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A SIMPLE PROOF OF A RESULT OF KESTEN AND STIGUM
ON SUPERCRITICAL MULTITYPE GALTON-WATSON
BRANCHING PROCESS!

By KRISHNA B. ATHREYA
University of Wisconsin

0. Summary. Let {Z,:n = 0} be a supercritical p-type (p = 2) Galton-Watson
branching ‘process with offspring probability generating functions (pgf) A(s)
i=1,2,---,p. Assume (i) m;; = 0h;/0s;|;=; <oo for all i and j where s =
(51,58, and 1=(1, 1, -+, 1), (ii) Any > 03 if M = ((m;;)) then M™ >0 (i.e.
each element of M" is >0) and (iii) the largest real eigenvalue p of M is >1. Let
u>0 and v> 0 be column vectors such that Mv = pv, M =pu’, u-1=1,
u-v = 1 where u’ denotes transpose of u and - refers to inner product. Kesten and
Stigum [6] showed (i) there always exists a nonnegative random variable W such
that Z,p~" converges almost surely (a.s.) to ul¥ and (ii) P(W = 0) < 1 if and only
if E(Z,’logZ,’|Z, = e;) < oo for all i and j where e; = (8,3, 013, ***, 8p), 6;; = 1 if
i=jand0ifi # j, Z,’ is the jth coordinate of Z,.

We give here a simple proof of a modified result which is exactly the same as
above except that convergence a.s. is replaced by convergence in probability. We
do this by showing that without any extra assumption other than the existence of
M the vector (v- Z,)” ' Z, converges in probability to u on the set of non-extinction.

1. Introduction. Let (Q, #, P) be a probability space on which a Markov chain
{Z,:n=0,1,2,---} with stationary transition probabilities and the nonnegative
integer lattice S in p dimension as its state space is defined. For i = (iy, i3, -+, i,)
and j = (ji,/,, ', J,) Where i, and j, are nonnegative integers let the one-step
transition probabilities P(i, j) satisfy

(1) ZjeSP(i9j)Sj = hi(s)

where h(s) = (h,(s), ***, h(8)), s =(s1,85,°°",58,), 085,51, for r=1,2,--+,p,
s/ =s,J" -+ 5,77 and h(s) is a probability generating function (pgf) of a random
variable with values in S.

The chain {Z,:n=0,1,2, -} is called a p-type Galton-Watson branching
process. In the picturesque language of branching processes (see [4]) Z, is the
vector that denotes the number of particles of various types at the nth generation
starting with Z, at the Oth generation. The particles are supposed to breed inde-
pendently of each other and a type i particle produces particles of all types according
to the pgf 4,(s).
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We now assume the following:

(i) M;;=0hyds;|s=y < o0 forall iand jwhere 1 =(1,1,---, 1).
@ (i) Ing>0> if M =((m;)) then M™>0. Thatis all entriesof M"
are strictly positive.

(iii) Notall A(s) arelinearin s.

The property (ii) is called positive regularity while (iii) is referred to as non-
singularity.

In view of Perron-Frobenius theory of positive matrices (see [5]) there exists an
eigenvalue p of M, vectors uand v such that

(a) |4| < p for any eigenvalue 1 of M.
(b) u> 0,v > 0(i.e. all entries are strictly positive). i
(c) Mv = pv, u'M = pu/, ul=1, uv=1.

It can be shown (see [4]) that if p < 1 the process gets extinct a.s. i.e. P(Z, =0
for some n) = 1for any initial distribution of Z,,.

We now assume that the process is supercritical, i.e. p > 1 and this ensures (see
[4]) that P(Z,=0 for some n) <1 for any initial distribution of Z, except
P(Z, = 0) = 1. Since all states of S other than O are transient (see [4]) it follows
thatifp > 1, P(Z, - o as n —» o0) = 1 —P(Z, = 0 for some n) > 0.

This leads one to the problem of determining the growth rate of Z, on the set of
non-extinction. H. Kesten and B. Stigum [6] gave the following answer.

