) is symmetric, and thus
can have maxima in I only at the midpoint and end points.

Special cases of X.

(1) «xisany convex body symmetric under all permutations of the coordinates
(e.g., ¢-ball), constrained by Y z; = a.

‘Any optimal design is supported on the boundary of & and the center point
of &.

(2) «is the ¢g-simplex.

Any optimal design is supported on the barycenters. If n = ¢ + 1 the unique
optimal design is uniform on the barycenters (because the number of functions
equals the number of points of support).

(3) xisdeterminedby0 <z, <1, > zi=a,1<a<gqg+ 1

Any optimal design is supported on points of the form (0, ---, 0, 1, ,
1,B,:-+,B8)withg = (&« — N1)/(¢g + 1 — Ny — N1), where N, is the number of
0’s and N; the number of 1’s. This space is considered in a different problem by
Keilson (1966).

We remark that 2 and 3 are special cases of 1.

For the last theorem of this type we assume that the regression functions are
the monomials in ¢ independent variables which involve at most n Vanables,
and which in each variable are at most quadratic (e.g., 1, z, «* ) ZY, 2y, 2y,
etc.). Of course n < ¢. The number of such functions is Z,so (“)2'

TaEOREM 2.3. Let the regression functions be as described above, and let X be
any space in R? which for some coordinate x; is symmetric under interchange of x;
and —x;. Let I be a line segment itn X on which all coordinates but x; are constant
and which vs symmetric under interchange of x; and —x;. Then an optimal design
£ can have points of support on I only at the midpoint and at the end points.

This proof is similar to the previous two.

Special cases of X.

(1) «is any convex body which for each z; is symmetric under interchange of
z; and —z; (e.g. ¢-ball).

Any optimal design is supported on the boundary and the origin. This result
does not overlap the first special case of Theorem 2.2 because the functions are
different in the two cases.

(2) «is the g-cube.
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Any optimal design is supported on the lattice of points with coordinates only
0 or +1. (There are 3% such points.) If n = ¢ the unique optimal design is uni-
form on this lattice.

Again we note that 2 is a special case of 1.

We conclude this section by considering the example of special n-tic regression
on the g-simplex.

The design £, which was introduced by Scheffé (1958), assigns equal measure
to the points on the simplex (1,0, ---,0), 4},%,0,---,0), ---, A/n, ---,
1/n, 0, ---, 0) and their images under permutations of the coordinates. These
will sometimes be referred to as the barycenters of depth =<n. The number of
such points is Y ey (%3') = k, the number of regression functions.

Trivially £ is optimal for any ¢ when n = 1. It was shown by Kiefer (1961,
p. 320) that £ is optimal for all ¢ when n = 2, and by Uranisi (1964) that £
is optimal for all ¢ when n = 3. The natural conjecture for greater » is shown here
to be only partly true.

TaEOREM 2.4. For special n-tic regression on the q-simplex, 4 = n < q + 1,
the design £ is optimal when n = q + 1 and is not optimal when n < q + 1.

Proor. Optimality when n = ¢ + 1 is just the second special case of Theorem
2.2. We now prove that £ is not optimal when 4 < n < ¢ + 1.

First observe that if L is a nonsingular matrix, g(z) = Lf(z), and N (§) =
fg(x)g' (z) dt(z), then £* maximizes det N (¢) if and only if it maximizes
det M (¢) and ¢’ ()N ' (¢)g(x) = f ()M (¢)f (x) identically in z and & The
following & functions g;(x) are so obtained.

21) pPmiy, - Tylaoy + a1, 2T+ p 2 T
+ o G, Z Tjy o L)

Herel S p < ma., = (—1)p ' (p+s),1<4< -+ <4< q+1,andin
each summation 1 = j; < 72 < js < -+ £ ¢ + 1 and none of the ’s are in
{a, -+, ).

It is immediate that such a polynomial equals 1 at the barycenter which has
all coordinates zero except for 71, - - - , 7, , and that the polynomial equals 0 at all
other barycenters of depth < p. At a barycenter of depth p + m < n, m > 0,
either ;, - -+ @i, = 0 or the expression in brackets is equal to

@2 3 09+ 9 (T) o+ m

= (= p/+m)= £ 3 (") my

z=p

which equals 0. Therefore the polynomials are orthogonal with respect to &
and the sum of their squares equals k' d(z, £).

Because n < ¢ + 1 there is a barycenter of depth p + m = n 4+ 1. Let z be
such a barycenter, and consider 4, - - - , %, such that z;, - -+ z;, 5 0 at 2. Evalu-
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ated there the expression in brackets in (2.1) equals
(=P T e+ @)+ m)”
=0 — ()" @4+ m) " = (=p)" P+ 1) using (22).
Therefore at 2
KA E) = Zimgle) = i (5 0/ (0 + 1))
As a lower bound on this we consider the upper two terms,
(m+ 1)/ 4+ 1)" + i@ + Dl — 1)/ + D"

which we write as A + B. When n = 4 a direct computation yields 4 4+ B =
78658/78125 > 1. For n = 4 we show as follows that A + B is monotone increas-
ing (in fact it increases without limit).

Treating n as a continuous parameter,

(%LlogA —3/(n+1) —2log (1 + 1/n) > 3/(n+ 1) — 2/n.

Therefore A is monotone increasing for n = 2. In fact
A=m+1DA+1/0) "~ 0+ 1)
s0 4 — «.
Likewise,

%MgB — 60— n— /I — D+ 1] — 21og (1 + 2/(n — 1))

> 60 — n— 1]/[n(n — 1)(n + 1)] — 4/(n — 1)
= [2n* — 5n — 1]/[n(n — 1)(n + 1)].

The numerator of the last expression has zeros (5 =+ 33")/4, so B is monotone
increasing for n = 3. Therefore d{z, £) > k for n = 4, completing the proof.

An optimal design when n < ¢ + 1 is not known. As has been shown in the
second special case of Theorem 2.2 any optimal design must be supported on the
barycenters. The fact that d(z, £) > k when z is a barycenter of depth n + 1
suggests that an optimal design would assign positive measure to these points,
but it is not known whether this is correct, or what weights should be used.

3. Optimal designs for estimating 9‘°. In this section we first prove some

general results for estimating s out of k parameters and then apply them in the
case of special n-tic regression on the g-simplex.

As always we assume below that the regression functions f; are continuous and
that % is compact. The first result is a sufficient condition for optimality.

We first consider more precisely the case when M (¢) is singular. Chernoff
(1953) gives the following definition of a pseudo-inverse. For X a symmetric
nonnegative definite matrix, let ¥ be any symmetric matrix such that X 4 A\Y is
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postive definite for sufficiently small X > 0. Define the pseudo-inverse X * =
limo+ (X 4+ AY)™". Write the 4jth element of X' as 2. Chernoff proves that
the diagonal elements of X' are independent of the particular ¥ used, and if
2" and 2" are finite then 2% is finite and independent of Y. X' may have infinite
entries, but we will only be interested in M (¢), which will always be finite and
well-defined if 6” is estimable under £.

If for designs £ and & we define & = (1 — )¢ + €, and if M (¢) is non-
singular for 0 < e < 1, then this pseudo-inverse M '(§) = limeo+ M (&),
M®PE) = lime M (&), and M*(¢) = lime M*(&). (As so defined ’N "M@ (¢)
really is the covariance matrix of the best linear estimator of 6 under &.)

TureoreM 3.1. Let £* be any design and £ any design such that M (&) is non-
singular for 0 < € < 1, where & = (1 — €)£* + e&'. Then the statements (3.1)
and (3.2) are equivalent, and either tmplies (3.3).

(8.1) lime,o+ dsx(x, &) exists, and maXzeq lime,o+ ds |1 (2, &) = s.
3.2) lime,o+ maXzeq: ds | (¢, &) exists and = s.
(3.3) £ is D-optimal for estimating 0.

Proor. We prove first that (3.2) implies (3.1).

If lime max, d; | » (z, &) = s there is some ¢ > 0 with max, ds | (2, &) < s+ 1
for € < €. Therefore 0 < d, 1 (2, &) < s+ lforze X, 0 < ¢ < ¢. For each
x, ds | x(z, &) is a rational function in e. It is bounded as ¢ — 0, and therefore
lim, d, | x (2, &) exists.

We now want to show that for 8 > 0 and € < e, if |# — 2| is sufficiently small
then

(3.4) ldo 11 (2, &) — do 2@, £)] < 6.
Write
di k(@ ) = D% imai()fi@)fi(@) = 2 imbi(e)Fi(x),

where the F’s are linear combinations of the terms f;f;, chosen to be linearly
independent. Then there is a set {1, - - - , zy} so that F, the matrix with entries
F(z;), is nonsingular. Then (letting | | denote the Euclidean norm of a vector
and the corresponding operator norm of a matrix)

o) = [p()FF| < [b(e)F||F]

which is bounded as ¢ — 0 because b (¢)'F (&) = d, | «(z, &) is bounded. Therefore
for 0 < € < ¢ and |z — 2| sufficiently small

|dy 11 (x, &) — di 1 #(2, £&)] £ N max; suPocece, |bi(€)| max; |F;(z) — F;(@@)| < 8

proving (3.4). The last inequality uses the continuity of the ;s and the compact-
ness of X.

