The Annals of Mathematical Statistics
1969, Vol. 40, No. 6, 1980-1984

THE MARKOV INEQUALITY FOR SUMS OF INDEPENDENT
RANDOM VARIABLES'

By S. M. SAMUELS

Purdue University

The purpose of this paper is to prove the following theorem.
TaeoreM. Let S, = X1 + --- + X, be a sum of n independent, non-negative
random variables with means

v= (n, " ,v) = (X1, ---,EX,)
N=wn+ - +uwm;
and, for each N > N, let
¥u(A;v) = sup P (8, 2 N),

where the supremum s taken over all such S,. (We ignore A\ = N since
the supremum is trivially one.) Then,

A2 [max 4, n — DIN=9¢,0;9) = 1 — [Liciza @1 — vi/N),
which 1s attained if and only if, for each <,
P(X,=)\)=v@/)\=l—P(X1=O)

Since these X;’s are identically distributed when the means are equal, we have
an immediate
CoroLLARY. Let {X;:1 < 7 < n} be ii.d., non-negative, with common mean v.
n

If A\ > [max (4n, (n — 1)n)ly, then
PXi+ -+ X,z2N)=1— (1 —»/M"

Equality holds if and only iof X; € {0, \}.

We shall present an outline of the proof as a series of lemmas. The first three
lemmas show that, to prove the theorem, it suffices to prove the proposition
following Lemma 3. The remaining three lemmas constitute a proof of that
proposition. After stating the six lemmas, we sketch their proofs. Finally, there
is a brief discussion of how the theorem may be improved.

Lemma 1. Without loss of generality we may assume that each X ; has at most two
mass poinis—call them a; and bi—satisfying:

(1) 0<a;<w b=\
PX;=0b;) = (vi — a;)/(bi —a;) =1 — P(X; = a:).
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Moreover, if we let
(2) ¥a(N\; v, @) = SUDPs,ag,eera=a) P (Sn = N), A=ag+ - + a,
then ¥, (\; v, a) s attained and
(B) ¥u(A;v) = maxXo<er ¥u(\; ¥, @) = MaXogaw¥u (M — 4; v — a, 0).
Lemma 2. For any H C {1, 2, ---, n}, let
Neg=2unvi, Ne=wn+-+4un 1sk<n), N =0.
Then, for n = 2,
maxogecs [1 — J[Jigize @ — (i — ai)/ (A — 4))]

“4) = maxzcq s, m [1 = [Lar 1 — vi/ (N — N2))]
= maXo<k<a-1[l — ot @ =2/ A= N)) @rnsms--- <o)
=1~ JTicicn @ — wi/2) (if » = 2N).

(It should be remarked that this lemma can be restated in terms of random
variables as follows. Among all S, with b; — a; = N — A for each 7, P (S, = \)
is maximized only if, for each 7, either a; = 0 or b; = »;. Moreover, the maximum
is only attained if the ¢’s for which b; = »; correspond to the smallest means.
Finally if N is sufficiently large, all the a;’s must be zero.)

LemMma 3. To prove the theorem it suffices to prove the following.

ProrosITION.

A2 [max 4,n — DIN=¢,(\;v,0) =1 — JLicisa (1 — »:i/2).

Since the proposition is well-known to be true for n = 1, we shall proceed by
induction.

LemMa 4. Assume that the proposition s true for n — 1 and that
N = [max (4, n — 1)]N. Suppose S, attains ¥, (\; v, 0)—with each a; = 0, of
course. Then, for each t, b; < N — v; or by > %\; hence

Dtinien—g bi < Digiza N — ») = (n — 1)N < .
If, for some i, b; = \, then
5) PBnz ) =1— Jlicica 1 — vi/N).
LEmMMA 5.:Suppose 8. s of the following form, for some H C {1, 2, ---, n}:
a; = 0 for each 7, Dienbi <\, teH = I < b < A\
If N\ > 4N, then
PSnz M) =1~ JLiw (1 = »/(\ — Na)).

< LEmMMA 6. The proposition is true.
Proor or LEmmA 1. The first statement is standard (see, e.g., [2]), as is the
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fact that (2) is attained. To prove the second equality of (3), we suppose
S, = > X;and T, = D Y; are appropriate random variables each attaining
one of the upper bounds. Then, by definition (2),

Ya(s;v,a) =P X:i2N) =P Xi—a) ZA—A4)
SUN—4;v—a,0)=PQY:;2N—A)=P (Yita)=))
S ¥a(dsv, a).
Proor or LEMMA 2. The first equality of (4) is given by Lemma 2.3 of [3],

while the second follows from formula (4.3) of [3]. To prove the last equality
we first note that, sinceA > Nand v < v < -+ < v, we have

HIise (1 = vi/ N = v ))/UTi50 @ = wi/A)]
6) ZNA—20)"A=N+ (n—2w)/A—n)"A=N+ (n —1)n)
[Co + (C1 + X = 2N + O(")]/[Co + Cw1 + O(1)]
>N\ =N)/(N—=n)(\ =N + n).

The first and second expressions are equal when v, = .-+ = y,1 = »,
voa = N — (n — 1)». From the third expression we see that, if A\ < 2N and
vy = .-+ = v, is positive but sufficiently close to zero, then (6) is less than one.
If, on the other hand, A = 2N, then the fourth expression (which is obtained by
setting »o = +++ = »,.3 = 0, v, = N — »1) is an increasing function of », ; hence
(6) is greater than one.