THEOREM 1. Let the probability measure P be nontrivial i.e. let P{Zy, =0} = 0.
Let (*) stand for

(%) EZJlogZ)|Zy=e) <o forall 15i,j<p

where e; = (31, 0;3, ", 5ip)a 5ij =1ifi=jand0ifi # j.
Then the following holds

3 (*) false=>Z,p™" -0 as. while
4) (*) true=>Z,p™" »uW as.

where W is anonnegative numerical random variable and satisfies a.s. E(Wl Zy,=¢)=
vi, P(W=0|Z, = e)) = P{Z, =0 for some n| Zy = e,}.

We shall give a proof of this important result (with a slight weakening namely,
in (4) the convergence is in probability instead of a.s.). Our approach is completely
different from that of Kesten and Stigum. They construct an auxiliary process Y,
which is close to Z, for which (3) and (4) hold and from this deduce the result for
Z,,. The proof gets quite complicated this way.

Our approach, on the other hand, is simpler and more natural for the following
reasons. It is essentially the same as in the one-type case namely the use of Lemma 1
of Section 2 below. Further, although we establish only convergence in probability
in (4) we prove in Theorem 3 the convergence in probability of (v Z,)”!Z, to u on
the set of non-extinction without any extra assumptions. We then use this and the
martingale convergence of (v-Z,)p™" to prove Theorem 1. In earlier works (see
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[2], [4]) one first proves the convergence of Z,p~ " under assumptions strong
enough to ensure that the limit random variable W was not zero and then deduce
the convergence of (v-Z,)”'Z,. It is clear from the above that this is not natural
in the sense that convergence of (v- Z,)”'Z, depends solely on the fact that on the
set of non-extinction Z, — oo and has nothing to do with the validity of * or any

other stronger assumptions.
We now describe in some detail the main steps of our approach. The proofs are
given in the subsequent sections. We start with an easily verified result (see [4]).
THEOREM 2. Let for n =0, W,=v-Z,p~", F, = sub c-algebra of F generated
by ZO’ le Y Zn*
Then {W,, #,, n = 0} is a nonnegative martingale and hence
(5) lim,_, W, = Wexists as.
The next result describes the nature of ratios of Z,’ to v Z, on the set of non-
extinction.

THEOREM 3. Let A = {w:Z (w) >0 as n—oo}and

(6 X, =(vZ,)"'Z,

Then just assuming (2) holds we have for any ¢ > 0

@) lim,_, P(w: weA, |x,—u| > &) =0
where || * || refers to the usual Euclidean distance.

We give a proof of Theorem 3 in Section 3.

Next, let for x =0, ¢(x) = E(e"‘W|ZO = ¢;) where e; is as in (*x) and W is
defined in (5).

By virtue of (1) (see [4]) we note that ¢ = (¢, ¢,, '+, ¢,) is a solution of the
functional equation in ¥

® ¥(x) = h(¥(x/p)).

Let C stand for the set C = {y(x) = (Y{(x), ¥»(x), -, ¥,(x)) where for any i,
y; maps [0, o0) into (0, 1]and lim, o x™ (1 —y«(x)) >0}.
We then have the following result which is proved in Section 2.

THEOREM 4. ¢ € C if and only if (*) holds.
Noting that p~"Z, = W, x, we now see that Theorem 1 with convergence a.s.

replaced by convergence in probability in (4) is immediate.
2. Existence of a solution to (8) in C. We need the following lemmas.

LeMMA 1. Let f(s) be a pgf of a nonnegative integer valued random variable X with
0<m=Ex <o0.Let

9 Ay =m—[1—f(1—s)]s"* for 0<s<1,
=0 S=0.
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Then (i) A(s) is nonnegative, increasing and continuous in [0, 1], and (i) for any
O<er<l,

(10) daioA(ery < oo and lim, o Y woo A(cr") =0
ifand only if
(1) EX|logX| < .
PROOF. See [1].
LEMMA 2. For eachi,ands = (s,, 55, ***, 5,), with0 < 5, < | for all j let
(12) h(l=s, T=s5,0 1 =s5 )= 1= 0 s;m;+A(s),5,,° . 5,).
If s =(sy,5,, " . 5,) and s* = (s,*, s,%, -+, 5,%) are such that s; 2 s;* for all j

then A(s) = A(s*).
Also the function

(13) Zi(S)ES~1Ai(S’S,”'9s)’ 0<S§1s
is nonnegative, increasing and continuous in (0, 1) and lim, o A(s) = 0.

