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GAUSS-MARKOVY ESTIMATION FOR MULTIVARIATE
LINEAR MODELS: A COORDINATE FREE APPROACH'

By MoRrris L. EATON
University of Chicago

0. Introduction and summary. The coordinate free (geometric) approach to
univariate linear models has added both insight and understanding to the problems
of Gauss Markov (GM) estimation and hypothesis testing. One of the initial
papers emphasizing the geometric aspects of univariate linear models is Kruskal’s
(1961). The coordinate free approach is used in this paper to treat GM estimation
in a multivariate analysis context. In contrast to the univariate situation, a central
question for multivariate linear models is the existence of GM estimates. Of
course, it is the more complicated covariance structure in the multivariate case that
creates the concern over the existence of GM estimates. As the emphasis is on GM
estimation, first and second moment assumptions (as opposed to distributional
assumptions) play the key role.

Classical results for the univariate linear model are outlined in Section 1. In
addition, a recent theorem due to Kruskal (1968) concerning the equality of GM
and Least Squares (LS) estimates is discussed. A minor modification of Kruskal’s
result gives a very useful, necessary and sufficient condition for the existence of GM
estimators for arbitrary covariance structures and a fixed regression manifold.

In Section 2, the outer product of two vectors and the Kronecker product of
linear transformations is discussed and applied to describe the covariance structure
of a random matrix. This application includes the case of a random sample from a
multivariate population with covariance matrix £ > 0 (“X > 0” means that X is
positive definite).

The question of GM estimation in the standard multivariate linear model is
taken up in Section 3. This model is described as follows: a random matrix Y:n x p,
whose rows are uncorrelated and each row has a covariance matrix £ > 0, is
observed. The mean matrix of Y, p, is assumed to have the torm yu = ZB where
Z:n x qis known and of rank ¢, and B: g x p is a matrix of regression coefficients.
For this model, GM estimators for u and B exist and are well known (see Anderson
(1958) chapter 8). The main result in Section 3 establishes a converse to this classical
result. Explicitly, let ¥ have the covariance structure as above and assume Q is a
fixed regression manifold. It is shown that if a GM estimator for ueQ exists, then
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each element ueQ can be written as y = ZB where Z:n x q is fixed and B:g x p
ranges over all ¢ x p real matrices.

The results in Section 4 and Section 5 are similar to the main result of Section 3.
A complete description of all regression manifolds for which GM estimators exist
is given for two different kinds of covariance assumptions concerning X (X as
above). In Section 4, it is assumed that £ has a block diagonal form with two
blocks. Section 5 is concerned with the case when X has the so-called intra-class

correlation form.

1. The univariate linear model. Let (7, (-,) be a real n-dimensional inner pro-
duct space and let Y be a random vector taking values in V. Throughout, assume
that Y has a mean vector u = E(Y) and a covariance operator £ = Cov(Y) (see
Kruskal (1961) for definitions and properties of u and X).,

The univariate linear model may be described as follows. Assume that u lies in a

known linear subspace, Q < V¥ and

(1.1) Cov(Y) = 0°%,

where £, > 0 is known and ¢ > 0 is known or unknown. When (1.1) holds, the
GM estimator of u is fi = Py Y where Py, is the orthogonal projection onto Q
relative to the inner product (-, - )z, defined by

(1'2) (x9 y)Zo = (x’ 2O_Iy)'

Also, the LS estimate of u is defined to be p* = P, Y where [ is the identity
transformation.

THEOREM 1.1. (Kruskal (1968)). The two estimators fi and u* are equal if and only
if iff) Q is invariant under X, .

As will be seen later, the covariance structure for many multivariate linear
models does not satisfy (1.1). In view of this, assume

(1.3) Cov(Y)e®

where O is a given set of positive definite operators in V. Howe-zr, there is now the
possibility that a GM estimator peQ does not exist. In order to define a GM
estimator precisely in the present situation, let Hom (V) be the set of all linear
transformations on ¥ to ¥ and let

(1.4) o ={A|AeHom(V),Ax = x forall xeQ}.
Note that BY is an unbiased estimate for y if and only if Be &7.
DEFINITION 1.1. The estimator 4, Y is GM for ueQiff 4, € & and
Varg {(x,4,Y)} £ Varg {(x,AY)} forall Aeo/,Ze®,xeV.

