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ON AN EXTENDED COMPOUND DECISION PROBLEM

By DEnnNIs C. GiLLiLAND AND JaMEs F. HANNAN
Michigan State University

0. Summary. In this paper we develop some theorems for an extended com-
pound decision problem which has as the component a general statistical de-
cision problem. The results generalize and strengthen some results previously re-
ported by Swain (1965) and Johns (1967). From the outset it is assumed that the
reader is familiar with the compound decision problem.

1. Introduction. Swain (1965) has at the suggestion of Professor M. V. Johns,
Jr. investigated the use of more stringent standards in the compound decision
problem and has called the resulting version the extended compound decision
problem. The usual standard is R (G, ), the Bayes envelope of the component
problem evaluated at the empirical distribution of player I’s first » pure strategies
61,0, -+, 0,.In the extended version, the idea is to take advantage of higher
order empirical dependencies in the parameter sequence as measured by G,*, the
empirical distribution of the vectors (61, - -+, 0x), (62, -+, Os1), *++ 5 Oniy1,
-++,0,), which is defined for 1 £ k < n,n = 1.

In order to be more explicit we introduce more notation by defining R to be
the Bayes envelope in the following game, which we call the Iy game. Player I
picks an ©° = (w1, -+ -, w) € @, and Player IT picks an action a ¢ A and suffers
loss L(w:, @) = 0. In the statistical version Player II gets to observe X* =
(X1, -+, Xi) distributed P,, x --- x P,, before choosing an action. Here a
strategy is a (randomized) decision function ¢ which is a mapping from *, the
range space of the random vector X*, to the set of probability measures on a suit-
able o-field of subsets of A. We require that a decision function ¢ is such that the
random loss

1) L(wi, ¢ ®)) = [ L(wx, -) de)x"))

is jointly measurable in w; and x*. (A dot is used to denote the dummy variable
of integration within an integrand whenever it is convenient.) We define the risk,

) Ri(o'¢) = [ Lk, ¢(-)) d(Pay % -+ x Pu,)
and the Bayes risk of ¢ versus a probability measure G,

3) Ri.(G,¢) = [ Ri(-, ) dG.

The Bayes envelope in the Iy game is given by

4) R (G) = inf, Ri(G, ¢).
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The decision problem T'; is the component game in the compound decision prob-
lem we are considering. The sequence 6 = (6,6, - - - ) is the sequence of player I
pure strategies in the repetitions of the component game. The extended compound
decision problem, as conceived by Johns, has a standard Ry (G,") for some fixed %.
For & = 1 we have R;(G,') = R(G,), the usual standard.

In special cases sequence compound procedures have been demonstrated which
achieve the standards Rx(G,.°) asymptotically (see Swain (1965) and Johns
(1967)). Also, in these special cases it has been shown that Ry (G.*) is asymp-
totically a more stringent standard than Ry (G,*); that is, for each fixed k& = 1
and 0 ¢ QF,

(5) lim sup, {Ri1 (G — Ru(GF)} = 0.

In fact, Swain (1965, Theorem 1) has proved that for estimation with squared
error loss and A = Q a bounded subset of the reals, Ri1(G.*") — Ry (G.f) =
f(k,n,8) + h(k, n, 8) where f(k,n,0) < 0and [h(k,n,0)] < M(n — k)" with
M a constant depending only upon the supremum of the loss function in the com-
ponent game. Johns (1967, Theorem 2) has proved the same result for the two-
action problem with bounded loss function. The proofs given in both cases are
peculiar to the special component problems being considered. Theorem 1 to fol-
low yields an improved bound for the most general situation with an easy proof.

Theorem 2 is a restatement of a game theoretic result due to Hannan (1957)
in a form pertinent to the extended compound decision problem. It has been
proved several times in special contexts since the original result was published.
Theorems 3 and 4 relate the extended sequence compound and empirical Bayes
problems. Theorem 3 was stated by Swain (1965, Theorem 4) for the squared
error loss estimation problem.

2. Results. We begin with a simple remark.

REMARK 1. Let G be any probability measure on ©* and let G4 be the marginal
of G on any ordered subset of coordinates (71, - -+, ¢;) where 7; = k. (a) It fol-
lows that Rx(G) = R;(G4). (b) If in addition @ is the product of G« and the
marginal H 4« on the other coordinates, then R, (@) = R;(Gx).

Proor. Without loss of generality welet (41, -+-,%) = (k—7+1, -+, k).
Also we let ¢* be generic for decision functions in the game I'; which are (@p—jy1,
.-+, ;) measurable. Then R, (@) = inf, Rx (G, ¢) < infx Ri(G, 0*) = R;j(G4)
since Rx (G, ¢*) = R;(G«, ¢*). We now suppose that G = H4 X G and write

Rk(G:¢) = ka(’ ,ﬂo) dG@ = ff Rk(' ,(P) dG*dH*.

An interchange in the order of integration with respect to the two measures G«
and P,, x .-+ % P, in the inner integral, [ Ri(-, ¢) dGx, shows it to be
greater than or equal to R;(G4) for every «* . Thus, Ry (@, ¢) = R;(G+) for
every ¢ which together with (a) implies (b).

