The Annals of Mathematical Statistics
1970, Vol. 41 No. 1, 78-86

DISCRETE-TIME MARKOVIAN DECISION PROCESSES
WITH INCOMPLETE STATE OBSERVATION

BY YOSHIKAZU SAWARAGI AND TSUNEO YOSHIKAWA

Kyoto University

1. Introduction. Discrete-time Markovian decision processes (MDP’s) with
complete state observation and an infinite planning horizon, have been investigated
by many authors (for example [4], [5], [9], [10]).

MDP’s with incomplete state observation have also been investigated by several
authors [1], [2], and [7]. Dynkin [7] has treated a very general discrete-time prob-
lem which includes MDP’s with and without complete state observation as special
cases. However, the relation between [7] and [5], [10] is not clear. Astrom [2] and
Aoki [1] have treated the case of a finite planning horizon (control interval).

In this paper it is shown that MDP’s with incomplete state observation, count-
able possible states, uncountable available actions and an infinite planning horizon,
can be transformed to MDP’s with complete state observations and uncountable
possible states. The latter MDP’s are those which have been treated in [5] and [10].
The states of the latter MDP’s are the probability distributions on the set of the
states of the former. Similar transformations have been pointed out by several
authors [1]-[3]. However, the above transformation should be formulated
explicitly.

2. Probabilistic definitions and notation. In this section we develop the proba-
bilistic notation to be used throughout the paper. We follow [5] and [10] as closely
as possible.

A Borel set X is a Borel subset of a complete separable metric space. For any
Borel set X, #(X) denotes the o-field of Borel subsets of X. Measurable means
measurable with respect to #(X). A probability on a non-empty Borel set X is a
probability measure defined on #(X), and the set of all probabilities on X is denoted
by P(X).If X and Y are non-empty Borel sets, a conditional probability on Y given X
is a function g(: | -) such that for each x€ X, q(: ] x) is a probability on Y and for each
Ee%(Y),q(E | -} is a Baire function on X. The set of all conditional probabilities on
Y given X is denoted by Q(Y|X). pe P(X) and ge Q(Y|X) are also denoted by
p([x]) and ¢([y] | x) respectively, using the coordinate variables x, y of X, Y, in order
to indicate explicitly the spaces where these probabilities are defined. We denote the
Cartesian product of X and Y by XY. Every probability p e P(XY) has a factoriza-
tion p = p'q, where p’€ P(X) is the marginal distribution of the first coordinate
variable under p, and ge Q(Y | X)is a version of the conditional distribution of the
second coordinate variable given the first. F(X)denotes either the set of all bounded
Baire functions on X or the set of all non-positive, extended real-valued Baire

functions on X. Unless otherwise noted, statements made about elements of F(X)
are valid for either definition.
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For any ue F(XY) and any g€ Q(Y| X), qu denotes the element of F(X) whose
value at x€ X is given by qu(x) = [yu(x,y)dq([y]| x). For any pe P(X), ge Q(Y | X),
pq is the probability on XY such that for all ue F(XY), pq(u) = p(qu). If u, ve F(X),
u = v means u(x) = v(x) for all xe X.

The above notation extends in an obvious way to a finite or infinite sequence of
non-empty Borel sets Xy, X,, - If ¢,€ O(X,+, | X, -+ X,) for n 2 1 and pe P(X,),
then pg, - -q,€ P(X; "+ Xy11), P4192 " € P(X1 X3 ), 9293€ Q(X3X, | X,X;) and
forany ue F(X; * X,4+1), I < n, q, - que F(X; -+ X)), etc. To avoid further com-
plicating the notation we shall use the following convention: for any function u
on Y, we shall use the same symbol u to denote the function v on XY such that
v(x,y) = u(y) for all y. Thus, for example, if g€ Q(YI X), ue F(Y), then que F(X)
and ge Q(Y| X) will also denote the element ¢’ Q(Y | ZX) such that ¢'(-|z,7) =
q(: |9, etc. :

J\p € P(X) is degenerate if for some xe X, p({x}) = 1. A qe Q(Y | X) is degenerate
if g(- | x) is degenerate for each x, and this happens if and only if there is a measurable
function f from X to Y such that ¢({f(x)} | x) = 1 for each x. We will also denote by
f the associated degenerate g, so that for ue F(XY), fu(x) = u(x, f(x)) for all xe X.
Throughout the paper, we shall denote the completion of a proof by [].

