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ON THE ABSOLUTE CONTINUITY OF MEASURES!

By TYRONE E. DUNCAN
The University of Michigan

1. Introduction. The problem of determining absolute continuity of measures on
function spaces has been investigated for some time. Much effort has been devoted
to the problem of obtaining criteria for the absolute continuity of Gaussian
measures for example [13, 16, 19, 21, 23]. A well-known dichotomy for absolute
continuity of Gaussian measures exists [5, 7], and some useful complete results exist
for certain Gaussian measures. More recently there has been interest in obtaining
conditions for absolute continuity of measures which correspond to solutions of
stochastic differential equations.

We shall consider the problem of absolute continuity for processes with a con-
tinuity property on certain sub-o-fields of the processes and indicate some simple
structure on the Radon-Nikodym derivative by using the Doob-Meyer results for
decomposition of supermartingales [15].

Our results will simplify and clarify some results for absolute continuity for
measures corresponding to solutions of stochastic differential equations and for
Gaussian measures equivalent to Wiengs measure. For Gaussian measures equiva-
lent to Wiener measure we shall relate the Gaussian process to Brownian motion
via a stochastic differential equation. In this manner we obtain a “‘nice” trans-
formation of Brownian motion to the other Gaussian process. The Radon-Nikodym
derivative is also conveniently expressed.

2. Some general comments. When determining absolute continuity of measures
we typically start from either discrete time or from some continuous time results
where we know we have absolute continuity, and then try to take an appropriate
limit. We have then either a martingale sequence or a martingale net, and in both
cases we have necessary and sufficient conditions for absolute continuity in terms
of uniform integrability (Doob [2], Helms [8]); in other words, conditions that the
limit be a martingale. However, in the case of a martingale net we cannot im-
mediately assert pointwise convergence (Dieudonné [1], Helms [8]). The importance
of uniform integrability is also seen in the supermartingale work of Meyer [15].

Before discussing some results on absolute continuity, a few preliminaries will be
useful. We first give a characterization of uniform integrability due to LaVallee
Poussin (cf. Meyer [15]).

THEOREM 1. Let H be a subset of L' (Q, #, P). The following properties are
equivalent.
(1) H is uniformly integrable.
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(2) There exists a function G(t) defined on R* = [0, c0) which is positive and in-
creasing such that

(1) lim,,  , G(®)/t = + 0 and
@ sup; e E[Ge|f[] < co.

For (1) = (2) we can also assert that G is convex.

We shall usually obtain a family of sub-o-fields (#,) of the o-field # of the proba-
bility space (Q, &, P) from the process X = (X,) by letting #,=%(X,,u<1),
which is the sub-o-field generated by the process X to time z. We shall assume that

all sub-o-fields are augmented, i.e., contain all the null sets of the measure P. We
call the family of sub-o-fields (&) right continuous if #, = &, where

(3) Foiy = ns>t'g-s'

Continuity of the sub-o-fields is defined in the obvious manner.

We shall also state a result for the decomposition of right-continuous super-
martingales due to Meyer [15]. The definitions of the various terms in the theorem
can be found in Meyer’s book [15].

THEOREM 2. A right-continuous supermartingale (X,) has a Doob decomposition
) X, =M,—4,
where (M,) denotes a right-continuous martingale and (A,) an increasing process, if

and only if (X,) belongs to class (DL). There then exists a decomposition (4) for which
the process (A,) is natural, and this decomposition is unique.

3. A characterization of the Radon-Nikodym derivative. A simple characterization
will now be given for the Radon-Nikodym derivative du, /du, where o and y,, are
defined on Q with o-field #. We shall also establish certain integrability properties
of the two terms in the Radon-Nikodym derivative along with a relation between
the two terms.

THEOREM 3. Let u, < u, and (Q, F) be the measurable space. Let (¥ ,) t€ [0, 1] be
an increasing family of sub-o-fields of & which are continuous and augmented w.r.t.
to and F = F | and F, is the trivial o-field. Assume that the only martingales
on (Q, F, u,) are continuous. The Radon-Nikodym derivative, M = dy,|du,, has the
following characterization on the set where M is strictly positive
(5) M =exp[X—A4],

where (X,) and (A,) are a martingale with continuous sample paths and a natural
increasing process respectively, and te [0, 1].
M is strictly positive a.s. only if uo(4 < ) = 1.