TrHEOREM 1. Foralll £ k < n,n = 1 and 6,

(6) (n — B)Ria (G.) £ (n — & + DRu(G).
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Proor. Consider H,*™ the empirical distribution of (6., 61, ---, 6k),
(01,05, ,0k11), -+ 5 (Bnk,Onit1, - -+, 0x). The marginal it induces on the last
k coordinates is G, so by Remark 1 (a),

(™ R (H,™) < Ru(@").
For any decision funetion ¢ in the T'x1; game,
Rint (G, 0) — R (H™, 0)
= (n—k™ E?=k+l Rip1((Oik, -+, 0:), )
— (n—k+ 1) {2 k1 Resa (Bii, -+ 505),0) + Riya ((6n,61, - -+ ,6),0)}
m—k+ 1) — k)7 i (R (@i, <+, 0:), @)
— Riy1((0n, 01, -+, 6k), @)}
St —k+ 1) — k)7 2t Rea (Oiky -+, 05), 0)
= —k+ 1) Repa (G2, ¢), s0 that

(8) (n — B)Ren (G2, ) S (0 — k + DRea(HS, 0),

From (8) it follows that (n — k)Riy1 (G*) < (n — k + 1)Rpa (H."™) which
together with (7) implies (6).
COROLLARY. If B = sup,,. L(w, a), then for all1 = k < n,n 2 1 and 6,

9) R (GH™) — Ry(Gf) = B — & + 1)7.

Proor. Inequality (6) is equivalent to (n — k& -+ 1){Ryna G — R (G}
< Ripr (GF) from which (9) is immediate.

The bound B(n — k + 1)™" is an improvement over those established in the
special cases cited earlier. For squared error loss estimation Swain obtained
7B[4(n — k + 1)], and for the two-action problem Johns obtained 4B (n — k )

In compound problems with non-trivial components there exist parameter
sequences 0 for which lim sup, {Rrq (G5 — Ru(G.))} < 0 so that asymp-
totically Res1(G.*) is truly more stringent than Ry (G.F).

RemARK 2. In the set compound problem, which involves abeyance of all of
the first # actions until the first n random variables have been observed, it seems.
that a more natural set of standards is provided by Rix(I.*), k¥ = 1, where I,
is the empirical distribution of (Bu—gs2, -+, On, 01), (Oniiz, -+, 01, 802), -,
(On—s1, *** 5 On1, 0,) and the coordinate arithmetic is mod n. We note that / &
depends only upon 6" and that I! = G, = G,. Asymptotically Ry (I.*) and
Ri(G,") are equivalent when Ry is bounded. However, with these standards we
get an improvement over (6). Since [ ™ induces the marginal I.,* on the last &
coordinates, Remark 1 (a) implies that forall1 = k <mn,n = 1and 6,

®") Run (M) = Bo(TH).
Our next theorem is a restatement of results (8.8) and (8.11) of Hannan (1957)
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in the notation of the extended sequence compound decision problem. These
results have often been given and proved in special cases since the original paper
[see Samuel (1963, Lemma 2), (1965a, Lemma 1), Swain (1965, Lemma 1) and
Van Ryzin (1966, Lemma 3.2)]. Relation (8.8) shows that across N repetitions
of any game I, the average risk resulting from playing Bayes versus the empirical
distribution of player I’s up-to-date history of pure strategies at each stage is no
greater than the Bayes envelope of T' evaluated at the empirical distribution of all
N strategies. The decomposition (8.11) shows that the average risk resulting
from playing Bayes versus the empirical distribution of player I’s past history of
pure strategies at each stage is no less than the Bayes envelope of T' evaluated at
the empirical distribution of all N strategies. We now write these results for
N = n — k + 1 repetitions of the I'; game where player I’s pure strategies are
(01) )ok)y Tt (0n~k+17 ,0,,).

THEOREM 2. For © = k, let ¥ denote a Bayes response versus G in the Ty
game and let Yi_1 be arbitrary. Then for all1 < k < n,n = 1 and 6,

(10) ZL};Rk((ai—kH, cee, 0:), \l/ik) = (n—Fk+ I)Rk(Gnk)
S D Re(Oimigr, <o, 05), ¥ina).

We now state some theorems which relate the extended versions of the se-
quence compound and empirical Bayes problems.

ReEMARK 3. Let 0 be a strictly stationary stochastic process with G denoting
the measure on infinite sequences 6 and G+* denoting the marginal on 6*. Then for
alll =k <nandn = 1,

(11) R.(G+*) = [T R:(G.") dG(e)

where the integral on the right is an upper integral.
Proor. For any decision function ¢ in I';, we have

Ru(@s',0) = (0 — k + 1)7 20 Re(Gs', o)

(12) m =k + )7 2 [Re(Oipar, -+, 0:), 0) dG(0)
J R (G, 0) G (8)

by the strict stationarity of G. Since Ry (G.", ¢) is measurable in 6 and satisfies
Ri(Q.F, ©) = Ri(G.) for all 0, the definition of upper integral implies that-
[ Ri(G.F, ©) dG(8) = [~ Ri(G.") dG(8). Therefore, (12) yields Ri(G+", ¢) =

"R (G.*) dG (8) for every ¢ so that (11) is proved.