Var; denotes variance when Cov(Y) =X. When (1.1) holds, the classical Gauss—
Markov Theorem asserts that a GM estimator exists, is unique, and 4,Y = Py ¥
is the GM estimator. In view of Theorem 1.1, we have
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THEOREM 1.2. A GM estimator exists iff 7' Q =X Q for all ¥, , %, € 0.

ProoF. Theorem 1.1 shows that Py = P;iff£,Q = Q and a trivial modification
of Kruskal’s (1968) argument shows that Py, = Py iff 7' Q =27 ' Q. Now, fix I,
and X, e®. Applying the uniqueness assertion of the Gauss-Markov Theorem, a
GM estimator exists iff Py, = Py, . This completes the proof.

Note that if /e ©, then a GM estimator exists iff

(1.5) Q=0 forall Xe®.

A central question in the remainder of this paper is: given a particular set O,
describe all the manifolds Q for which a GM estimator exists.

2. Covariance structure in the multivariate linear model. In a discussion of multi-
variate linear models, the notions of the outer product of vectors and the Kronecker
product of linear transformations arise naturally. Let (V;, (-, *);) be p;-dimensional
real inner product spaces for i =1,2 and let &, ,, be the real vector space of
linear transformations on V; to V,. If ye ¥, and xe ¥V, the outer product of y
and x, y® xe &, ,, is defined by

2.1) (Y ®x)z=(x,z);y for zeV,.
Some basic facts are (see Halmos (1958) page 40):

2.2) y® x is linear in both x and y
(23) Ifde¥
(24) If {xy, ", x,, ) ({¥1," "> ¥p,}) is a basis for V; (V3, respectively),

o1,p. Nas rank one, then 4 = y ® x for some xeV; and yeV,

then {y, ® x;|i=1,""*,py,j = 1,7+, p,} is a basis for &, ..

Given the two inner products (*,-), and (-,-),, there is a natural inner product
on %, ,,. Let {v;, -, v,} ({uy, ", u,}) be an orthonormal (ON) basis for
V,(V,, respectively). For A, Be %, ,,, writt A=) a;u;®v; and B=
Y¥ibiju;®v,,and define (-, >on L, ,, x &, ,. by

(2.5) A,BY =YY ;;a;b;;.

It is not hard to verify that {-,-) is the unique inner product on %, , which
satisfies the basic relationship

(2.6) V1 ®x1, Y, ® %) = (X1, %2)1(V15 ¥2)2

forall y,, y,eV,and x,, x,€V;.

Note that if {xy, '+, x,,} ({¥1, ", ¥,,}) is an ON basis for V; (V,, respec-
tively), then {y; ® x;|i=1,""*,p,,j=1,"*",p,} is an ON basis for &, ,, with
respect to {+,*>. Also, for 4, Be &, .,

2.7) (A,B) =tr[A][B]

where [4] ([B]) is the matrix of 4 (B, respectively) with respect to the two ON
bases. Here, tr denotes trace and [B] is the transpose of [B].
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For Pe &%, ,,, Q€ %, ,, » the Kronecker product of P and Q, P® Q, is that
linear transformation on &, ,, to &, . whose value at 4e &, ,, is PAQ' where
Q' is the adjoint of Q relative to (-,-), . Clearly

P1®Q1°P2®Q2:(P1P2)®(Q1Q2)

where o denotes composition. Also, the adjoint of P ® Q with respect to (-, > is
P’ ® Q'. For further properties of P ® Q the reader may consult Bellman ((1960)
page 227) or Halmos ((1958) page 90).