3. Definitions and notation on MDP’s with incomplete state observation. In this
section we develop the definitions and notation on a class of MDP’s with incom-
plete state observation in a similar way to [5] and [10]. This class of MDP’s will be
referred to as MDP-II, and MDP’s with complete state observation treated in [5]
and [10] will be referred to as MDP-I.

M DP-II is defined by S, A, M, q°q™, @,,r° and B. S is the set of states, M is the
set of observation signals, and S = M = {1,2,---} e B(R) where R is 1-dimensional
Euclidean space. The set of actions A is a non-empty Borel set. The law of motion q°
is an element of Q(S| SA), the characteristic of the measuring system q™e Q(M | S),
the initial information @€ ® = P(S), the return function r°e F(SA), and the discount
factor B is 0 £ B £ 1. The restriction of S and M to countable sets is for the sake of
simplifying mathematical treatment. For probabilities on S and M, one point sets
{s} and {m} will be denoted by s and m without parentheses { }; for example,
q"({m} | 5) is denoted by g"(m | s) etc.

Assume that the state of the system at time n,n =0, 1,2, -, is 5,€.5, and that we
choose an action a, € 4, then the system moves to a new state s, , selected accord-
ing to qs([s,,+1]|s,,, a,) and we receive a reward r(s,,a,). We cannot observe the
state s, , directly. We can only obtain an observation signal m, ., € M generated
according to q"([m,+ ;]| 8,+,). This is the very point in which MDP-II is different
from MDP-I. At time O we are given a probability ¢, as the initial information on
the initial state s,. Since S = {1,2, -}, @, is specified by {@o(1),9o(2),*}.

The set @ is metrizable by introducing the distance

¢ @', ¢") = Y21 [ —0 ()], ¢,¢ €.

Then the following lemma can easily be proved.
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LEMMA 1. The metric space ® is complete and separable.

Therefore, ® itself is a Borel set.

A policy w is a sequence {®w;, w,," -}, where w,eQ(4 | D)) and D,=
OAMAM - -- M(2n+ 1 factors) is the set of possible data concerning the history of
the system up to the nth stage. Given that we have obtained data d, = (¢, aq, m;,
a,,my,," -, m,)eD,, we choose the nth action a, according to w,([a,] ] d,).

We define a conditional probability ¢” € O(S | @) by

) q"(1| 96) = 00D, =12,
Any policy w, together with ¢° and ¢™ defines for each initial information ¢4 a

conditional distribution on the set SQ = SASMASM - - - of the future of the system,
i.e. it defines

) e, =q" 0o °q" 0, ¢°q" ... € Q(SQ| D).

Any return function r* defines a total discounted return function on SASA - - - given
by

(4) V(so,ao,sl,al,"') = :O=O(ﬁ)"rs(sm an)
and an expected return function on @ given by
) J(@) = e,V =320 (B)'q 00 4°q" w0y - - 0,7°(s,, @)

The value of J(w) at ¢, € @ is denoted by J(w)(@,)-
The problem is to maximize J(w)(¢,) with respect to w given the initial informa-
tion ¢@. In order that the problem be well-defined, we assume that one of the follow-

ing three conditions is satisfied.

(a) The discounted case. r°isboundedand0 < f < 1.

(b) The positive bounded case. r* is non-negative and bounded, f =1, and the
structure of the problem is such that J(w) < R for any m, where R is a positive
number independent of .

(c) The negative case.0 = r*> — co,and = 1.

From now on, in the discounted and positive bounded cases F(X)is to be understood
to denote the set of bounded Baire functions, and in the negative case F(X) is the
set of non-positive, extended real-valued Baire functions. We introduce the discount
factor B = 1 in cases (b) and (c) only to allow a common notation throughout the
paper.