PrOOF. Define
A6) M,=E[M|#].
By the properties of the Radon-Nikodym derivative and conditional expectation
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it is clear that (M,, #,, 1,) is a martingale. By assumption the martingale admits
a continuous modification.
We shall define a sequence of stopping times 7, as follows:

T,=inf{t:M,<1/n or M,>n}
=1 if the above setis empty.

Recall £ €[0,1]. Note 0 < M < o a.s. u, by properties of the Radon-Nikodym
derivative. (M, 1,, &, .r1,» Ho) is a martingale by the Optional Sampling Theorem
(Meyer [15], page 98). Since M, , 1, is bounded above and away from zero for each
n,In M, . 1, is bounded for each n. Let

@) X™=nM,,r,

X,™ is a supermartingale by Jensen’s inequality and in class (D). Using Meyer’s
results we have

(8) Xt(") = Yt(n) - At(") .
Since In M, , ; is a continuous function of ¢, ¥, and 4,™ are continuous.
Nowletm >n

Xz(") = Xz(m)

for t < T,. By the uniqueness of the decomposition we have for ¢t < T,
YO = ym, A = A,

LetT" = {0 < M < o}. The following limits are well defined for ¢€ [0, 1].

® Y, 1 = lim, Y"1r,

(10) A1y =1lim, A™1;.

If M > 0 a.s. then py(I') = 1 and the characterization given above is valid a.s. By
the above decomposition we then have (4, < 00) = 1. If we have the increasing
process A, defined a.s. then py (4, < 00) = 1 implies M > Oa.s. []

K. Itd and S. Watanabe [10] obtain a decomposition of a positive supermartingale.
The techniques used above are similar to their approach, and developed from
discussions with S. Watanabe for characterizing Radon-Nikodym derivatives for
solutions of stochastic differential equations (cf. Duncan [3]).

In the case where M is positive (or more generally on this set) we can relate the
continuous martingale X and the increasing process 4 by the following result.

PROPOSITION 1. Let M be given by (5) and assume M > 0 a.s. Then
(11) A, =1 [odX ),

where (X is the unique increasing process such that the process X,> — <X, is locally
a martingale.
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Proor. Using the formula for stochastic differentials [11], extended by Kunita
and S. Watanabe [14] to continuous locally square integrable martingales, we
have that
(12) M, =exp[X,—A] = 1+[; M,dX,—[§ M;dA,+4 [ M,d{X),
Mt_ 1 _I:) Msts = —j:) MsdAs+%I:) Msd<X>s
Since the left-hand side of the equation is a martingale and the right-hand side is of

bounded variation by Meyer’s uniqueness result (cf. Kunita-Watanabe [14]) we have
that

13) M, =1+, M dX, and
(14) [MdA, =L [Md{X);; - s0
(15) A, =KX, a.s.

since M > 0 a.s. and a continuous function of z. []

4. Comments on absolute continuity for some non-Gaussian measures. We shall
now review two usual conditions for absolute continuity and see how they arise
from uniform integrability. The divergence, J, is defined as

(16) J=_"(X0—X1)108(X0/X1)dﬂ

where u is a measure that is absolutely continuous with respect to both y, and g,
(e.g., 4 = po+u,) and X; = du;/du, i = 0, 1. The entropy of u, with respect to y, is

(17 H,, (o) = | M1n M dps,

where M = du,/dy,. For the entropy we usually have some discrete time approxima-
tions so that the density is well defined, and then we take a limit or a supremum.
Note that finiteness of the divergence J is equivalent to finiteness of both the en-
tropies H, (1) and H, (u,). Using our characterization of uniform integrability in
Theorem 1 and letting

(18) G(t)=tInt

we see immediately why finiteness of the divergence is a sufficient condition for
mutual absolute continuity, and why finiteness of the entropies implies the ‘corre-
sponding absolute continuities.