ExAMPLE 2.1. Let Y:n x p be a random matrix whose rows, y;, are uncorrelated
and each row has a common covariance matrix . Take V', = R? and V, = R" with
the standard inner products. Using the standard ON bases, the inner product on
&L, nis{A, B) =trAB’. As is well known, Cov(Y) =1,®Z, where I, is then x n
identity matrix. To show this directly, let 4, Be &, , have rows a; and b;. Then

28)  Cov{<A, Y),(B,Y>} =, Cov{(ai vy (bs. y)i)
=Y.(a;,Zb), = tr AL B’ = (A,(I, ® )B.

This concludes Example 2.1. ,
Suppose Ye &£, ,, is such that Cov(Y) = I,, ® Z. Then

(2.9) Cov((F'®1,,)Y) = Cov(Y)

for all orthogonal I'e &, ,,. Note that (2.9) characterizes Cov(Y)—that is, if
(2.9) holds for all orthogonal I'e &, ., then there exists a positive semi-definite
Ze Z,p, p such that Cov(Y) =1, ® X. The proof of this assertion is not hard and

is omitted.

3. GM estimation in the standard multivariate linear model. In order to motivate
the main result of this section, we begin with a discussion of GM estimation in the
standard multivariate linear model.

ExaMPLE 3.1. As in Example 2.1, let Y:n x p be a random matrix with
Cov(Y)=1,® X where X ranges over V,ﬁ——the set of all p x p positive definite
matrices. Each element of the regression manifold Q is assumed to have the form
U =ZBwhere Z:n x qis a fixed known matrix of rank ¢ and B: ¢ x p is the matrix
of unknown regression parameters. The matrix B is free to vary over all ¢ x p real
matrices. Since

(3.1) (I, ® £)(ZB) = Z(BX)eQ

for each B, we see that ([, @ Z)Q =Q for all e &,. Thus, from Theorem
1.2, a GM estimator for pu exists and from Section 1, A is the orthogonal
projection (relative to {-,->) of Y onto Q. However, it is straightforward to
check that Z(Z'Z)™'Z’'®1, is the orthogonal projection onto Q. Hence 2 =
(Z(2'2)"'2'®1)Y=2Z(Z2'Z)"'Z'Y. Since B=(Z'Z) 'Z'uy, the GM esti-
mator for Bis B=(Z'Z2)"'Z'A=(2'2)"'Z2'Y = [(Z2'2)"'Z’ ® 1,]Y. Thus, Cov
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(B)=Cov[((2'2)'Z' @ I)Y] = [(Z2)"'Z' ® LI, ® D(Z'Z)'Z' ® L] =
(Z'Z)"' @ Z. Of course, all of the above results are well known (see Anderson
(1958) chapter 8).

Now, consider the following problem. Suppose Ye £, , has Cov(Y) =1, ® X
where X varies over &, . Let Q be a fixed regression manifold and assume a GM
estimator for u exists. The problem is to characterize Q—that is, for what Q’s do
we have GM estimators. The remainder of this section is devoted to showing that

(3.2) Q={u|lu=12B,2¢%,,, fixed, BeZ,, ,}

when a GM estimator exists. Of course, this result shows that GM estimators exist
only for the standard multivariate linear model when the covariance structure is
I, ®L XeS;,.

Now, let Q # {0} be a linear manifold in &, ,, and assume that

(3.3) (I,,0L)Q=Q forall Le,.

By Theorem 1.2, (3.3) is equivalent to the existence of a GM estimator since
I,,® I, is a possible covariance operator.

LemMA 3.1. I (3.3) holds, then (I,,® B)Q < Q for all Be £, ..

PRrROOF. For A€Q, (3.3) is equivalent to 4ZeQ for all 4eQ and e &;, . Since
Q is a manifold, we see that AX, —AX, = A(X,—Z,)eQ for all AeQ and Z,,
T,e &, . However every symmetric operator S can be written in the form £, —X,
for £,,%,€ #,, (S=S+A—Al and for sufficiently large 1 >0, S+1ile &},).
Thus (3.3) is equivalent to

3.4) ASeQ forall AeQ,Se&,,

where &, is all symmetric operators on ¥, to ¥; . Equation (3.4) yields 4S5, S,€Q
for 4eQ, S, S, e &,, and by induction we have

3.5) AS; S, - 5,€Q forall AeQ,S,es,,.