For any peP(®) and ¢ > 0, we say that w* is (p, £)-optimal if p{@.; J(@*)(@o) =
sup, J(@)(@o)—¢e} = 1. The set {¢o; J(@*)(@o) Z sup,J(@)(@o)—¢} is in general
not Borel; however it is shown in [10] that it is in the completion of the Borel sets
with respect to p, hence the statement has meaning. We say that w* is e-optimal if
J(w*) = sup,, J(w)—e, and that w* is optimal if J(w*) = sup,, J(w). We say that w*
‘dominates o if J(w*) = J(w). These definitions of optimality correspond to those of

[10], but we can also define them following [5].
Notice that if the initial state s, is regarded as a “state of nature” (unknown
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parameter) these definitions of optimality are similar to those of e-Bayes and Bayes
decision rules in the statistical decision theory [8]. Hence the optimal policy is one
which, whatever the a priori distribution ¢,€® given, is a Bayes decision rule for
this distribution in the above-cited meaning.

As far as we consider policies on the data space D,, we cannot expect fruitful
results. In the next section, the notion ‘“I-policy” (information policy) will be
introduced and it will be shown that we can restrict our attention to the set of all
I-policies. Intuitively, an I-policy is one which is based upon the past actions and
conditional probabilities of the states of the system given the past data.

4. I-policy. Let the conditional probability of s,, given a datum d,, be denoted by
0w = 4s([54] | d)e Q(S| D,). According to Bayesian formula, g, satisfies, for any

Ay @y My, *
qn+1(i | dpi1) = qn+1(i I Ay @y My g q)

(6) =Y 514" My | g ], )9, | d)

= Y Y1 € (M |GG ] a)gn( | ), T=12,00
In the case in which the denominator of (6) vanishes, g,,, can be assigned arbi-
trarily. If d, is regarded as a parameter, g, corresponds to an element ¢,e® such
that
(7 @.(D) = 4" | 0,) = 4| d,).
From (6) and (7) @, can be determined by ¢,, a,, and m,.; that is, there is a
function g mapping from ®4AM to ®:
(8 i1 = (P Ay My 1 1)
Then

Pus1(D) = X521 4" (M1 | DG |, a)a" (G| 00)

9 = Y Y1 @M |10 |7 40" | @)

=g((pn’an’mn+l)(i)9 i= ],2,"'.

THEOREM 1. The function g is measurable.

PROOF. Since, for each i, the real-valued function g(@,,a,, m,)({) is a Baire
function on ®AM, it follows from (2.1) of [6] that g(¢,, a,, m,+,) is a measurable
function from ®AMto ®. []

By repeated use of g, corresponding to any d,€D, an element b, = (¢¢, o, P1,
a,, ", @,) of B, = ®A®A - ® (2n+ 1 factors) is determined, where B, is the set of
possible informations concerning the history of the system up to the nth stage.

An I-policy m is a sequence {r, 7, " **} where 7, is a conditional probability on 4
given B, ;

(10) 7, = m([a,] | by)-
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An I-policy is called stationary if each =, is a degenerate element of Q(4 | S) and
independent of », i.e., if there is a measurable function f from ® to A4 such that

(11) n({f(@n} | @) =1 forall @,e.
For any =, define o™ = {w,", 0,",-**) by
(12) o"([ao] l ®o) = no([ao] I‘Po)
wnn([an] I dn) = ﬂ,,([a,,] I bnd) n=12--

where b,? is a point in B, which corresponds to d, € D,. Then the policy »" is equiva-
lent to , that is, »™ assigns the same conditional probability on A4 as that assigned
by = for any datum d,. Hence an I-policy can be regarded as a policy, and the set T
of all I-policies as a subset of the set I of all policies. ’

Due to Theorem 1 we can define a conditional probability e, by

(13) ero = q" o q°q"gm, 4°q"gm, - - € Q(SQ, | ©)

where Q, = ASM®PASM® - - -. Similarly to the case of policy w, for any I-policy =,
an expected return function on @, J(r), is given by

(14) J(m) = eryv = Yo (BY'a M0 4°q" g7y * - Myt (5ps ).
Notice that D,, B, = ®5Q,,Q < Q, and that

(15) J() =e,v=e,,v

where

(16) Cop = 4" 00 4°4"g01 §°4"902; - - € Q(SQ, | D).