Let z. be a point at which max, d; | x (2, &) is attained. Since X is compact there
is a point o and a sequence ., approaching xo as e» — 0. Pick ¢ = ¢ so that if
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0 < ex < ¢ then
ls — do1 s (@eys Ee,)| < 8
and |z., — %o is small enough so that
|ds (& Ten s Ee) — ds 15 (@0, Ee,)| <O
and
Ids 1 & (%o, &) — lime, ds 2 (@0, &,)| < 0.
(Recall that we have shown that lim. d; | «(z, &) exists for each x.) Therefore
|s — lime dy | £ (20, &)| < 36, forallé > 0.
So max; lim.d, x(x, £&) = s. But also
max, lime ds | £ (2, &) £ lim. max,; d; | (2, &) = s.

Therefore max, lim, d; |+ (x, &) = s.
We next prove that (3.1) implies (3.2).
We assume that lim, d; | (z, &) exists for all  and is £ s. Just as before we

obtain that for e < some ¢ and for |# — 2’| sufficiently small, (3.4) holds. Now
choose a sequence e, 5o that

max, ds | x (2, &,) — lim sup. max, d; | x(z, &).

The value max, d, |« (z, &,) is attained at z.,. A subsequence (again written
., ) approaches some o . So choose & = € so that if 0 < ex < & then

[lim supe max; ds | (2, &) — ds |5 (Te, 5 &) <
and
|de 1 & ey 5 £ey) — o120, £c,)| < &
and
|ds 1 & (0, &e,) — lime ds 12 (20, &) < 8.

Then, since § is arbitrary,

lim sup. max, d | (%, &) = lim.d, | x (20, &) = s.
But for any ¢ with M (£) nonsingular, max, d, (2, £) = s, so

lim infe max, d; | x(z, &) = s,

proving that lim. max, ds |« (z, &) exists and equals s.

Finally we must show that (3.2) implies (3.3). But this is immediate from the
corollary to the first part of Theorem 4.3, which we will prove easily from first
principles. This completes the proof of Theorem 3.1.

We will show in Example 3.1 that (3.3) does not imply (3.2). However since
that example illustrates several other things as well, we postpone it until we can
give a full discussion.
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Let us compare Theorem 3.1 Wlth prev1ously known results. Kiefer (1961)
deﬁne§ functions D (z, £%), D (¢, £ *Y and D (z, £*), and shows that for estimat-
ing 6%

max, D(z, £¥) = s=> max; D, £) = s & £* optimal = max, D (z, £¥) =

Later in this section we will consider the example of special (g 4 1)-tic regres-
sion on the g-simplex, where f @ consists of the multilinear monomials of degree
< m. In that example Kiefer’s results are inconclusive, because for the des1gn £
under consideration, max, D(z, £) > s, max, D(z, £) = s, and D(g, &) is ex-
tremely hard to compute. However Theorem 3.1 can be applied to show that
£ is optimal.

Karlin and Studden (1966a, Section 6) and (1966b, Chapter 10), take the
following approach. For any r X s matrix X define

A= & X) = (@) — X)) M G0 e - X7%0).
For any £ let X (£) be an r X s matrix satisfying
(3.5) Ms(®)X () = M) (8).

Such an X (¢) is shown always to exist. If M (¢) is nonsingular, X (§) =
M (6 M, (£), and dy(z, £ X (£)) is equal to dyi(z, £). If Ms(¢) is singular,
X (£) is not unique, but in any case the authors write d, (z, &, X (£)) = d.(z, £),
which is supposed to be well defined. Example 3.1 will show that neither d, (z, £)
nor max; ds (z, £) is independent of the particular X (¢£) chosen. It is then asserted
that if X (5) satisfies (3.5) for all £, then (i), (ii) and (iii) are equivalent.

1) E maximizes M * (¢). (D-optimality)

(i) £ mlmmlzes maxzd (x, £, X (&)).

(iii) max,ds(z, £ X (¥)) = s.

The proofs that (m) implies (i) and (iii) implies (ii) are correct no matter
what X (£) is chosen. It is not clear that (i) implies (iii) unless X (£) is chosen in
a certain way. Finally (i) implies (iii) only if X (¢£) is chosen in a special way.
Example 3.1 will show that (i) may hold while (iii) does not.

Before discussing the proof we point out that the theorem as stated does give
a correct sufficient condition for optimality, which we state as a corollary.

Cororrary. (Karlin and Studden) If for some r X s matriz X max, d,(z,
g X) = s then £ s D-optimal. )

Proor. It is not hard to show (see equation (6.9) of Karlin and Studden
(1966a)) that d, (z, & X) satisfies

(3.6) Jdi(e, &, X)di(@) 2 5,
with equality holding if and only if M;(£§)X = M, (¢). Thus if
max, d, (z, £ X) = s,

equality holdsin (3.6) and M;(§)X = M. 2 (£). The correct portion of the theorem
then gives the result.
We now consider the proof of the theorem.
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The authors define a sequence of games. By taking the limit of the correspond-
ing minimax strategies they obtain a certain matrix Dy .
In proving that (i) implies (iii) it is shown that if £* satisfies (i) then

(6.7) Ms(£*)Do = My (£%).

Hence it is claimed that

Jdi(e, £, Do) di(z) = [di(z, £, X (£¥)) dt ().

This is true if we choose X (¢*) = Dy, but it is not true in general, as Example
3.1 will show.

There is certainly some ¢* satisfying (i). For this £*, (3.7) holds, so D, is
an allowed choice for X (¢*). In proving that (ii) implies (iii) it is claimed that

min; max, [ di(z, £ X(£)) dp(z) < max, [ d,(z, £, Do) dn().

It is not clear without additional argument that the inequality is true unless we
choose X (£%) = D,.

Thus it is apparent how to define X (¢¥) to make the theorem true. Find D,
and choose X (£) = Do whenever M;(£)Do = M, (£). Otherwise choose any X (&)
satisfying (3.5). Then the proof holds as it is, and the modified theorem is correct.

Alternatively we could replace X (¢) by D, for all £. We obtain this modifica-
tion of the theorem if we show that max. d, (z, £ Do) = s for all £, with equality
if and only if £ is optimal. But this is quick to show. By (3.6) we have
max. ds (z, £ Do) Z s, for all £. If equality holds then by the corollary given above,
t is optimal. On the other hand if £* is optimal then (3.7) holds, so choosing X (£)
as in the last paragraph we have X (¢*) = D, and

maXxg ds (x7 E*7 DO) = maXy d3 (x7 E*7 X(E*)) = 8.

We write out the theorem just obtained.

TueoreM 3.2. (Karlin and Studden) There is an r X s matriz Dy so that the

sets of designs £* satisfying (i), (i), or (iii) coincide.
(i) £ mazximizes det M*(£). (D-optimality)
(i) £ minimizes max, d,(z, £ Do).

(i) max, d,(z, £*, Do) = s.

We will use this theorem later in this section. However since Dy is in general
so hard to determine, it seems that the corollary given earlier will usually be
more applicable in examples than Theorem 3.2.

Both the Karlin-Studden Corollary and Theorem 3.1 give sufficient conditions
for optimality. It seems as easy in principle to guess an X which works in the
corollary as to guess a £ (hence £ ) which works in Theorem 3.1. However after
proving Theorem 3.7 by using a £ one can note that it appears hard to find an
X with max, d, (z, £, X) = s. In particular the matrix X (&), corresponding to
the & used in proving Theorem 3.7, is uniquely determined and equal to
M3 (5)M, () = 0, but we cannot take X = lim. X (&), since for that X,
max, d, (z, £, X) > s. On the other hand there are problems in which the X
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method is very quick. Also we know that a suitable X always exists, D, . We have
not proved that a & satisfying (3.1) and (3.2) always exists.

Let us conclude this discussion with the promised example.

ExampLE 3.1. Let & be the unit interval, 0 < z < 1,lets = land k = 2, let
fiz) =z, fo(x) = 1 — z, and let £* be concentrated at 1.