Replacing A by A — N; and repeating the argument we find that, if A — N =
2(N — Nj)—which is implied by N = 2N—then,

Hloen @ = vi/ N = New))/ I Lise @ — vi/ (M = Ni))I > 1.

This not only completes the proof of Lemma 2, but also shows that in the
theorem itself, the quantity “max (4, n — 1)” cannot be replaced by anything
smaller than 2. This point will be elaborated upon below.

Proor or LEMMa 3. If the proposition is true as stated, then since

N=[max 4,7 —1)IN=XN— A4 = [max 4,n — 1)](N — 4),

the same hypothesis implies
Yo\ — A;v —a,0) =1 — ngign 1= i—a)/ (A= A4))

for all a < v. The theorem then follows from (3) and (4).
Proor or LEMMA 4. By hypothesis and by definition (2), we have, for each 2,

1 — (1 — /M) [T @ — wi/N)
(7) S ¥a(\;v,0) =P(S, 2 \)
=PX:=0)P(S, — X; 2 \) + P(Xs = b.))P(S, — X:
SPXi=0)na(X — ;v 0) + P(X; = b)P(S, — Xi = N\ — by),

v

A — by)
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where V* = (Vl, Sty Vily Vigl,y Vn). But
[max (4,7 — 1)IN = [max (4,n — 2)](N — »,),
80, by the induction hypothesis,

8) Yo\ — 2:595,0) = 1 — [T @ — wi/2).

If b; = ), then, using (1), we obtain (5) immediately. If b; < \, we use the
ordinary Markov inequality, which gives

9) Py —XizAN—=0;) = (N —wi)/(\ — by).
Rewriting (7), we have, using (1) and (9),
(10) IIiwi @ —vi/ ) 2 N0 = b — N +v)/ (N — ba)”

We now use the elementary bound
Il @ = i/N) S 1= (N = »)/A+ (N — »)’/2)"
and the notation I'; = (N — »;)/\, ; = bi/\. Substituting into (10) and re-
writing it we obtain
(11) (1 = Ti+ 30"z’ — (1 — T’ + 307 2 0.
By hypothesis, I'; < . It is easy to check that the left side of (11) is negative for

I'; = z; < %, which proves the lemma.
Proor or LEmMA 5. By hypothesis, for each 7 2 H,

P, <\) =P = b)PCpenXr < A — b)) [Lamiui P(X; = 0)
+ P (X: = 0)[I Ligw.ins P(X; = 0)]
AL+ 2jem i P (X = 0;)P (Xken X < X = b)/P (X; = 0)}.
Substituting from (1) and using the Markov inequality, which gives
PO enXy < N —b;) = max[0,1 — Ng/(\ — b;)],
we obtain—assuming b; < A — Ny :
(12) P(S.<N\) = C —CyNg+ (N — b:)D;]/bi(A — b,)
where C; > 0 and
Di = 2 jominilvi/ (0; — v;)l max [0, 1 — Na/ (X — b;)]
[(N — Nz)/ (M2 — Na)lll — 2Nz/A]
2(N — Ng)/\
It is easy to verify that the minimum of the right side of (12) in the interval
N2 £ bi £ M — Ny is attained for b; = N\ — Ny, provided A\ > 4N.
Thus, under the hypothesis,
P(Sn < N\) 2 JLiw (1 — vi/b2) (bi = N — Ng)

= Hz‘ﬂ{ (1 - Vz'/O‘ - NH))

IIA

Il

as was to be proved.
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Proor or LEMMA 6. Lemmas 4 and 5 insure that A > [max 4, n — 1)]N
implies
¥a(\; v, 0) < maxgcps,eem [ — [Law (1 — v/ (N — Nu))L.

The proposition then follows from Lemma, 2.
This completes the proof of the theorem.
ImMprOVING THE THEOREM. Let us define

Co(¥) =inf {C:N 2 C=¢a(\;v) =1 — [Licicn @ — vi/N)}.
The theorem states that

(13) C.(v) < [max (4, n — 1)]N.
In the proof of Lemma 2, we showed that
(14) sup, C,(v)/N = 2 for n = 2.

(Of course C1(v) = v by the Markov inequality.) If, as we have conjectured in
[3], ¥ (N; v) is given by (4) for all A > N, then not only does equality hold in
(14), but also it can be shown that

[Ca®), @) = (Aita ;%) = 1 = JLigiza (1 — »vi/N)}.

The conjecture is known to be true for n < 4 (see [4]); hence in (13) and in the
theorem, the “4’’ can be replaced by “2”’.

What about inf, C,, (v)/N? For n = 2, it is (3 + 5'). We suspect that, by
taking vy, = +++ =y = N/nand A = (1 + a)N in (6), we can show that, if the
conjecture is true, then

inf,C,(»)/N -1 as n— o,
But we have not done so.

Acknowledgment. The proof owes a great deal to J. R. B. Kemperman.
In [4], I showed that C,(v) < <, but the form of my proof did not allow me to
estimate it. Kemperman showed that more mileage could be gotten from the
Markov inequality than I had dared to hope. He used it in [1] to obtain the bound
Cn(v) < 9N*/(min »;)>. Lemma 4, which is the crux of my proof, is merely a
refinement of his basic idea.
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