A NOTE ON EXCHANGEABLE PROCESSES WITH STATES OF FINITE RANK

By S. W. DHARMADHIKARI

Indian Statistical Institute

- **1.** Introduction. Let $\{Y_n, n \geq 1\}$ be a stationary process with state-space $J = \{1, \dots, D\}$. States of J will be denoted by ∂ and finite sequences of states of J will be denoted by s or t. If $s = (\partial_1, \dots, \partial_n)$ then we write $p(s) = P[(Y_1, \dots, Y_n) = s]$. The $rank \ n(\partial)$ of ∂ is defined to be the largest integer n such that we can find 2n sequences $s_1, \dots, s_n, t_1, \dots, t_n$ such that the $n \times n$ matrix $\|p(s_i\partial t_j)\|$ is non-singular. Gilbert [4] conjectured that if $n(\partial) < \infty$ for all $\partial \in J$, then $\{Y_n\}$ is a function of a finite stationary Markov chain. This conjecture was disproved by Heller [6] and by Fox and Rubin [3]. The purpose of this note is to prove that, in the special case when $\{Y_n\}$ is exchangeable, Gilbert's conjecture is correct.
- 2. Main results. Assume that $\{Y_n\}$ is exchangeable. Let Q denote the space of all probability distributions on J. If U denotes the unit interval [0, 1], then Q is just the subset of U^D corresponding to those vectors $q = (q(1), \dots, q(D))$ satisfying $q(\partial) \geq 0$ for all ∂ and $\sum_{\partial} q(\partial) = 1$. By de Finetti's theorem there is a unique probability measure μ on the σ -algebra of Borel subsets of Q such that if $s = (\partial_1, \dots, \partial_n)$, then

(1)
$$p(\partial) = \int_{Q} q(\partial_{1}) \cdots q(\partial_{n}) d\mu(q).$$

Define the projection π_{∂} by $\pi_{\partial}(q) = q(\partial)$, $q \in Q$. The probability measure μ and the function π_{∂} induce a measure μ_{∂} on the Borel σ -algebra in U.

Lemma. If $n(\partial) < \infty$ then μ_{∂} has finite support.

PROOF. Let ∂^n denote the sequence having n ∂ 's in succession. From (1) and from Theorem C on page 163 of Halmos [5], it follows that

$$p(\partial^n) = \int_{\mathcal{Q}} [q(\partial)]^n d\mu(q) = \int_{\mathcal{U}} u^n d\mu_{\partial}(u), \qquad n = 1, 2, \cdots.$$

Thus $p(\partial^n)$ is just the *n*th moment of μ_{∂} . Now section 12.6 of Cramér [1] shows that, if we take $s_i = \partial^{i+1}$ and $t_j = \partial^j$, then the $(n \times n)$ matrix $||p(s_i\partial t_j)|| = ||p(\partial^{i+j+2})||$ is non-singular for every n whenever the support of μ_{∂} is infinite. Thus $n(\partial) = \infty$ whenever μ_{∂} has infinite support. This proves the lemma.

Suppose that $n(\partial) < \infty$ for all $\partial \varepsilon J$. Then the lemma shows that each μ_{∂} has finite support. Since J is finite, μ itself has finite support. The remark at the end of [2] now shows that $\{Y_n\}$ is a function of a finite stationary Markov chain. We thus have the

THEOREM. A finite-state exchangeable process having all its states of finite rank is a function of a finite stationary Markov chain.

Received 11 March 1969.

REFERENCES

- [1] CRAMÉR, H. (1946). Mathematical Methods of Statistics, Princeton Univ. Press.
- [2] DHARMADHIKARI, S. W. (1964). Exchangeable processes which are functions of stationary Markov chains. Ann. Math. Statist. 35 429-430.
- [3] Fox, M. and Rubin, H. (1968). Functions of processes with Markovian states. Ann. Math. Statist. 39 938-946.
- [4] GILBERT, E. J. (1959). On the identifiability problem for functions of finite Markov chains. Ann. Math. Statist. 30 688-697.
- [5] Halmos, P. R. (1950). Measure Theory. Van Nostrand, New York.
- [6] Heller, A. (1965). On stochastic processes derived from Markov chains. Ann. Math. Statist. 36 1286-1291.