If £ is concentrated at ¢/ (c + 1), for ¢ = 0, we have

(c+ 11 — et + ¢
c 1

M(t) = e(c + 1)7°

Then d, | (2, &) = (1 — €) '(x — ¢(1 — z))”. This is maximized at an end point
of the interval, and max. d; |z (2, &) = (1 — e)_]l max (1, 02). Ifc=s1,

lime maXxy ds | k(x, Ee) =1= S,
proving that £* is optimal, by Theorem 3.1. If ¢ > 1,
lime max, d | 1 (7, &) = ¢* > s,

demonstrating that (3.3) does not imply (3.2).
Let us now use the Karlin-Studden method. We have

* (|1 0
so any 1 X 1 matrix X satisfies M;(E9)X = MY (£%). If welet X = ¢, —w <
¢ < o, then d,(z, £ X) = (# — ¢(1 — 2))°. This has maximum value

max (1, ¢), which equals 1 = sif |c| < 1, and equals ¢ > sif |¢| > 1. Thus in the
theorem as originally stated (i) may hold while (iii) does not. In this example D,
can be computed and found to equal 0. Thus for any design £,

max, ds (xa £ Do) = max, x[M* (E)]_lx = [M* (5)]_1,

and a design minimizes max; d;(z, & Do) if and only if it maximizes det M * (¢).
Finally we remark that if X = —1, then d,(z, E*, X) = 1, identically in .
The fact that d, (z, £*, X) can conceivably be constant on certain intervals will
cause considerable difficulty in a later example. (See the lemma preceding
Theorem 3.5.)
Before going further we point out a fact which will be used from time to time,
If L is a nonsingular k& X k matrix of the form

L, L,
0 ILs

with Ly s X s, and if LML’ = N, then N* = L,M*L/". If Lf = g and M (¢) is
nonsingular, then d; | (z, £) is the same whether written in terms of f and M
org and N.

Let us now consider the question of invariance in connection with Theorem °
3.2. When estimating all k& parameters, under certain assumptions we had the
case that for £* optimal, d (z, £*) was invariant under some group of transforma-
tions. The next theorem gives an analogous result.

(3.8) L =
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THEOREM 3.3. Let G, G and the matrices

B, 0
0 C,

be as described in the section on tnvariance in Section 1. There exists an r X s matriz
D such that for any A, in G we have C,”'DB, = D, and if £ is optimal
then d,(z, £, D) = d,(gz, £*, D) for any g in G and  in X. Moreover the sets of
designs £* satisfying (i), (i) or (iii) coincide.

() £* maximizes det M (¢). (D-optimality )

(i) £* minimizes max, d,(z, £ D).

(iii) max,d,(z, £*, D) = s.

Proor. First we must define D. Let D, be as in Theorem 3.2. For ¢ in G and
corresponding matrix A4, , write C, "DoB, = D, . Let u denote Haar measure on
G with u(G) = 1. We define D = [ D, du(g).

For any ¢; in G we have

Cal_lDBrn = me_qu—lDoBaBa; du(g) = fCaal—lDOBaal du(g)

because A4, = Ay, , as mentioned in Section 1.
But this last expression equals

fCa'—lDoBg' dﬂv (g,gl_l) = ng'_lDOBg' d:“ (gl) =D

by the invariance of Haar measure. Thus D is invariant in the sense defined.
Now suppose ¢* is optimal, i.e., (i) holds. We must show that d, (z, £*, D) is
invariant.
For each fixed g, note first that 6'f () = (4,0)f(gz) = 6'A,f(9z) for all 6 and
z, and therefore f(gz) = A, 'f(z). Now for any r X s matrix X, we have

de(gz, £, X) = ' (gz) (I, = X")'[M*E)] U, —X)f (ge)
=1 @) I, —B,/X'C; )Y B,[M* () "'B,/ (I, =B,/ X'Cy ™ )f ().
Let & be any invariant optimal design. Then for each ¢,
A'M (8)A, = [Fg72)f (g7) deo(z) = M (&),
and hence B,/ M*(&)B, = N*(&), by the remarks in connection with (3.8).

Since M*(¢) is the same for all optimal ¢ (Kiefer (1961)), we conclude that
B,/ M* (£ )B, = M™*(£*). Therefore

39) di(gz, £, X) = @) I, =B/X'C,/ ) IM*E)" U, —B,/X'C,/ )f (x)
= d, (177 E*’ Ca—lXBa)-

In particular, d, (gz, £¥, D) = d,(z, £*, D).

We now must show that (i), (ii), and (iii) are equivalent. First we prove that
(i) implies (iii). Let £* be optimal. Then by Theorem 3.2, we know that
d, (z, £, Do) < s for all z. Therefore, by (3.9),

ds (xy S*r Da) = d, (gxr 2*7 CG_I—IC{J—I‘D()B{JBQ‘I) =d, (gxy 2*7 DO) =s

4, =

for all z.
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Observe that if P is any symmetric positive definite s X s matrix and 2z any
s-vector, then z'Pz is convex in z. For fixed z let z, = (I, —D, )f(z). Then by
Jensen’s inequality we have

di(z, £, D) = f @)U, —[ Dy du(@))' [M* ") U, — [ Dy du(9))f @)
= [If' @) T, —Dy)1du(g)IM* )™ [ [, =Dy )f ()] du(9)
< [If @, =D YIM*E)™ (I, =D, )f @)] du(g)

[ di (@, €, D,) du(g)

S.

IIA

To see that equality holds for some z, recall that (3.6) says that
[ di(z, & X) di @) = s,

for any r X s matrix X. Thus (i) implies (iii).

Moreover from (3.6) we see that max, d, (z, £, D) = sfor any &, so (iii) implies
(ii). But there is a £ namely an optimal &, for which max.d.(z, £, D) = s, so
(ii) implies (iii). Finally, (iii) implies (i) by the corollary to the theorem of
Karlin and Studden given earlier. This completes the proof of the theorem.

The remaining results in this section concern special situations.

THEOREM 3.4. If & is optimal for estimating the s out of s coefficients of Af®
+ Bf®, where A is s X s nonsingular and Bis s X r, and if f® = 0 on the support
of & , then &, is optimal for estimating 6 out of 6.

REMARK. As a special case we may have A = [ and B = 0.

Proor. Write ¢® = Af® + Bf®. There is a nonsingular s X s matrix I,
with L[ ¢P¢® d&]L" = I. Write A = Ly® = LAY + LBf®. Since &,

is optimal for the s out of s coefficients of ¢,

(3.10) s = g(l)’(x)[f g(l)g(l)’d&]_lg(l) (.’L‘) — h(l)’(x)h(l) (x).

Now let
h(l)
‘ and Lf = (f(2)> = h.

Let £ be a design so that M (&) is nonsingular for 0 < e < 1, where & = (1,— €)&, )
+ ¢’. Then

dclk(xy Ee) = f,(x)M_l(&)f(x) — f(Z)'<x)M3—1(EE)f(2)(x)
= K (@1 = QLM )L + LM ({)LTh(z)

— F@MT @) = K| o009 T,

|4 LB
L“l[ 0 I

-1
l h(x)
— 7O @) eMs ()T (2)

where in each matrix we have used the fact that f® = 0 on the support of & .
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In each case O (¢) is a matrix which approaches 0 as ¢ — 0. Therefore
dok(@ &) = (1 — ) 7hY @A (@) 4 1 ()0 (e)h (2).
Hence
s S max ds x(z, &) £ 1 — )" max, AP @)h” (&) + max. k' @)0 (e)h(z)
— max,; hP @)hP (x) £ s,

the last inequality following from (3.10). Therefore £ is optimal for s out of k&
parameters, proving the theorem.

We now return to the example of special n-tic regression on the simplex. Let
o« be the g-simplex. Let f(x) be the k-vector whose components are the special
monomials of degree < n, where n < ¢ + 1. Let f® () be the s-vector consisting
of those components of degree = m, where m = n. And let G be the group of
permutations of the coordinates of the simplex. It is easily seen that there is a
corresponding G so that G and G satisfy the conditions of Theorem 3.3. Let
ds(x, £ D) be as in Theorem 3.3.

LemMA 3.1. In the model described above, let n = m + 1, and let £* be optimal
for 8. Then d, (z, £*, D) is unbounded on any line determined by setting all but two
of the x: constant and holding Y iz = 1.

When s = k the analogous statement about d (z, £*) is trivial, but when s < F,
P (z) — D'f®(x) could conceivably be constant on such a line, making d,(z, £*, D)
constant there.

Proor. Suppose d, (z, £*, D) is bounded on such a line, say the line L deter-
mined by setting x; = a;, ¢ < ¢q. We will show that a contradiction follows.

In general if z is an s-vector and B is a positive definite symmetric s X s
matrix with smallest eigenvalue X\, then |¢'Bz| = \o|z|’, where | | denotes the
absolute value of a number and the Euclidean norm of a vector. Thus if d,(z, £*, D)
is bounded on a line, |f® (z) — D'f® (¢)|* must be bounded on that line. Hence
each of the s components of fP @) — D'f® (x) is bounded on that line. Since
each component of f* (z) — D'f® () is a polynomial, each component must be
constant on that line. Let us write the gth component as

(311) Xq — Ei1<"'<in Ciyyennyiglag * 00 Ty o

Here we have used the assumption that n = m + 1, so f® consists only of terms
of degree n. Observe that n = m 4+ 1 = 2. To avoid notational problems later,
we define ¢j,,....;, = Ci;,....i, Whenever (j1, -+, ju) is a rearrangement of (4,
e ).