But every element Be &, ,, can be written in the form S, - -+ S, for some k (see
Olkin (1966)). This completes the proof.

LemMaA 3.2. If (3.3) holds, then there exists a rank one element in Q. Further, if
z,@x,€Qforx; #0, then z, ® xeQ forall xe V.

Proor. For the first assertion, let 4 # 0 be in Q. Then there exists u; € V/; such
that Au; # 0. From Lemma 3.1, A(u; ® u,)eQ. However, A(u; ® u,) = (Au,) ® u,
which is of rank one.

For the second assertion, if z; ® x, €Q, then (z;, ® x,)B =z, ® (B'x,)eQ for
all Be Z,, ,, . As B varies over &, , , B'x; can be any vector in V; . The proof is
completed.

Now, define M < V, by

(3.6) M={z|zeV,,z®@xeQ forall xeV,}.
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LEMMA 3.3. The set M is a linear manifold and dim (M) = 1.

ProoF. It is trivial to check that M is a manifold. From Lemma 3.2 there is a
rank one element, say z; ® x,, in Q. Hence z, # 0 and x, s 0 so that z;, ® xeQ
for all xe V, . Thus z; € M and the conclusion follows.

Setting ¢ = dim (M), let {z,, ", z,, 2,41, """, Zp,} be an ON basis for ¥, such
that {z,, -, z,} is an ON basis for M. Also, let {x;, -, x,,} be an ON basis for
V. As pointed out before, {z; ® x;|i=1,""+,py;j=1,"*,p,} is an ON basis
for &£, ,, with inner product ¢ -, - . Consider the manifold Q, given by

(3.7) Qo =span{z;®x;|i=1,-"",q;j=1,""",p,}.
Since z; ® x;€Qfori=1,-++,q;j=1,", p;, we see that Qy = Q.
THEOREM 3.1. If (3.3) holds, then Qy = Q.

ProoF. Let P, be the orthogonal projection onto Q,. The theorem will be
established if we can show that (/—Py)A =0 for all AeQ. If 4,€Q, then
(I-P)A;=C,eQ since C;=A4,—PyA; and PyA,eQ, < Q. Noting that
{z;®@x,li=q+1,"*,py;j=1,-"-,p;} is an ON basis for the orthogonal
complement of Q,, we can write

(3.8) Cr=3P 1 20hiczi®@x;eQ.
Now, fix j, and choose Be £, ,, such that Bx; = 0 for j # j, and Bx;, = x;,. Then
3.9 CiB=3"P2011¢;zi®X;,=Z®x;,€Q.

Since x;, # 0, Ze M by Lemma 3.2. However, Z is orthogonal to M by the definition
of Z so that Z=0. Hence ¢; ;, =0 for i=g¢+1,---, p,. Since j, was arbitrary,
cj=0fori=g+1,::+,p,andj=1,---, p, and thus C; = 0. This completes the
proof.

From Theorem 3.1, we obtain

COROLLARY 3.1. If (3.3) holds, then Q has a coordinate representation
(3.10) Q={ulp=[8]}, B a qxp; real matrix

0 a (p,—q) x p; zero matrix.
Proor. From Theorem 3.1, each peQ has the form
(3.11) ﬂ=zg=1z5’l=1 bijz; ® x;.

By choosing {z; ® x;|i=1,"**,p,,j=1,"*p,} as an ON basis for £, ,,, then
the coordinate representation for ueQ is (3.10) with B = {b;;}. This completes the
proof. '

We conclude this section by remarking that (3.10) is commonly referred to as the
“canonical” form for the standard multivariate linear model. It is well known that
any regression manifold Q = {u}, where u=ZB, Z:p, x q fixed and B:q x p,
can be reduced (via a change of coordinates and relabeling) to the form (3.10)—
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see Anderson (1958), chapter 8. Thus, our original assertion that the existence of
GM estimators when Cov(Y) =1, ® £,Xe &, , implies a standard regression

model is established.