5. I-policies are enough. A subset W, of W will be called complete if for any
w € W there exists a policy w* € W, which dominates w; J(w*) = J(w), (in statistical
decision theory, W, is called essentially complete [8]).

We are now going to show that IT is complete. For this purpose we will make some
preparations.

The conditional probability on AM®AM® - - - @ (3nfactors), given ® obtained from
e,, (a marginal distribution under e,,,), will be denoted by q,([@,, @, 177,] |<p0), and
that obtained from e,, by ¢,([®,,a,-, M,] [(po); where, for the sake of simplicity of
notation, (ay, M, @4, * *,®,) is denoted by (@,, a,- ,, M,), and @, and M, are empty
by convention. Other conditional probabilities g,( | ) and ¢q,.(- [ -) also have the same
meaning. ‘

LEMMA 2. Foranyr*e F(SA),n = 0,wandn

(a) €uel s(sm (l,,) = €uel (p((pm an)
(b) Crol S(sm an) = €nyl ‘P((Pm an)

where
(1 r(@,a) = q*r(s,a) e F(DA).
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ProoF. We shall prove (a); the proof of (b) is similar.
Caol (Sns @n) = 40([S2 P> @] | 907 (51> @)
= 40([@1> 3] | 20) 4u([54] | 90, P> )1 (51 @)
= 90([0n 3] | 90)a"([5,] | 9)r* (515 @)
= 4o([@n @] | ) *(¢1s @)
=€, (¢pa,). []

THEOREM 2. For any fixed sequence of actions {ay,a,," "}, the sequence of con-
ditional probabilities considered in the space ®, {@q, ¢, "}, is a Markov process. Its
transition probability at the nth stage depends only upon a, among {ay, a,,* "}, and is

given by 4°([@n+ 11| @r @) € Q(@ | DA): :
(18) G°(T | s @) = Ykerm ge1 2iz1 "k [ DG | i a)q" (i | @)
Jfor any I" € B(D), where
(19) [, = To(@ns 05 T) = {My 115 9(@n Ay My 4 1) €T}
PROOF.
4(@n+1 €T | @0y By @) = @My 11 €Ty | @0, B )
= Zs..+1es Zs,,es q(m, . €l | Spt 13 Sus Pos Pus Gy)
X 4(Sas 1 | S Pos Pus 3)4(S4 | P05 B> )
=¢°(C|¢p a,). [
REMARK. This theorem is essentially the same as Lemma 1 of [2].

LemMA 3. For any policy w there exists an I-policy © which satisfies, for any n = 0
andue F(®A)

(20) €no U(Pny An) = € U(Py, Gy).
Proor. For any given w, define n®° = {n,*,n,“**",} by
7Iom([ao] I ®o) = wo([ae] l ®o)s
(21 nkm([ak] l b, = ”kw([ak] I ©os Pis Ay — 1)
= [m-..mo([a]| 0o, Bk 1, T) dq ([ ] | Q0> P> Ax— 1), k=1,2,---.

We shall prove that this 7® satisfies (20). From now on in this proof, 7 is denoted
by = for simplicity of notation. Since, by construction,

qx([a,] |§00’ P Gn—1) = qu[a] l Q1> Pps On—1)
and by Theorem 2,
0x([@a] | 05 Pu1 Gn-1) = (@) | P05 Pu-15 By—1)
= ¢°([¢,] | Pn1 Qy—1)
we 0btain ¢,([¢ys @] | 90) = qu([Pns @] | @0)-
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Therefore
€re u((/)n’ an) = qn([(pm an] l (PO)u((pn’ an)
= qw([‘/’m an] | (Po)"((Pm an) = em(p u((pn’ an)' D

THEOREM 3. The set of all I-policies, 11, is complete.