If 7 is any permutation of ¢ + 1 elements, let L, be the image of L under that
permutation of the coordinates. L. is defined by setting z; = a,¢;) for those 7
with 7(1) < ¢. We will write b = 7 *(¢) and I = 7 '(¢ + 1), and write 2, = u
and z; = ». This is simply a notational convenience. Thus u and v are variables
satisfying w + v + D¢ 'a; = 1.

We assumed d; (z, £*, D) to be bounded on L. By the invariance of d, (z, 5*, D)
itis therefore bounded on L, for every 7. Therefore on every L., (3.11)is constant.
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For any 7, on the line L,, (3.11) becomes

Tq — [Zi1<---<i" Ciyyeen,iglr(iyy * 0 Qriy)
(3.12) + D icciny Ciryorigr hOr(iy) * 00 Qo YU
+ Zi1<~-<in_1cil,m,in_l,lar(il) Ct Qe )V
F 2t incg Cir gy taiy) * i pyUD)

where each summation is taken over 7; = &, [ and where 2, = @, , u, or v, de-
pending on whether 7(q) < ¢, = ¢, or = ¢ + 1. Suppose for the moment that
n > 2. If n = 2 much of what follows simplifies, as discussed at the end of the
proof.

Our first goal is to prove

(B13) i< it Ciperip = 0, forall I,1 <1< q+ L
Since (3.11) is constant on L, , the expression (3.12) is a constant, (the value of
which may depend on 7). Therefore the coefficients of the quadratic term ww
must total zero:
Zil<u-<i,,_2,ij#h,lcil,-u,i"_z,h,lar(il) (i) = 0,
Jor h=7"q),l=1"(q+ 1).
Let Bu,y = {r|h = 7 '(q),l = 7 (¢ + 1)}. Summing over all r in By,1, we get

(3.14) Zi1<m<in_2,ij¢h,lCil,m,i,,_z,h,l Zresh,, Qriiyy **° Or(iy_yy = 0.

In the sum over By, each possible product a;, - - - a;,_, , withji < « -+ < jus < g,
occurs the same number of times, by symmetry. A direct combinatorial argument
therefore gives

(B15) 2 i< in iyl Corre iy g bl Doi<enning<a (@ 4+ 1 — m) !
(n—2)la; -+ a,, =0

forany h #,1 = h = ¢+ 1,1 <1 = q+ 1. We would like to show that the

sum involving the a’s is nonzero. Since each a;, = 0 (the a; are coordinates in a

simplex ), we need only show that some n — 2 of the a;, are positive; then the

sum will be positive. If no n — 2 of the a’s were positive, (3.12) would reduce to

xq . Choosing 7 with 7(¢) = ¢ would make x, = u, a variable. But (3.12) is con-

stant for any 7. Therefore some n — 2 of the a’s are positive, and (3.15) reduces to

Zil<-~-<in_z,ij;£h,lCil,-~-,i"_2,h,l =0, forall A 1.
We fix [ and sum over A = [ to get
(n —1) Zi1<-~~<in_l,ij¢lCil,~~,i"_l,l = 0,

which reduces to (3.13), the desired equation. We will use (3.13) shortly.
Now let us return to (3.12). We have examined the quadratic terms; we now
examine the linear terms.
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It turns out that we only need to consider those  with 7(¢) = ¢, 7(¢ + 1)
= ¢+ 1. Thatis, h = ¢, = ¢ + 1. Since (3.12) is constant, the linear terms of
(3.12) must total a constant K (7). Thus
U — [Zi1<"'<i»—1,ij<q Ciyyernyin_1,00r(y) * 0 Qr(i,_U

F D <in1,ig<a Ciy oo in1,a#10rGy) 0 Grtip_p?] = K (7).
Summing over the set C' (say) of all + which leave ¢ and ¢ + 1 fixed, we get
(@ = 1) YU = [0 Ciproverin_sig Durec rcip) *** Grtip_p ¥
+ Z Ciyyernrip_q,g4l ch Qr(iy) ar(i,,_l)v] = ZrecK(T)-

Now in the same way as we went from (3.14) to (3.15) we see that for any
%1, -+, a1 each product a;, - -+ aj,_,, withj1 < -+- < ju-a, occurs in the sum
over C exactly (¢ — n) ! (n — 1) ! times. Thus we get

(g — 1) 1u — [ Ciprin_roa Doir<recinoy @ — 1) L (0 — 1) Lag, -+ - aj,_qu

+ 2 Ciyyeenrinoyia+l En<~-<j,._1 (g—n)!(n—1)lay - a;_ ] = chK(T).
With the obvious definition of A4 and K, this is

(8.16) U — A[D ij<o<in_1.ij<q Ciyreerrin_ 1,

—|— Zi1<“'<in—lvia‘<q Cil,...,in_l,q_uv] = K.
Now
Ei1<"'<in—1-ij<qcil""'in—l'q“'l = Zi1<--~<i,._1,ij#q+l Ciyyeervin_1.04+l
- E‘il<"'<in—2'ij<41 Ciyoeeerin_g.qigHl -

At last we use equation (3.13) here, letting I = ¢ + 1, to get

Ei1<~-<i,._1,i,~<q Ciyyornyingogtl = — Ei1<“'<i"—z:ij<q Ciyyennyin_2,0,041 +

There is a similar identity if we reverse the roles of ¢ and ¢ + 1. Therefore (3.16)
becomes

U — A[_Z’i1<"'<in—zy’ij<41 cil,...,¢"_2,q,q+1(u + 1))] = K.

Butu +v=1— Z ai, a constant. Therefore u is a constant, a contradiction.

The proof is much simpler if n = 2. In that case the sole quadratic coefficient
of (3.12) is cx,;, which must be zero because (3.12) is constant. This holds for
any h 5 I. Therefore (3.12) immediately reduces to . This is constant, but if
7(¢) = ¢, ¥, = u, a variable. This is the desired contradiction.

Therefore d, (z, £*, D) cannot be bounded on L.

It is not clear whether the conclusion of the lemma holds for other values of
mandn.Ifm = 1,n = 3,and ¢ + 1 = 3, it is not hard (at least compared to the
proof just completed) to show that the conclusion holds. However setting
¢ + 1 = 3is such a great simplification that this result probably gives no clue
about the general case.
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We obtain a result from the lemma which is given as a theorem.

THEOREM 3.5. In the model described above, special n-tic regression on the simplex
withn = m + 1, the support of any optimal design for 6 is a subset of the bary-
centers.

For an optimal design £* we use d, (z, £, D) as we used d (z, £*) in the proof of
Theorem 2.2. On the relevant lines L, unboundedness of d, (z, £*, D) follows from
the lemma just proved, and symmetry from Theorem 3.3. Thus it is not hard to
show that d, (z, £¥, D) can attain its maximum in the simplex only at the bary-
centers, where the maximum is s. Since [ d, (z, £*, D) d£* = s, £* must be sup-
ported on a subset of the barycenters. The details are left to the reader.

The result just proved is much weaker than the desired statement which would
involve no restriction on n and m. However as has been noted the difficulty lies
in obtaining the conclusion of the lemma without assuming such a restriction.

For the rest of this section we will investigate the optimality of £, introduced
in Section 2, when estimating 6 in the case of special n-tic regression on the
simplex. Let &, f and f* be as described just before the lemma. Let 21, - - - , 2
denote the barycenters of depth <m, and 2,41, - - - , 2 those of depth fromm + 1
to n. Let L, of the form (3.8), be the nonsingular & X k matrix defined explicitly
by letting the ¢th component of g(x) = Lf(z) be (2.1). Then ¢;(z;) = &,
1 < 4,5 < k. Let £ be the design uniform on {z; , - - - , 2,}.

TueoreM 3.6. If m < 3, £ is optimal for 6°°.

Proor. This is immediate from Theorem 3.4 (setting A = I and B = 0 there)
and the facts stated just before Theorem 2.4.

TuroreM 3.7. If n = q + 1, £ 4s optimal for 6.

Proor. Let £ be uniform on {z.1, -+, 2}, and let & = (1 — €)£ + €.
Then

da | k(xy Ee)

I

gl (x)[f ggl d&]—lg(x) _ g(Z)’(x)U‘ g(2)g(2)’ dée]—lg(g) (x)

@] T i@ - @l @),

where (1 — €)s 'Tis s X sand e 'Tisr X r. Thus
Ao (@, &) = s(1 — €)™ 2ot gi ().

This is symmetric, nonnegative and at most quadratic in each variable «; . There--
fore it.attains its maximum at a barycenter. (If the expression is constant on some
line, it may also attain its maximum elsewhere.) But since n = ¢ + 1, the only
barycenters are 2,---,2, and there Y, g (x) = 0 or 1. Therefore
lim, max, dyx (2, &) = s, and £ is optimal by Theorem 3.1.

The last theorem about £ gives a case in which it is not optimal.

TrEOREM 3.8. For ¢ + 1 — n fixzed >0 and n — m fixed >0 and n sufficiently
large, £ is not optimal for 6.