4. GM estimation for an alternative regression model. We begin this section by
giving a necessary and sufficient condition that a GM estimator exists for a non-
standard regression model. Also the GM estimator is given when it exists.

Consider Euclidean spaces, R", R%, R", and R? where ¢ < n, r < p < n, equipped
with the standard inner product. Assume we observe Ye %, , and
4.1) CovY=1,@% for Ze®@c ¥,*
where @ is unspecified. However, we assume that /,€®. Consider a regression
manifold Q described as follows: ueQ if and only if
4.2) u=2,Bz,

where Z,e ¥, ,,Z,e £, , are both of full rank and known, and Be &, ,. For a
general discussion and bibliography concerning this model, see Gleser and Olkin

(1966).
In order to discuss the existence of GM estimators in the present context, let &,

be the row space of Z,. That is, &, is the image of R" in R? under the mapping
Z,'. Of course, &, is an r-dimensional manifold in R?. We now have

PROPOSITION 4.1. In order that a GM estimator of u in (4.2) exists, it is necessary
and sufficient that & , be invariant under T for all L€ ©.

ProoOF. By Theorem 1.2, a GM estimate exists iff (/, ® Z)Q = Q for all £e®
and this is equivalent to

4.2) uXeQ forall Xe®.

However, (4.2) is the same as saying, given Be %, , and £eO, there exists a
B(Z)e &£, , such that

4.3) Z,BZ,X =2,B(X)Z,.

Solving for B(X), we see that (4.3) is equivalent to

4.4) Z,BZ,2=27,BZ,32,(Z,2,)"'Z,

for all Be &, , and Z€©. But (4.4) is clearly equivalent to

4.5) 2,%2=27,%72,'(Z,Z,)"'Z, forall Ze®.

Since Z,'(Z, Z,")~'Z, is the orthogonal projection onto %, , (4.5) is the same as
(4.6) ¥Z,'xe%, forall xeR", andforall XeO.

However, (4.6) is exactly the assertion that &, is invariant under X for all £€©®.

This completes the proof.
Now assume that a GM estimator exists. Then it is given by the orthogonal
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projection of Y onto Q. When Q is given by (4.2), it is readily verified that the
projection onto Q, P, is

(4.7) P = [Zl(leZI)_IZII] ® [ZZI(ZZ Zz,)_ 122] SO that
(4.8) A=Z(Z,/2) 2, YZ,(Z,2,) ' Z,. Since
(4.9) B=(Z,'Z) 'Z,'uZ,(Z,Z,)™* we have

(4.10) B=(Z,/Z)7'Z/0Z,(Z,Z)) ' =(ZVZ)7'Z,'YZ, (2, Z,) "
From (4.10), it follows quickly that
(4.11) Cov(B)=(Z,2)" ' ®[(Z,Z,)'2,2Z,/(Z, Z,")~"].

Now, we turn the situation around. Consider Ye %, , and let N be a fixed,
non-trivial, linear manifold in ¥, . Assume Cov(Y) = I,, ® £ where Z€©® and O is
given by
(4.12) ®={Z|Zes,,ZN = N}.

14%
Since Te &, is symmetric, EN = NiffSN* = N* where N* is the orthogonal
complement of N in ¥, . Given the above covariance structure, we would like to
describe the regression manifolds Q for which GM estimates exist. For the re-
mainder of this section, proofs will be rather abbreviated as the arguments parallel

those of corresponding statements in Section 3.
Let Q # {0} be a linear manifold in &, ,, and assume

(4.13) I, ®X)0Q=Q forall Ze0O.

As before, (4.13) is equivalent to the existence of a GM estimator. Define &, (N)
by

4.14) Z,(N)= {B|Be%#,, ,,BNSN and BN*'< N}
LemMA 4.1. If (4.13) holds, then
(4.15) U, ®BQcQ forall BeZ,(N).