TrrorREM 3. (Swain, 1965). Let 0 be a strictly stationary stochastic process with
@ denoting the measure on infinite sequences 8 and G* denoting the marginal on
0", Suppose that @ = (o1, @2, -+ ) 8 @ solution of the extended sequence compound
decision problem; that is, each o; is X' measurable and for each 6,

(13) lim sup, {n~ 22i- R:(0', 0:) — Ri(Gx")} < 0.
It follows that under general conditions,
(14) lim sup, {n " X7 [ Ri(6%, ¢:) dG(0)} < Ri(GF).
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Proor. By subtracting and adding [~ Ri(G.*) dG(8) to the term in curly
brackets in (14), invoking (11), and using the fact that [f — [Tg = [_ (f — ¢),
we obtain

(15) n7' 201 [ Ri(6', 0:) dG(8) — Ri(G4")
= [o{n7 X Ri(6', i) — Ru(Gi')} dG(0).

If n™ DI Ri(6°, ¢;) — Ri(G,') is dominated by a G-integrable function of 8,
then (15), (13) and Fatou’s lemma yield (14).

In practice, (13) is usually established by demonstrating an upper bound
which is independent of 8 and converges to 0, so that the conditions of the theorem
are satisfied. In reasonable problems Ry (G,*) is measurable in 6 so that upper and
lower integrals are the ordinary integral.

Swain (1965, Theorem 4 ) has stated a specialization of Theorem 3 to the case
of squared error loss estimation. The basic idea of Swain’s proof does yield a
proof of the general case, but we have given an alternative proof.

Theorem 3 shows that solutions of the extended sequence compound decision
problem are also average risk solutions of the extended empirical Bayes problem.
This result has been noted in special cases for the unextended, k¥ = 1, sequence
compound and empirical Bayes problems; for the finite component by Van
Ryzin (1966, Theorem 6.1) and for the general component by Samuel (1965b)
and Gilliland (1968).

RemARK 4. Under the hypothesis of Remark 3 and with ¢ = (o1, @2, - )
any sequence compound procedure, it follows that for 1 < ¢ < k,

(16) JR:(0,0:)dG(0) = R:(G+").
If, in addition, 6 and (8;—x41, - -, 6:) are independent for 7 > k, then (16)
holds for ¢ > k.

Proor. In order to prove (16) for 1 < ¢ £ k we note that in this case, 8’ and
(B—isa, -+ - , 0i) each have the same distribution G»’. Since this is the marginal
induced by @4* on the last ¢ coordinates of 6°, Remark 1 (a) implies that R, (G+’)
> R (G4") which implies (16). If for the case ¢ > k, 6" is independent of
(Bits1, -+, 0:), then Remark 1 (b) implies R:(G+*) = Ri(G4*) which implies
(16).

TuEOREM 4. Under the hypothesis of Theorem 3 and with 6" independent of .
gy, -+, 0:) for all © > k,

(17) lim, {n™" X 7m [ Ri(6°, i) dG(8)} = Ri(Gx").

Proor. The proof follows directly from Theorem 3 and Remark 4.
We now give a concise summary of the conclusions of Remarks 3 and 4:

0 < n' 2k [ R0, 0:) dG(8) — Ri(G4")
(18) = [_In7 R0, 00) — Ri(Gn)] dG(6)
+ [T Re(GF) dG () — Ri(Gs)).
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Since the last term is non-positive, we see that rates of convergence in the ex-
tended sequence compound decision problem yield the same rate for average
risk convergence in the extended empirical Bayes problem under rather general
conditions. The rate of convergence of f_ R, (G.F) dG(8) to Ry (G*) follows as a
corollary.

In closing we note that a stronger version of Theorem 4 has been stated by
Swain (1965, page 98) with the hypothesis as in Theorem 4 except that the
assumption that 6°* and (@ik41, -+, 6:) are independent is replaced by the
less restrictive assumption that 6°* and 6; are independent. The attempted proof
depends upon a proof of the corresponding stronger version of Remark 4. The
following example shows that the less restrictive assumption is not sufficient for
(16) to obtain for z > k.

ExampLE. Let 6 ~ G.® be normal with zero mean and covariance T and sup-
pose the component game I's has X ~ N (9, 1) so that (X1, X,, X;, 61, 0., 65)
is normal. It follows from a double application of (8 a. 2.11) of Rao (1965,
page 441) that the conditional distribution of 6 given X® is normal with mean
X’2(I + Z)” and covariance T — =(I + ). If we specialize to

1 p 0
T=|p 1 p|, p #= 0,
0 p 1

a computation shows that the conditional expectation of 8; given X* does depend
on X; even though 6; is independent of 6; and hence of X; . Therefore, quite gen-
erally, we have Ry(Gs’) > R3(G4’) so that the stronger version of Remark 4
fails in this case with ¢ = 3, & = 2. To be specific we compute for squared error
loss estimation R, (G’) = 1% > % = R:(G4).
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