If we only wished to prove the theorem we would merely have to find some de-
sign better than £, and the proof below could be simplified. Instead we con-
sider a more complicated design, which in the special case m + 1 = n = ¢ is
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the most general symmetric competitor of £. Thus we not only prove the theorem,
but also determine in this special case how large n must be before £ is not opti-
mal.

Proor. £ is uniform on f{z;, ---, z}. Let £7 be any symmetric design on
{21, -, %), ¢ uniform on {z,1, - - - , 2}, and & concentrated on 241, a bary-
center of depthn + 1. Define £ = £(b, ¢) = att + be + ¢k, wherea=1—b—¢
and a, b, ¢ =2 0. Ifm + 1 = n = g, £(b, ¢) will be the most general symmetric
competitor of £°.) Without loss of generality we may consider the regression func-
tions to be the ¢; defined above. Then

o o+

M1 —alf® 4+ af) = (1 —a)s’

Mi(E) 0
5

+ abr!

g (I) H + acg(zr1)g (21).

There exist orthogonal matrices Ry and Ry with (Rig® (2141))" = (4, 0,-++,0)
and (Rog® (2141)) = (2,0, -+, 0) where

(3.17) W= Yiagln) = 25 () @/ + 1)

and

(3.18) L= D g (i) = D pemi ) @/ + 1)™
(The evaluation of the sums is as in the proof of Theorem 2.4.) Write

Rk, 0
0 R

Suppressing the argument of M ([1 — a]& + at), we have det M * = det (RMR')*.
After straightforward manipulation, (RM. R’)* reduces to

R=

(1-a)s'I+a [aR1M1<5+)R1’ + Hg 8”]
where d = bely?/ (b + rcly’). Let P be generic for a polynomial. We have
det M* = 1 — &)’s* + 1 — o) s " Vafatr RIM:(E)R + d] + &’P(a).

The trace of RiM1(¢7)Ry equals 1, because R; is orthogonal and g;(z;) = Jy; for
1 =14,7 < s. Hence

det M* = (1 — a) [l — a + asa + asd + ’P(a)].
Thus

aa—alog det M* | oot = s(—1 + a + d) = s(bcl’/ (b + reh’) — b — c).

As shown by Kiefer (1961, page 304 ff.), this derivative is <0 if £ is optimal,
and only if £ is at least as good as (b, ¢). Now the derivative is <0 for all b,
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¢=0withd 4+ ¢ < 1if and only if for all those b and ¢

0=<b — (' —1— rl)be + rl
which holds if and only if

(3.19) = Q+rL)=<0
We now show that for ¢ + 1 — n fixed >0 and n — m fixed >0,
= (14 rb) - »asn— «, and therefore for n sufficiently large £ is not

optimal. Write ¢ — n =t = 0, n—m—uz 1.

Write ("3") (p/ (@ + 1)) = G, . Then k> = Y. i1 G, . To bound &’ note
that for n large, Gu—;/Gn_jp1 is asymptotic tone >/ (j 4+ 1) = 1.So k> < UGn_ui1
for n large. Now

+
r=2pemn () S u(Ey) for n large

which equals u (Z+i;5r11
Also, I’ = D571 G, . Let G,_, be a typical term. Then

I’ it _n—u4+Din—u+1)!
T = Gn_v/u< u+l)an—u+1 = (n — v)!(n T F 1)

.(t-l—u)!u!.( n—ov \™
w4+ D \n—u+1

which we break up into three parts as shown. If we fix v sufficiently large
(v = 2u + tis enough), and let n — o, application of Stirling’s formula shows
that the first ratio tends to infinity. The second is constant and the third ap-
proaches a fixed power of e. Therefore l12/7'l22 — . Also i} — ©, 50
I — (1 4+ 7’1,)> > o, which proves the assertion.

In the case m + 1 = n = ¢, the most general symmetric competitor of £ is a
design of the form £ (b, ¢). There is certainly some symmetric optimal design, so in
this case £ is optimal if and only if it is at least as good as every E(b ¢), hence if
and only if (3. 19) holds. A computer calculatlon of the expression in (3.19) gives
the result that £ is optimal for m 4+ 1 = n = ¢ < 50, and not optimal for
m -+ 1 = n = ¢ = 51 through 55. Further calculations were not performed.

Ifm >3 and ifn — m > 1orq > nitisnot known whether £ is ever optimal,
although it seems likely to be optimal for n — m and ¢ — n and n all small. It is
also not known how large n must be before a design of the form £(b, ¢) is better -
than £’. However £ is better than £(b, ¢) if (3.19) holds, so n must certainly be
greater than 50. For (see (3.17) and (3.18))

(3.20) B — (14 k) = 200G — [1+ 7 ( pemis Go) T

Butr = D pemis (B1) = Domemis ("31) = n + 1, so the expression on the right
in (3.20) is no greater than

PG, — [+ (4 1D

This last expression is &> — (1 + 7*L,)* for the case m + 1 = n = g, and this is
negative for n < 50.
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4. Efficiency of various designs. In Section 1 upper bounds were given on the
number of points needed for estimating 6 or 6. In this section we give examples
in which the bounds are attained. In each model we also show that there are
always designs supported on a small number of points (k or fewer) with D-effi-
ciency bounded below by quantities which will be given. Unfortunately these
bounds are sharp only in a few cases. However we do give a sharp lower bound on
the G-efficiency of the best k-point design for estimating 6'f (). If £ is a design for
estimating 6, we obtain bounds in both directions relating the D-efficiency and
G-efficiency of £, including the result that any ¢ has D-efficiency no less than its
G-efficiency. These last relations are slight improvements over known results;
however we also obtain corresponding relations if £ is a design for estimating 6°.
Finally there is a discussion of the D-efficiency and G-efficiency of a single design
used in several models, and an application of this to product designs considered
by Hoel.

We begin with two examples mentioned above. First is an example in which
ny = k(k 4 1)/2 points are needed for an optimal design for 6. This example is
similar to the example whichis concerned with optimality for §°, but much
simpler. The second example does not reduce to the first when we set s = k, and
the verification of the properties of the second example uses the fact that s < k.
Thus the examples are similar but distinct.

ExamprE 4.1. If k = 1 the question is trivial. For k£ > 1, let

X = {x;]7 =5 = k),

so % has mo points. Let a be chosen with 2(2k — 4)/(2k — 3) < a < 2. The
reason for this choice will become apparent. Let f:(z;;) = &'3;;, and filxy) =
0u -+ 65 for I #= j. We now verify that the only optimal design is supported on all
Ny points of .

Writing £;; for £ (xz:;) we have for any £

Mii(§) = Eia + Dici bt + Doicibis s
Mi;(¢) = Mji(E) = &; for 7 < j.

Since M (¢) is the same for all optimal £, it is immediate that the optimal £ is
unique. It is therefore invariant, and we need henceforth consider only designs
which are invariant in the following sense.

For any permutation = on % elements define g;j = @r;x; OF Za;r; . (Just one of
these will be in &, as w; < = or m; = ;.) Define §8; = 6., . Then (§0)f(gz) =
0'f (), so the problem is invariant under such g. The invariant designs are those
of the form £i; = a and ¢; = b for 7 < j. Note ka + k(k — 1)b/2 = 1.

For such designs M (¢) = (aex + (K — 2)b)I + bU, where U is a k X k matrix
with every entry 1. Then det M (¢) = [aa + 2(k — 1)b]laa + (k — 2)b]* ..
After substituting for b by the relation ka + k(¢ — 1)b/2 = 1, the derivative of
this determinant with respect to a at a = 0is positiveif « > 2(2k — 4)/(2k — 3),
and the derivative with respect to @ at b = 0 is negative if @ < 2. Thus for opti-
mality we must have a = 0 and b = 0, and all n, points are needed for an optimal
design.
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In the second example 17y = s(s 4+ 1)/2 4 rs points are needed for an optimal
design for 6©.

ExamMpLE 4.2. Let X = {z;;|1 = 7 = sju{ysi|i < s <j = k}. Assume s < k.
There are no = s(s + 1)/2 + rs points ¢n €. Choose v so that

0< ¥ if s=1,
0<y<1/@Br) if s=2;
0 < v and v small enough so that
A/(ry) — 1> 2(s — 1)%/(s — 2) if s> 2.
Now let
fi(i) = 84 if
fi(mi) =~ if ¢>s
filwy) = 8u+6; if 1%
filyy) = da + 65 if 1 =s<j.

The reader is referred to Atwood (1968) for the proof. Here is the idea. If
s = 11it is easy to show that all ny points are needed to estimate §°, hence they
are necessary for optimality. For s > 1, it is not too hard to show that any in-
variant optimal design requires all 7, points of support; the method is the same
as was used for Example 4.1. Finally a long series of computations, treating
different cases separately, shows that any optimal design must be invariant.

We now consider the efficiency of designs with fewer points of support.