Proor. The proof is similar to that of Lemma 3.1.
LemMA 4.2. Suppose (4.13) holds. Then

(1) there exists a rank one element in Q.
(i) if xo €N, xo # 0 and z ® x,€Q, then z ® x€Q for all xe N
(iii) if x, e N*, x, # 0 and z @ x, €Q, then z ® xeQ for all xe N*.

PRrOOF. See the proof of Lemma 3.2.
Now, consider

(4.16) W, ={z|z®@xeQ forall xeN} and
4.17) W,={z|z®xeQ forall xeN'}.
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Clearly, W, and W, are linear manifolds and at least one of these manifolds is
non-trivial. Let My = W,nW,, M, = W,nMy", and M, = W,nM,*. Then
My, M,, and M, are mutually orthogonal manifolds in ¥, and at least one is
non-trivial.

Let {zy, """, Zygs Zrgw1s " "> Zrys Zryt 1" " Zras Zrpw1s ' Zp, ) DE an ON basis for
V, such that M, =span{z,, -",z,}, M, =span{z, .y, ", z,}, and M, =
span {z, 11, *,2,}. Also, let {x;, ", X, , Xpo+1,""", X, } be an ON basis for

V' such that N = span {x,, - -, x,,}. Now, consider
So =Span{z,~®xj|i= Lo, rsj=1, ~~-,p1},

Sy=span{z; @ x;|[i=ro+1, ", ri5j=1,"",po},

and Sy=span{z; @ x;|i=r+1, ", ry;j=po+1,- -+, py}.

Clearly S, , Sy, S, are mutually orthogonal in &, . and S, Q,i=0,]1, 2. Setting
Q=S®S;®S,, wenow have

THEOREM 4.1. If (4.13) holds, then Q = Q.

PrROOF. The proof is essentially the same as the proof of Theorem 3.1 and is
omitted.
In coordinate form, Theorem 4.1 can be stated as

COROLLARY 4.1. If (4.13) h;)lds, then each element 1 eQ has the coordinate
representation

(4.18) =] e ......

where By isry x py, By isr; X po, B, is ry X (py—po) and the bottom block of zeros
is (pa—ro—ry—ry) X py. As p ranges over all of Q, B,, B, , and B, range over all
matrices of their respective dimensions.

Proor. The representation (4.18) is simply the coordinate form for u in the basis
specified above. The second assertion is immediate from Theorem 4.1. This com-
pletes the proof.

As with (3.10) of Section 3, it is appropriate to refer to (4.18) as the “canonical”
form for the multivariate linear model of this section. The justification for this is
that when © is given by (4.12) and when a GM estimator exists, then one can choose
a coordinate system so that u has the form (4.18).

5. The intra-class correlation model. As in Example 2.1, consider a random
matrix Y:n x p such that Cov(Y) = I, ® X. In some experimental situations, it is
reasonable to assume that ¥ has the form

5.1) =0 [(1-p),+pe®e]
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where 62 >0, —1/(p—1) < p < 1, and e is the vector of 1’s. A covariance matrix
having the form (5.1) is called an intra-class correlation matrix. The purpose of
this section is to present a result which describes all the regression manifolds for
which GM estimators exist when £ has the form (5.1).

Again consider Ye &, ,, where Cov(Y) =1, ® Z. Let u, # 0 be a fixed vector
in ¥, and define the set © by

(5.2) O=[Z|Zed}, E=c/I+cuy®uo]
where ¢; > 0 and ¢; +(ug, #y); ¢2 > 0. The conditions on ¢; and ¢, are necessary
and sufficient that ¢, I+c¢, uy, ® uy be positive definite. Now, we assume that X

varies over ® where Cov(Y) =1, ® £. Let Q # {0} be a linear manifold in &, ,,
and assume

(5.3) I,2)Q=Q forall Xe0,

so that a GM estimator exists for the regression manifold Q.
In order to describe the implications of (5.3), let

(5.4 R, ={B|Be%,,,,, Bu, =0} and
(5.5 R, ={B|Be%,, ,,, B=y ®u, for some yeV,}.