PRroOF. The first part is obvious since 0A4;/ds; =2 0 for s = (s, 55, "+, 5,) such that
0 <s;<1. The second part follows easily from Lemma 1 by noting that for
0<sZd

(14) Ay(s) = [m;=s~ {1 =h(1=9)}]
where
'771':Zf:1’nij Ei(s)zE[Slll+lll+..~+2|p}zo :e,']- D

PROOF OF THE “ONLY IF”’ PART OF THEOREM 4. Let us assume ¢ e C and (*) is
false. We shall reach a contradiction. Define ¢*(x) for x = 0 by

(15) P¥(x) = Zf’:l u; i(x)

and g(x) = x~'(1 —@*(x)) for x > 0.
Using (8) and (12) we get 1—¢*(x) = p[1—p*(x/p)] =Y’ u; A(1—o(x/p))
which yields

(16)  g(x) = g(x/p) {1=p~ ' [1 = *(x/p)] [Tl us A1 = (x/p))]}-
Since ¢ € C there exists constants ¢ > 0, 0 > 0 such that
(17) XS0=>1—0@(x)Zcx for all j.
By Lemma 2 we get 4;(1—¢(x/p)) = A;(cxp~'1). Also for x > 0
L=¢™(x/p) < (x/p) Yr=y ; EW|Zo = )
S (x/p) Yo upv; (Fatou’s lemma)

= (x/p).
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Thusforx <6
P 1—0*x/p)] ' [DP-ui A(l—o(x/p))] Z ¢’ Yoy u; Af(exp™")  ("=¢ph)
and using the trivial inequality 1 —x < e™* for x > 0 we obtain for x < ¢
(18) c < g(x) Sexp[—c Y P u; Aexp™ )] g(x/p).

Iteration of (18) yields for x < ¢
(19) O0<c=g(x) = exP[‘Zf:x uiZ:;l Afcxp™™)].

Since (*) is false there exists an iy and j,, such that

E(Z,°10gZ,% | Zo = €)) = ®
and x log x being increasing and nonnegative for x 2 1 this implies
E(Z,"+ - +Z")0g(Z," +- -+ Z,") | Zy =€) = 0

and thus from (14) and Lemma 1 we conclude that ) =, 4; (cxp~") = co. This with
(19) yields the absurd relation 0 < ¢ £ g(x) <0 and we have reached the needed
contradiction.

COROLLARY 1. If (*) is false then for any P
(20) Z,p7"—>0 a.s.

PRrOOF. Use the preceding result, Theorem 2 and the fact that v; > O for alli. []
We now turn to the

PROOF OF THE “‘IF”’ PART OF THEOREM 4. Letforx = 0
O i(X) = E(e-xw", Z,=¢)
(21 @n*(x) = Y01 ;0 (X)
gn(x) = 1=x7'[1 =, * ()]

Then as before using (1) (see [4]) we get for x > 0, ¢,(x) = h(p,-,(x/p)) which
on using (12) implies

(22) 0 < gu(x) = gn—1(x/P) + 1Py u; x ™' 41— @y 1(x/p))

Whel'e (Pn(x) = (q)n,l(x)9 (pn,Z(x), Tt (pn,p(x))'
Observe that for any n

x_l(l —(pn,i(x)) S E(W, l Zo=e)=v;S0= max, <;<, ;.
Lemma 2 now yields
x~'A(1 -, (x/p)) < vp~ ' A(bxp~")
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and hence from (22) we have
(23) 0 < gu(x) £ g,(X)+ 3Py u;Bp™ ' Y021 Aixp™").
Noticing that x log x is convex for x = 1 and that if x; > 1 for all i
(xy+- - +x,)log (e, +- - +x,) < [Y] x;logx;+(log p) Y7 ; x,]
we see that () implies
E(Z,'++Z )og(Z,' +-+Z)|Zo =€) < 0 for all i.