When estimating 6, we define the D-efficiency of a design £ as

[det M (¢£)/maxe det M (€],

To justify this definition, suppose we take m observations using £ and n observa-
tions using an optimal design £*. The best linear unbiased estimators thus ob-
tained have covariance matrices o'm "M " (¢) and o*n M (£*) respectively.
These matrices will have equal determinants if and only if the ratio of sample
sizes n/m = [det M (£)/det M (£*)]"*.

Likewise we define the G-efficiency of £ to be k/max, d(z, £). And when esti-
mating 6“ we define the D-efficiency of £ to be [det M™* (£)/max det M*(£)]"*.
These definitions are also justified as ratios of sample sizes.

The first theorem gives a lower bound on the D-efficiency of certain designs
supported on % or fewer points. D. Meeter (1967) has pointed out that this result
was obtained earlier in the case s = k£ by M. J. Box (1968). It was found inde-
pendently by the author, and the case s < k given here is not considered by Box
or Meeter.

THEOREM 4.1. For s < k, let n be a D-optimal design for 0, supported on n points
where n < no = s(s + 1)/2 + rs. Let M(y) have rank m, s = m = k. There is a
design ¢ uniform on m points of the support of n satisfying

det M*(¢)/det M*(n) Z n'/[(G) GIm'| = na'/[ () G )m'].

IIA

S



1592 CORWIN L. ATWOOD

If s > 1 this in turn is bounded below by no’/[ () G)K']. If s = 1 4t is bounded below
by no/ [(,',‘.3)m02], where my 18 the smallest positive integer satisfying

mo2 ; (k - mo) (mo + 1)

We shall comment extensively on the sharpness of these bounds, and on the
asymptotic values of the bounds as the various parameters get large. One such
result is given here as a corollary.

COROLLARY. When s > 1, the best design for 6% on k or fewer points has D-effi-
ciency at least nok [ () C) 7%, If r 4s fized and s — oo, this bound has limit ¢ .

Proor oF THEOREM. First we remark that if we operate on any M (¢) which has
nonsingular M3 (£) by a matrix

L= ‘1 — MMy

0 I

we get immediately det M (¢) = det M ™ () det M; (¢).

The problem will be easier if we reformulate it in terms of matrices of full rank.
Because m = rank M (y), the 7 X n matrix having columns f® (z), with z in the
support of 5, has rank ¢, with ¢ = m — s. We can multiply f by a matrix of the
form (3.8), in fact with L; = I and L. = 0, to get a vector Lf with (If):(x) = 0
for 7 > ¢t 4+ s and z in the support of 9. Let g be the (s 4 ¢)-dimensional column
vector with components (If)1, - -+, (If)stt , and let ¢ be the vector consisting
of the first s components, ¢ the remaining ¢ components. (If ¢ = 0, the following
simplifies.) Now for £ supported on a subset of the support of 7, [f gg" dg]* =
[LM (&)L = LM* ()L = M™(¢). In particular if £ = 7, then by the remark
at the beginning of the proof

det [ gg' dn = det M*(n) det [ 9®¢®" dn.

The two matrices on the right are of full rank, while that on the left is of full
rank only if s 4 ¢ = m. Therefore s 4- { = m.

Throughout the rest of the proof we will use the following notation. Let the
support of  be written {x:, - - - , z.}. If M is an m-element subset of {1, --- , n},
then 7, and ¢, will denote the m-fold products [ [ #(x:) and J] ¢ (z:) for i & M,
and ||g (z)|| will denote the m X m matrix with entries g;(x;), for g; a component

of gand je M. If S and T are subsets of {1, --- , n} with s and ¢ elements re-
spectively, similar definitions will hold for 7s, ¢s, 7z, ¢r, g (zs)|l, and:
lg® @a)ll-

Consider now the case m = s. In this case g and ¢ coincide, and M* () =
| g9’ dn. By the Theorem of Corresponding Minors (see Householder (1964, page

14)),
det M*(n) = ZM N det’ llg (@ar) .

Let M, be that M which maximizes det’ ||g(zx)|, and let ¢ be uniform on
{z:|7 e Mo}. Then

det M*(¢) = m ™ maxy det’ ||g ()]



OPTIMAL AND EFFICIENT DESIGNS OF EXPERIMENTS 1593

Therefore

(4.1) det M*(¢)/det M™* ()

m™" maxy det’ [|g (@a)|l/ 2 nar det? ||g (xa)|
= m"/ D

It is not hard to show (see Keilson (1966)) thatif ¢ (x1, - -+ , x») is a Symmetric
multilinear function on the (n — 1)-simplex, then ¢ attains its extrema among
the barycenters. So, putting ¢ (1, -+ ,7a) = D_uNu , We get

(4.2) det M*(¢)/det M*(n) = m ™/max; G)j ™, where m = j £ n.
Now we have the ratio
G/ Ca)G— 1) = A —=1/)"/ 1 —-mfj) =1,

the last inequality being well known. Therefore in (4.2) the maximum occurs
when j is as large as possible. This proves that when m = s, we have

det M™(5)/det M* () Z n"/[GIm"] 2 na"/[(5)m"].
Let us now consider the case m = s + ¢, ¢t > 0. In this case we have
det M*(n) = det f gg’ dn/det f g®¢® dn
= 2w det’ [lg @)/ 2z nr det’ [|g? (22)]).
In the numerator we will delete any zero terms. Then
(4.3)  det M* M) = ZM (73 det” llg (xM)”/ZTCM nr det’ Hg(z) (@o)ll],

where from now on we index only over those M for which the numerator of the
summand is nonzero. Because each numerator is nonzero, consideration of the
expansion of det ||g(xx)|| shows that each denominator is nonzero. The right
hand expression in (4.3) equals

2o [det’ [lg @an) ||/ 2o rea sms—r (15) " det’ [lg® (@r)||]
(44) < D owldet’ ||g(@a)ll/minscau (s)™" 2rea det’ g (z2)]]
= ZM maXxscum 77s[det2 llg (95M)”/ZT<:M det® HQ(Z) (@o)l].

Let M, be that 3/ which maximizes the expression in square brackets in the last,
line of (4.4). Let ¢ be uniform on {z; |7 & Mo}. Then

det M™*(¢) = m™ maxy [det’ [lg (xa)||/ 2 rea det’ lg® (x2)]].
Therefore
(4.5) det M*(¢)/det M*(n) = m ™"/ D maxscu s -

We have been summing over M as restricted just below (4.3). We now again sum
over all m-element sets M ; this can only decrease the right hand side of (4.5).
Sinee for any M

(4-6) maXscu Ms = Zscu ns,
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we have
@.7) det M*(¢)/det M*(n) = m™/D u D scuns.

The denominator on the right is a constant (depending on n) times Y s7s,
which was shown in the proof for the case m = s to be maximized when 7 is uni-
form on as large a set as possible. Therefore
det M*(¢)/det M*(n) = n'/[(3) (F)m’] 2 ne'/[(3) (7)m’].

We now only need to prove that fors = m =< k,

B(m) = no'/[(W) (5 )m’]
is bounded below by the quantities given in the statement of the theorem. The
ratio B(m)/B(m — 1) is increasing, and B(k)/B(k — 1) is less than 1 if s = 2.
Thus if s = 2, B(m) is minimized by m = k. If s = 1, B(m 4+ 1)/B(m) =
m?/(k — m)(m + 1). Thisis increasing in m for m > 0, and first becomes greater
than or equal to 1 when m = mq, defined in the statement of the theorem.

The proof of the corollary is immediate, using Stirling’s approximation of the
factorial.

In the special case s = k, the corollary says that the lower bound on efficiency
approaches ¢ ' as k — .

In similar manner it is easy to show that if s is fixed and r — «, or if the ratio
r/s is fixed and r — o, then the lower bound on efficiency approaches 0.

Consideration of the sharpness of the bounds of the theorem is now in order. If
m > s strict inequality holdsin (4.6), because n(z;) > 0,7 = 1, - - - , n. There-
fore the bound »’/[ () (7 )m’] is not attainable, and hence the (smaller) bounds
which do not depend on m and n are not attainable.

If m = s, the bounds are attainable only if equality holds in (4.1). Equality
holds there if and only if det’ ||g (x4 )]|| is the same for all M. But this can happen
only if m = n — 1 (or in the trivial cases m = 0, 1 or n). To see this, renumber if
necessary so that ||g (¥, )| is nonsingular, where M, = {1, - - - , m}. Operations
on the rows of the m X n matrix with entries ¢;(z;), (which do not change the
ratio det’ ||g (xa)||/det® ||g (xar )| for any M or M’), transform ||g (za, )| into the
m X m identity matrix, with determinant 1. If det’ ||g (z )| is now to equal 1 for
every M involving m of the first m + 1 columns, ¢ (ny1) must have every entry
equal to %1. By the same reasoning so must g (m+2). But then any determinant
involving columns m + 1, m + 2, and all but two of the first m columns is not
equal to £1.