We shall show how some known results on absolute continuity can be cast in
terms of our results to simplify interpretations. Girsanov [6] considers the problem
of transforming solutions of stochastic differential equations by obtaining an
appropriate absolute continuity relation. He assumes in the general stochastic
differential equation case that the function must be bounded. Under this condition
he shows that higher moments (than one) are finite, which is a sufficient condition
for uniform integrability. Using uniform integrability we can easily state necessary
and sufficient conditions for his transformation to work. By specializing the
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problem Girsanov obtains more general results, and these too seem more trans-
parent from a uniform integrability interpretation.

Shepp [22] considers the problem of absolute continuity for discrete It processes,
i.e., stochastic difference equations

19) Yn=0n- 1V V2" s Vu1) 1

where {n,} is a sequence of independent standard normal random variables. He
notes that a known condition for absolute continuity is that the limit of the likeli-
hood ratios be strictly positive a.s. For this problem it is not difficult to show that
the increasing process is 4),¢2_;. While the o-fields are not continuous in this
case we can still apply the decomposition result of Theorem 3, which in this case is
due to Doob [2]. The increasing process is defined a.s. and we obtain Shepp’s result
that finiteness of the increasing process is necessary and sufficient for absolute
continuity.

5. Comments on absolute continuity for some Gaussian measures. We shall now
consider the problem of absolute continuity for Gaussian measures and show how
our representation for the Radon-Nikodym derivative can be used in these prob-
lems. To simplify discussion of the absolute continuity problem we shall consider a
Wiener measure as one of the Gaussian measures, though this restriction is not
necessary. Necessary and sufficient conditions for equivalence of a Gaussian
measure to a Wiener measure have been obtained by Shepp [21] in terms of the
mean and the covariance for the Gaussian process.

We shall provide an interpretation of Shepp’s theorem using our characterization
for the Radon-Nikodym derivative and obtain a stochastic differential equation
which relates the Gaussian process to Brownian motion. This will also provide
another characterization for a Gaussian measure to be equivalent to a Wiener
measure. First though, we give a specific characterization of the Radon-Nikodym
derivative. This will specialize the result in Theorem 3.

LEMMA 1. Let uy ~ ug where py is the measure for Brownian motion and iy is the
measure for the (Gaussian) process Y. Then

(20) dAuY/dl‘tB = CXp [I ¢s st - %j ¢s2 dS]
where [plids< oo as. pp

ProofF. From Theorem 3 we know that the martingale term in the Radon-
Nikodym derivative is locally a square integrable martingale. Since this martingale
is defined on the Brownian motion probability space, it can be represented by a
stochastic integral. This fact is known (Wentzel [24], Kunita-Watanabe [14],
Duncan [3]) and can be proved by using K. Itd’s representation of L? functionals
of Brownian motion in terms of multiple Wiener integrals [12), and then summing
the integrals. []

Wentzel considers the homogeneous Markov case and obtains a similar repre-
sentation for multiplicative functionals with expectation one.
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If the process Y in Lemma 1 is a Gaussian process we know that the martingale
is square integrable from the finiteness of the divergence.

We shall now proceed to characterize Gaussian measures equivalent to Wiener
measures in terms of stochastic differential equations.

THEOREM 4. Let py and pg be measures for the zero mean Gaussian process Y and
for the Brownian motion process B respectively, defined for te[0,1). py ~ ug if and
only if a process Y with measure iy can be obtained as the solution of

(2)) dY, = ¢,dt+dB,
wherete[0,1], Y, =0
(22) ¢, = [oalt,s)dY, and
(23) [3[502(t, ) dtds < 0.

Proor. (=) Let py ~ pg. Then by Lemma 1 we know
(24) dpy/dpg = exp [I b, st_%j ¢,* ds] and
(25) [plds< oo  as. p

We can then approximate the integrals in the Radon-Nikodym derivative by a
sequence of uniformly stepwise processes {¢,™}.

A process {C,} is a uniformly stepwise process for ¢€ [0, 1] if there exists a sub-
division of the interval [0,1),0 = ¢, < ¢, <?, <-'- <t,= 1,such that

C,((O)=C,i(a)), ti§t<ti+l i=0,1,"',n—1.