It is straightforward to show that R, and R, are orthogonal manifolds in &, ,,
and R, ®R, = %, ,,. Also, dim(R,) = p,(p;—1) and di~m(R2) = p,. Setting
Q;,=R,nQ, i=1,2, note that Q, @ Q, < Q. Further, let Q; be the orthogonal
projection of the manifold Q onto the manifold R;,i=1,2 and note that
Qch, 09,.

LEMMA 5.1. If 0, = Q, then Q =Q, ®Q, =0, @4,

PROOF. Let P, be the orthogonal projection onto R, , and assume 3, = Q. Then
Q,c0NR, =Q,. Also, P, AeQ for all AeQ when &, = Q so that (I— P,)4€Q
for all AeQ. Hence ), = Q since I— P, is the orthogonal projection onto Q; .
Hence &, < QnR, = Q,. Combining the above we have Q00,20 0Q0,c
Qc O, @8, and the result follows.

LEMMA 5.2. For Ae &), ,,,
(5.6) P,A4= [(Auo) ® uo]/(“o’ Ug)y-

PROOF. Let #ly, = up(ty , tp); ¥, and let z;, -, z,, be an ON basis for V,. Then
{zi@®ily|i=1,"+, p,} is an ON basis for R, . Thus

(5.7) PyA= 25’% 4,2, @ iloyz; ® llp = Zfi 1(zi, Atlg)2(z; ® o)
; = {Zf’i 1 (2, Afly), Zi} ® iy = (Ady) ® .
The result follows.
THEOREM 5.1. If (5.3) holds, then
(5.8) Q=0Q,®Q,.
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PrOOF. We will show that Q, = Q and apply Lemma 5.1. Let
(5.9) M= {zQ®uy|Aug =z forsome AeQ}.

Clearly M < R, is a manifold. Since (4uy) ® uy = AUy ® ty), M = Q by assumption
(5.3). However, it follows immediately from Lemma 5.2 that M =Q,. This
completes the proof.

We note that the converse of Theorem 5.1 is immediate. That is, if Q,* = R,
and Q,* = R, are manifolds, then Q* = Q,* @ Q,* satisfies (5.3). The application
of Theorem 5.1 to the intra-~class correlation model is obvious.

6. Discussion. With the aid of Theorem 1.2, the results in Section 3, Section 4
and Section 5 describe the form of the regression manifolds which admit GM
estimators for three different covariance structures. The covariance structures
considered here represent only a small portion of such structures which arise in
practice. However, the methods used above should carry over without difficulty to
other cases and yield useful descriptions of regression manifolds which admit GM
estimators. Other covariance structures of interest include the block diagonal form
with more than two blocks and the circular covariance matrix as discussed by
Olkin and Press (1969).

REFERENCES

[1] ANDERSON, T. W. (1958). Introduction to Multivariate Statistical Analysis. Wiley, New York.

[2] BELLMAN, R. (1960). Introduction to Matrix Analysis. McGraw Hill, New York.

[3] GLESER, L. J. and OLKIN, 1. (1966). Linear models in multivariate analysis. Stanford Univ.
Technical Report No. 21.

[4] HALMos, P. (1958). Finite Dimensional Vector Spaces. Van Nostrand, Princeton.

[5] KruskAL, W. (1961). The coordinate-free approach to Gauss—Markov estimation, and its
application to missing and extra observations. Fourth Berkeley Symp. Math. Statist.
Prob.1435-451.

[6] KruskAL, W. (1968). When are Gauss—Markov and least squares estimators the same? A
coordinate free approach. Ann. Math. Statist. 39 70-75.

[71 McELroY, F. W. (1967). A necessary and sufficient condition that ordinary least squares
estimators be best linear unbiased. J. Amer. Statist. Assoc. 62 1302-1305.

[8] OLKIN, I. (1966). Special topics in matrix theory and inequalities (mimeographed notes,
recorded by M. L. Eaton). Department of Statistics, Stanford Univ.

[9] OLkiN, I. and PrEss, S. J. (1969). Testing and estimation for a circular stationary model. Ann.
Math. Statist. 40 1358-1373.