So when m = s the bound n°/[(;) F)m’] = n’/[(F)s’] is attainable only if
m = n — 1. Since this bound is strictly decreasing in =, the bound no’/[ (") )s’] is
attainable only if m = my — 1,1i.e., 8 = rs 4+ s(s + 1)/2 — 1. This occurs only if
s = k = 2. We consider the two possibilities:

Ifm =s =1,k = 2, we have ng'/[(7’)s’] = 1, which is certainly attainable.
But since mo = 2, the lower bound 7no/[ (32)m¢’] equals & < 1. Thus the lower
bound 7o/[ (32)me] is not attainable.
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If m = s = k = 2, the lower bound ny’/[(3°)k’] is attained. As an example let
X = {x1, 22, zs}, let fi(x;) = ds5forl < 4,7 < 2,and let fi(xs) = 1,2 =1, 2. I
is easy to check that # is uniform on X and the bound is attained.

In most situations we will not know n, and if s < k we will generally not know
m either. In these cases we can only use the lower bounds which do not depend on
these values. Moreover if m is unknown we do not know the number of points of
support of ¢, only that the number is between s and k. We might therefore try to
find a theorem similar to 4.1 but involving a design supported on s points, or on [
points, where [ is the number of points necessary to estimate 8. Neither of these
ideas works, because of the following facts.

(1) 6® may not be estimable using only s points.

(2) The best I-point design for 6’ may be arbitrarily bad, where I is as just
defined above.

Both statements are easily proved. There are well known examples to demon-
strate (1). One such has been given, Example 4.2 when s = 1.

To show (2),let ¢ = {zs|i =1, -+, k}u{ys|s =1, ,s}. Let fi(x;) = 8,5
for?i < sandj < k,let fi(x;) = 1fors > sandj < s, let fi(z;) = 8;5fore > s
and j > s,and let fi(y;) = d;;afors < kandj < s, where |a| is small. Then 6% is
estimating using s points, %1, -+ , ¥s . As was shown at the end of Section 1, if
6 is estimable using an s-point design then f® is zero on the support on such a
design, and the best such design is uniform on those s points. Therefore any
s-point design which estimates 6 is supported on {31, - - - , ys}, and the best
such is uniform there. Denoting this design by &, , an optimal design by £*, and
the design uniform on {z;, -- - , zx} by & , we have

det M*(&,)/det M* (£*) < det M™(&,)/det M* (&)
=a"s /(KA + rs)7h)

which can be arbitrarily small.
We now turn to G-efficiency and give a bound for certain k-point designs.
TuEOREM 4.2. The best (@) k-point design &g and the best (D) k-point design &p
satisfy

max, d(z, £¢) < max, d(z, &) < k.

We could rephrase this to say that the G-efficiency of £ is no less than that of
£p , which is no less than 1/k.

Proor. We must show the right hand inequality. Let {z:, - - - , z:} be the sup-
port of £p . Let L be the linear transformation so that g = Lf satisfies g.(z;) = 8i;.
Then |g:(xz)| = 1 for all 7 and all z £ X; for if |g:(y)| > 1 then substitution of y
for z; would yield a k-point design ¢ with det M (¢') > det M (¢p). Thus we
conclude

max, d(z, £¢) < max, d(z, £p) = kmax, 2 g/ (x) < K.

Here is an example in which the bound is attained. Let ¢ = {z1, - -+ , &%, ¥},
let fi(x;) = 8;, and let fi(y) = 1 for ¢ = 1,---, k. If £ is supported on
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{.’171 ) :I:k}a d($7/7 5) = 1/51 for any 1:7 and d(y> E) = Z (1/51) = d(‘”%y E) for
any . So d(z, £) is maximized at y. This is minimized by making ¢ uniform on
(@1, -+, x}. In this case d(y, £) = k* If on the other hand ¢ is supported on y
and all the z.’s but one, say z;, let L be the k¥ X k matrix with entries as;; = 1 for
all 4, ay = —1for7 == [, and a;; = 0 otherwise. If ¢ = Lf then g,(z;) = 8 for
J*1lgily) =8a,9(x:) =1and g:(x;) = —1ford = I Then writing £(y) = &,
we have d (x, £) = D_: ¢ (x) (1/&). Therefore d(x;, £) = 1/&ifd =1, d(y, &) =
1/&, and d(x:, £) = 2 (1/&). As before, minimizing over ¢ supported on all
points but x; , we have

min; max, d(z, £) = k.

This example shows that it is possible to cut the G-efficiency by a factor of %
by deleting even a single point from an optimal design. It would therefore seem
undesirable in general to simplify a problem by considering only k-point designs,
although this has been done in the past, for example by Box and Luecas (1959,
page 80).

Since D-efficiency is usually impossible to compute when no optimal design is
known, it is of practical value to have relations between the D-efficiency and
(G-efficiency of a design.

We now develop such relations. If s = k, the theorem is a slight improvement
over results obtained by Kiefer (1960, p. 389). In any case the method is essen-
tially the same.

Write d (¢) = max, d(z, £), and dy; (§) = max, do (2, £).

TurorEM 4.3. Suppose s < k, and M (¢) is nonsingular. Then

[det M ™ (£)/maxe det M ™ ()] 2 s/dy (£).
If d(&) £ ¢, where ¢ > %, then
det M* () /maxe det M* (') < exp [— (dx(£) — s)°/2D]
where
D =max{k — 14 (c— 1), 4 — 1) ((k = 1)/(2 = 3)" + ¥),
2(c — 1)(c — s)}.

If s = k, the first assertion says that any design ¢ has D-efficiency no less than
its G-efficiency.

In the second assertion, we might want to let ¢ = d (&) if this value is known and
>3, Of course if £ > 1 then ¢ = k£ > £ automatically.

Proor. Let L be of the form (3.8) and such that LM (¢)L' = I. If we let the
vector of regression functions be Lf instead of f, then for any g, dye(z, £) and
d(z, £') are unchanged and det M (¢') is only multiplied by a constant, det’ L, .
Thus we may simply consider M (¢) = I throughout the proof, and will do so.

To prove the first statement of the theorem, let n be D-optimal for 0%, Then,
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using the fact that M (¢) = I,

dap(8) Z [ dee (e, £) dn
tr M (n) — tr Ms(n)
tr M1(n)
> tr M*(n).

The last inequality is true because M*(n) = Mi(n) — M2(n)M s LMy (p),
(using a limiting value if M () is singular). Thus, by the arithmetic-geometric
mean inequality,

[det M* (£)/det M™*()]"* = [det M™* ()]
s/tr M™(n)
= s/dy (£).

To prove the second assertion of the theorem, let dyx (§) = s + e Then there
is a design ¢ with fdslk(x, £)df = s + e. As in the above paragraph therefore
s+e= [due §)ds = tr Mai(5).

Define q(e) = logdet M*([1 — alf + af) = logdet M ([1 — al¢ + of)
— log det M3([1 — ot + af). Let P be a k X k matrix so that PP’ = I and
PM (¢)P is a diagonal matrix with diagonal elements d:. Let @ be an r X r
matrix so that QQ' = I and QM;(¢)Q  is a diagonal matrix with diagonal ele-
ments e;. (Note, tr M () = > di,and tr M3(¢) = > e;.) Then, again recalling
that M (¢) = I,

q(@) = Xklog 1 — a + ad;) + logdet PP" — 3 7log (1 — a + ae:)
— log det QQ’

v

and
q(0) = 0.

The first derivative is

@ =25 (-14+d)/1 —a+ad)—21(-1+e)/1 — a+ ae)

and ’

¢ 0) =t Mis) — s
= €.

Differentiating again gives

@)= =250 —d)/Q —a+ad) + 211 —e)/A — a+ ae)
> DA —d)/(Q—a+ad)

p(a),
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defining p(a). For 0 £ o < 1, p”(a) = 0. Therefore for any interval
0 < a £b <1, p(a) attains its minimum value at 0 or b. Thus
@8) ¢"(@) = —max{X (di — 1)%, X (di — 1)"/(1 — b + b d)*}

for 0=2a=b<1.

Now Y. (d: — 1)*is convex in the d; on the set B = {(d1, - -+ , di)| all d; = 0,
>.d; < c}. This set contains the (di,---, di) corresponding to {,since
ddi=tr M) = [d(, £)df < c. Therefore > (di — 1)* takes its maximum
value if all but one d; are 0 and the one equals ¢. Thus

S (di— 1<k —14 (c—1).

To bound the second term on the right in (4.8) let h(u) = (u — 1)/
(1 — b+ bu)®. Then 2" (u) = 2(1 + 2b — 2bu) (1 — b + bu)~*, which is non-
negative if 0 < u < 1 + b~". Since d; < ¢ we conclude that if b = 3(c —
1)7", (which is less than 1, as required, because ¢ > $), then the second expres-
sion on the right side of (4.8) is convex in the d; on the set B. Therefore the ex-
pression attains its maximum if one d; equals ¢ and all the rest are 0. Thus
T di— 1/ A —b+bd) S B=1)/A=b)"+ (c—1)/A+bl—1)

=4k — 1)(c — 1)*/(2c — 3)* + 4(c — 1)*/9
where we have replaced b by its value 3 (¢ — 17
Therefore for 0 < a < 3(c — 1)7,

¢ (@) = —max{k — 1 + (c — 17,4k — 1)(c — 1)V

4.9) (2c — 3)" + 4(c — 1)*/9}

= —K
defining K. Therefore for0 < o = 3(c — 17
(4.10) ¢(a) = ea — Ko'/2.