We shall simplify our computations by approximating the process ¢ by a
sequence of uniformly stepwise processes. Using some straightforward bounds
on the integrals we can show that the sequence of Radon-Nikodym derivatives
will converge both pointwise and in L'(dug) and thus the sequence of measures will
converge to Uy.

When ¢ is a uniformly stepwise process the processes B and Y can be related by
the stochastic differential equation

(26) dy, = $,dt+dB..
Let {to,?;,"*,,} be the partition corresponding to the stepwise process ¢, i.e.,
(27) ¢,=Cn, ti—‘<=t<ti+l i=0,"°,n—1.

Each C,, can be expressed in terms of multiple Wiener integrals [12], because each
C,, expressed in the Radon-Nikodym derivative is a functional of the past Brownian
motion. We note that since Y and B are Gaussian, C,, will be a Gaussian random
variable for each i with zero mean (use stochastic differential equation description).
By summing the multiple Wiener integrals that represent C,, we obtain a stochastic
" integral. Since each C,, is Gaussian we know that the increasing process associated
with the stochastic integral is not random (e.g., use a random measure argument)
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and therefore in the expahsion we have only the Wiener integral term, since we have
assumed that Y has zero mean. Therefore

28) Cy, = J§a,(s)dB,.

By the Gaussian property of Y and B and the fact that puy ~ pp we have that

29 E,, [¢2dt < co.

Using the representation (27) for the function ¢ (29) gives

(30) JE X028 [ a2(9) 1y o0, (t) ds dt < o0

which in the limit of the sequence of uniformly stepwise processes {¢,™} gives a
function a(t, s) with

@31 {8 Jod?(t,s)dtds < oo.

Therefore, for the general case, our stochastic differential equation is
32) dY, = ¢,dt+dB,

where

33) ¢, = fot,s)dY,.

Since the function « is Volterra and in L%(dt ds), it is not difficult to verify that the
stochastic differential equation has one and only one solution.

(<) By the integrability condition on o we know that the process Y is a Gaussian
process which is a functional of the “past” Brownian motion. Using the dichotomy
result for Gaussian measures [5, 7] and the fact that the increasing process is finite
a.s. ug the desired absolute continuity is established. Alternatively we could show
the finiteness of the appropriate entropy or bound « and show that the sequence is
uniformly integrable to establish absolute continuity. []

We note that from our representation for the process Y given by (21) we can
obtain Shepp’s two conditions on the covariance of the process Y, i.e., (i) the in-
tegrability condition is satisfied since o€ L%(dt ds) and (ii) the spectrum condition is
verified since o is a Volterra kernel [18]. From our result we have the linear trans-
formation of the Brownian motion in a form in which the process Y is a functional
only of the “past” Brownian motion. Shepp was unable to obtain this representa-
tion. Furthermore, the representation we have obtained is unique, whereas without
the restriction: that the process Y be a functional only of the “past” Brownian
motion, many representations for Y exist, as Shepp has noted.

In Theorem 4 we have assumed that the process Y has zero mean. We can also
prove the result due to Segal [20] that the measure of a Gaussian process which is a
translate of Brownian motion is equivalent to Wiener measure if and only if the
mean value function has a derivative (with respect to Lebesgue measure) which is in
L?(dr). In this case we get only the first term in the It6 expansion [12], which is a
constant, and we can proceed as we did in the proof of Theorem 4 to establish that
it is necessary and sufficient as Segal has shown. Rao and Varadarajan [17] have
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shown that if a measure of a nonzero mean Gaussian process is equivalent to
another Gaussian measure then the measure of the former Gaussian process with
zero mean is also equivalent to the latter Gaussian measure. We can establish this
result for a Gaussian measure equivalent to Wiener measure because in the proof of
Theorem 4 we would have two terms from It6’s expansion (i) the mean value (ii) the
random drift, and obviously each term would have to be a square integrable
functional of Brownian motion. It is worth noting that our expression for the
Radon-Nikodym derivative (24) is not complicated when a term in the covariance is
not of trace class.

REMARK. Since submission of this paper the result in Theorem 4 has appeared in
a paper by M. Hitsuda [9].
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