Now appealing to Lemma 1 and letting n — oo first and then x | 0 we get from
(23) that lim, o {1—x"![1—@*(x)]} = 0.
Butsince 1 —x7'[1—¢*(x)] = Y 2= u;{v;— x " '[1 — @y(x)]} it follows that

(24) lim, o {o;—x"'[1-0(x)]} =0
thus proving that pe C. ]

COROLLARY 2. If (x) holds then for every i
EW|Zy=¢e)=v; and
P(W=0|Zy,=e)=PZ,=0 for some n|Z, = e,).
ProoF. The first part is precisely (24) while the second part follows by letting
x - co in(8) and noting that P((W = 0| Z, = ¢;) < 1 foralli. []

3. Convergence of x, = Z,(v*Z,)” 'on the set of non-extinction. We now prove
Theorem 3. We shall use the following result on positive matrices. (For a proof
see [5].)

LemMA 3. If K = {x = (x;, X5, *,X,),X; > 0, 7. x;0; = 1} then
lim, ., sup, . x [xM™p™™—u| =0

where M, p, v, uand || - || are as defined in Section 1.

ProoF oF THEOREM 3.% Exploiting the basic feature of Galton-Watson branching
processes namely that lines of descent of different particles are stochastically
independent we can write

(25) Zyim=2l1 2120 2

where for each iZ, " for /=1,2,---,Z," are independent copies of Z, when
Z, =e¢; and the sets of random variables {Z,":/=1,2,---,Z,} for i=1,2,

2 This proof is a joint work of Dr. T. G. Kurtz and the author.



SUPERCRITICAL MULTITYPE GALTON-WATSON BRANCHING PROCESS 201
.-+, p, are conditionally (given Z,) are independent. Dividing both sides of (25) on
theset A = {w:Z,(w) >0} byv-Z,,,, we get
Xpim = X, M"+ Y X,(Z,) 7 Y72 (Z5 — e/ M™)]
X [p"+ S0 1 %2, T (v Z, P = p)]
where x, = (v* Z,)”'Z, and x,' is the ith coordinate of x,,. Thus
Xy m—0=[(X,M™"p ™" =)+ A, ] X [1+R,,]"" where
(26) Apm = Y1 X (Z) T YT 07 (L' — e/ M™) —uR,, s
Rypm= Y01 XN(Z) 7 X0 p (v 2, P =0, p™)

Let ¢ > 0 be arbitrary. By Lemma 3 there exists an m such that sup, . HxM o™ — u”
< ¢&. Fix this m. Then by weak law of large numbers both the following hold. For
anyn >0

1)) lim,_ , P{w: w€A4,|R, | >7n} =0
lim,. , P{w: we A, |4, .|| >n} =0.
From (26) we have
(28) %+ m—u]| < [e+ | Anm|] % [1+ R, ] ™" and so

P{w: weA, |xpsm—u]| S (e+mA—n""}
2 1-P{w: weA,|R, .| > n}—P{w: weA4,||A4,,| >n}.
This with (27) implies for any ¢ > 0, > 0,
limsupy.., P{w: we A, |xy—u| > (e+n)(1—n)"'} =0,
which proves the theorem. []

4. Some remarks.
(a) Although it has not been done here we suspect one can strengthen (27) to
assert that for each fixed m almost surely on A the following hold

lim, o [Ryml =0,  Tim,., [A,m] = 0.

This with (28) will imply the almost sure convergence of x,, to u.

(b) Kesten and Stigum [6] had also shown that when () holds there exists for
any nontrivial P (provided not all A,(s) are degenerate), a continuous function
w(x) for x > 0 such that

P(x, £ W< x,) = [2w(x)dx, 0<x, <x,<o00.

~ We have a different and we believe simpler proof of this fact too. For this and a
complete discussion of related aspects of supercritical multitype branching pro-
cesses we refer the reader to a forthcoming book by Peter Ney and the author [3].
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