Nowe = dop(() —s < d(¢) — s < ¢ — s. Thusif (¢ — s)/K < 3(c — 1)™*
then certainly ¢/K =< i(c — 1)~ and the expression on the right of (4.10)is
maximized at a0 = ¢/K. Let £ = (1 — ao)£ + aof. Then

log [det M (£')/det M (¢)] = q(a0) = €/2K.
On the other hand if (¢ — s)/K > %(c — 1)7, then

gla) 2 ea — (c — 1)(c — 8)a’,

and the right side is maximized at &1 = ¢/2(¢c — 1)(c — s). In this case let
£ = (1 — a1)t + auf. Then log [det M (£)/det M (£)] = €/4(c — 1)(c — s).
This completes the proof.

The bound given by the first statement of the theorem is seen to be sharp if we
consider the following example. Let & = {x1, -, x} U{y, -+, ¥}, let
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fi(z;) = i, and let fi(y;) = abdi;, where |a| > 1. Then for any design & M*(¢)
is diagonal with diagonal entries £(z;) + a’¢(y:). Therefore the optimal design 7
is uniform on {1, ---, y,. Let & be uniform on {z;,---, z}. Then
det M* (&) = s° and det M™(n) = a*s*. Therefore the D-efficiency of & is a7
But d""zk (z, &) is maximized if z is some y;. So dyx (1) = sa’, and s/dy (&) is
also a .

The bound given by the second assertion of the theorem is sharp only in the
trivial case when dy; (£) = s. Forif d,x (£) > s then ¢ > 0 and hence o and o are
nonzero (by definition). If the bound of the theorem is to be sharp, (4.10) must
be equality at ao (respectively o1). But this can happen only if ¢” (a) = —K for
all & between 0 and a, (respectively a;), because —K is a lower bound on ¢” ().
But then p(a) = —_ (di — 1)’/(1 — a + a d;)® is constant, —K, on the
interval, and hence

p' (@) = =62 (di—1)/A —a+ ad)* =0.

This is possible only if d; = 1 for every ¢, in which case p(¢) = 0 + — K. There-
fore (4.10) cannot be equality, and the bound in question cannot be sharp when
(Zslk (E) > s.

We remark that we can use Theorems 4.2 and 4.3 together to get a lower
bound on the D-efficiency of the best k-point design for estimating 6. This bound
is 1/k, which is not as good as the bound of Theorem 4.1.

Theorem 4.3 gives some justification to examination of d; (z, £) for s < E,
even when dy;(£) > s. Although d,x(¢) does not measure the efficiency of ¢
with respect to any intuitively meaningful optimality criterion, it does give an
indication of the D-efficiency of &.

There is an easy extension of the first part of Theorem 4.3 to the case in which
M (&) is singular. We state this as a corollary.

COROLLARY. Given any designs £ and & , and 0 < € < 1, write

& = (1 —e)E"l'fEl- ‘
Suppose M (&) is nonsingular, 0 < e < 1, and lime,o dyx (&) exists. Then
[det M * () /maxy det M ™ (£)]"* 2 s/limeso dopi (&)
Proor. For any e between 0 and 1
[det M™* (&) /maxe det M* ()Y = s/du (E).
Taking the limit in € on each side gives the desired result.

We remark that for a given ¢ the value of Lim, d,x (&) will depend in general
on what design & is used.

The second assertion of Theorem 4.3 cannot be extended in this manner to the
case when M (£) is singular, as Example 3.1 shows. There we had £* optimal. If
£ was suitably chosen and £, defined as (1 — €)t* 4+ €&, we had

lim, &slk (z, &) = 027
for arbitrarily large c¢. On the other hand det M* (&) /det M*(£*) = 1 — .
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Let us now leave the problem of relating D- and G-efficiency. A similar problem
is to obtain bounds on the efficiency of a single design in various related models.
THEOREM 4.4. Suppose & is optimal for 8. Then the following are true.

(4.11) [det M (£)/max; det M (£)]"* = s/k.
(4.12) [det M* (%)/max; det M* (£)]"* = s/k.
(4.13) dois (z, £0) = k.
(4.14) doik (0, £0) < k.

Statements (4.11) and (4.12) say that & has D-efficiency =s/k for estimating
9 out of 8 or 6% out of 6. Line (4.13) says that & has G-efficiency =s/k when
estimating f' (z)6. Line (4.14) does not have a natural efficiency interpretation
except to the extent given by Theorem 4.3, but it is included here for the sake of
completeness.

ProoF. Statements (4.11) and (4.12) can be proved directly, but they follow
immediately from (4.13) and (4.14) respectively, by Theorem 4.3. So we need
only show (4.13) and (4.14).

We will suppress the &, , writing M for M1 (&), etc. Let

L=

I 0
—M, MY T

Then

LML

|| M, 0
B \‘ 0 M;— MMM,
Write ¢ = Lf, and note that g“) = f(l). Then

k2 di (e, &) = ¢ @) (LML) g ()

= ¢ @M TP @) + ¢ @)Ms — MMM (2)
¢ @M (@) .

= 1 @M ()
= dys (2, &),

1%

proving (4.13).
To prove (4.14), write

Ao (@, &) = f @)Mf(z) — & @M ()
< f (@)Mf ()
= dui(x, &) = K,

as was to be shown.
The bounds are sharp, as is shown by the following example in which each
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bound is attained. Note that in this example the inequalities in the proof are

equality at z;, - -+, ,, and the arithmetic-geometric mean inequality, used in
the proof of Theorem 4.3, is equality.
Letx = {1, ---, z}, fi(®;) = 6i . Then & is uniform on X. For a competing

design in (4.11) and (4.12) let £ be uniform on {x;, - -+ , z;}. It is immediate that
all four bounds in the theorem are attained.

We now apply this result to the product situation considered by Hoel (1965).
Suppose the regression functions f;(y, 2) on Y X Z can be factored into
fi(y, 2) = ¢:(y)h; (). The optimal design for the coefficients of the g; alone is
some measure 7 on Y, and for the coefficients of the k; a measure { on Z. Hoel
then shows that an optimal design for the coefficients of the f;; is simply n X §.
This gives a corollary to Theorem 4.4.

CoroLLARY. Let n and { be optemal designs for the coefficients of some n-vectors of
regression functions ¢ and h on spaces Y and Z respectively. If f(y, z) consists of
some s of the products g; (y)h;(2), then for estimating the coefficients of f the product
design m X ¢ has D-efficiency =s/n* and G-efficiency =s/n’.

For exampleif Y = Z = [—1, 1] and ¢(y) and k() each consist of the » mono-
mials of degree <n — 1, then the optimal design in each one dimensional problem
is well known. See Guest (1958) and Hoel (1958). If f(y, z) consists of those
monomials in y and z of total degree <n — 1, then the product design & has
D-efficiency = (n + 1)/2n and G-efficiency = (n + 1)/2n.

In this situation an optimal design is known only for small n. (See Kiefer
(1961, Section 4) and Farrell, Kiefer and Walbran (1965, Section 3).) Even
though & is not optimal it is easy to obtain and use, so a bound such as that given,
showing that & is fairly efficient, is nice to have.

In fact in this example of polynomial regression, & seems to be considerably
more efficient than the bound indicates. If f is quadratic regression on the square
(e., n = 3), Kiefer (1961, pages 314-317) has computed an optimal design £*
for the six regression coefficients. We compare this with the product design & .
(M here is a 6 X 6 matrix.)

[det M (&)1 = 462
[det M (£*)]'* = 475
D-efficiency of & = .97

Theoretical lower bound = § = .67
max, dejs (€, &) = 7.25
G-efficiency of & = .83
Theoretical lower bound = § = .67.

Although in this example the efficiencies are greater than the lower bounds of
Theorem 4.4, there are product design situations in which the bounds are at-
tained. As an example suppose Y = {y1, -+ , Y}, Z = {21, -+ + , 2}, g(y) is an



1602 CORWIN L. ATWOOD

m-vector with ¢;(y;) = 8i;, and h(z) is an n-vector with h;(z;) = 8, . Let the
regression functions f;(y, 2) comprise some s-element subset of the mn functions
g:(y)h;(z). Then f(y, 2) is just that given in the example immediately following
Theorem 4.4, in which all the lower bounds on efficiency were attained.

Acknowledgment. I wish to express my deepest appreciation to Professor Jack
Kiefer for his interest and helpful guidance while this paper was being written.
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