ProOF. From Lemmas 2 and 3, for any policy we W there exists an I-policy
rell « W which satisfies

(22) J(TC) = Z;:o= 0 (ﬂ)" emp rs(sm an) = z;:o=0 (ﬁ)n emp r(p(q)m an)
= 2n=0(B) 0wy (P, 1) = ) 220 (B)" 0y (50 @) = J(@).  []
Hereafter we can restrict our attention to only I-policies. )

6. Transformation of MDP-II to MDP-I. In this section we show that MDP-II
can be transformed to MDP-1.

Noting Theorem 2, we consider the following Markovian decision process,
MDP-1’, which is one of MDP-I.

MDP-I'is defined by @, A4, g%, r® and B. ® is now the set of states of the system.
q? is given by (18) and r® by (17). At the nth stage we observe the current state
@,€® completely, then choose an action a,e A. Then the system moves to a new
state ¢,,,, selected according to q"’([(p,,+,]|(p,,,a,,), and we receive a reward
r®(@,, a,). The process is repeated from the new state ¢, ,, and we wish to maxi-
mize the total discounted expected reward with the discount factor f.

As defined in [5] and [10], a policy for MDP-I’ is a sequence of conditional
probabilities on A given B,, n==1,2,---, where B, is the set of possible histories
(90, a0,91,a,, "0, of the system at the nth stage; this policy is the same as an
I-policy for MDP-II. Hence a policy for MDP-I’ will also be denoted by n. Then
the total discounted expected return function on ® for MDP-I' is given by

(23) I(m) = ) =0 (B)" ex r*(py» ay)

where

(24) e, =1n,q°1, 4% - €Q(ADAD - - - | D).
We have

THEOREM 4. M DP-II and M DP-I' are equivalent in the sense that, for any
nell, J(n) = I(n).

Proor. For any n > 0 and =, the conditional probability ¢,([3,, d,-,]| @o) can
be rewritten as

(25) qn([(ﬁm 51:] I (pO) = ‘Ix([ao] l q)O)qn([(Pl] l ®o> aO) e qn([an] l ®o, (pm an— 1)

— ¢ ...
=TNoqd 7, q Ty
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Hence
Cnp 7" (5m @) = 4,([$rs 3,1 | 90)* (@ @)
(26) =7n0q°7, 4% 7, 7@, )
= e, 1% a,).
Therefore
(27 J(@) = ) =0 (B)" €y °(5p, ay)

= 2n=0(B) ez %@y a,) = I(m). []

Theorem 4 shows that MDP-II can be transformed to MDP-I. Through this
transformation, the discounted case, the positive bounded case and the negative
case of MDP-II correspond to those of MDP-I; if * is bounded r® = ¢"r*is also
bounded. Therefore, the results obtained for MDP-I can readily be translated to
the results for MDP-II by only replacing the word “policy”” by “I-policy”. For
instance, we have

THEOREM 5. (The discounted case of MDP-II).

(a) Forany pe P(®), ¢ > 0, there exists a (p, ¢)-optimal stationary I-policy.
(b) If A is finite, then there exists an optimal stationary I-policy.
(c) If there exists an optimal policy, then there exists an optimal stationary I-policy.

Proor. Taking Theorem 4 into account, (a), (b) and (c) correspond to Theorems
8.1,9.1 (b)and 8.3 of [10]. (]

With a little modification, all contents of this paper except for Theorem 5 are
valid also for the case where ¢™, ¢° and/or r* vary with the stage n, including the case
of finite planning horizon (r*(s,, a,) = 0 for n > n, where n is the number of the final
stage).

For MDP’s with incomplete state observation where the sets of states and
observation signals are finite and where the planning horizon is finite, Astrém [2]
has obtained a theorem similar to Theorem 4. However, his method of proof does
not work in the case of MDP-II.

When the total expected return J(n)(¢,) in MDP-II is infinite or undefined, the
problem formulated in section 3 may not be well defined. Even in such cases,
however, Theorem 4 holds in the sense that J(n)(¢,) is infinite or undefined if and
only if I(n)(p,) is infinite or undefined respectively. This is obvious from the proof
of Theorem 4.
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