ANOTHER LOOK AT DOOB'S THEOREM

By R. K. Getoor¹ and Murali Rao

University of California at San Diego and Aarhus University

- 1. Introduction. Doob's theorem in probabilistic potential theory states that if f is the limit of a decreasing sequence of excessive functions, then f differs from its excessive regularization on at most a semi-polar set. This result is a generalization to probabilistic potential theory of an important theorem of Cartan in classical potential theory. The purpose of this note is to isolate the property of a supermean-valued function f which enables one to conclude that f differs from its regularization on at most a semi-polar set. This leads to a slight generalization and, at the same time, a new (and simple) proof of Doob's theorem. Moreover our method enables us to conclude in a number of important cases that the exceptional set is actually *polar* rather than semi-polar.
- 2. The main results. All terminology and notation are the same as in [1]. In particular we fix once and for all a standard process $X = (\Omega, \mathcal{M}, \mathcal{M}_t, X_t, \theta_t, P^x)$ with state space (E, \mathcal{E}) and, for simplicity, we assume that $\mathcal{M} = \mathcal{F}$ and $\mathcal{M}_t = \mathcal{F}_t$ for all t. Recall that a universally measurable nonnegative function f is called α -super-mean-valued provided that $P_t^{\alpha} f \leq f$ for all t, and that for such an f, the function $\overline{f} = \lim_{t \downarrow 0} P_t^{\alpha} f$ exists and is the largest α -excessive function dominated by f. One calls \overline{f} the (α -excessive) regularization of f and it is easy to see that $\{\overline{f} < f\}$ is of potential zero. See ([1] page 81 and (II-3.17)).

Definition 2.1. A nonnegative function f is *strongly* α -super-mean-valued provided

- (a) f is nearly Borel measurable.
- (b) $P_T^{\alpha} f \leq f$ for all stopping times T.

Note that if f is the limit of a decreasing sequence of α -excessive functions $\{f_n\}$, then f is strongly α -super-mean-valued since each f_n satisfies Definition 2.1 (a) and (b) and these properties are preserved under the taking of decreasing limits. We will show that if f is strongly α -super-mean-valued, then $\{\bar{f} < f\}$ is semi-polar. In light of the above remark this is a generalization of Doob's theorem. We come now to our key observation.

PROPOSITION 2.2. Let f be a strongly α -super-mean-valued function and assume that \bar{f} is finite. Given $\varepsilon > 0$ let $A_{\varepsilon} = \{f - \bar{f} \ge \varepsilon\}$ and let T be the hitting time of A_{ε} . Then for each x

(2.3)
$$\bar{f}(x) \ge E^x \{ e^{-\alpha T} \bar{f}(X_T) \} + \varepsilon E^x \{ e^{-\alpha T} \}.$$

Received July 16, 1969.

¹ Research was partially sponsored by the Air Force Office of Aerospace Research, United States Air Force, under AFOSR Grant AF-AFOSR 1261–67.

PROOF. Since the proof is exactly the same for all α , we will write out the details under the assumption that $\alpha=0$. First of all fix y not in A_{ε} . (Note that A_{ε} is of potential zero so that its complement is finely dense.) Let $\{K_n\}$ be an increasing sequence of compact subsets of A_{ε} such that if $T_n=T_{K_n}$ then $T_n\downarrow T$ almost surely P^y where $T=T_{A_{\varepsilon}}$. Let $D_n=D_{K_n}=\inf\{t\geq 0: X_t\in K_n\}$. Then

$$T_n = T_{n+1} + D_n \circ \theta_{T_{n+1}}; \qquad T_n = T + D_n \circ \theta_T$$

since $K_n \subset K_{n+1} \subset A_{\varepsilon}$ for all n. Consequently using the strong Markov property and Definition 2.1(b)

$$E^{y}\{f(X_{T_{n}}) \mid \mathscr{F}_{T_{n+1}}\} = E^{X(T_{n+1})}\{f(X_{D_{n}})\} \leq f(X_{T_{n+1}}).$$

In the present situation $\{\mathscr{F}_{T_n}\}$ is a *decreasing* sequence of σ -algebras and so $Y=\lim_n f(X_{T_n})$ exists almost surely P^y . See ([3] page 137). Similarly $E^y\{f(X_{T_n}) \mid \mathscr{F}_T\} \leq f(X_T)$. Using Fatou's lemma for conditional expectations ([3] page 122) and the fact that $\mathscr{F}_T = \cap \mathscr{F}_{T_n}$ almost surely P^y we obtain $Y \leq f(X_T)$ almost surely P^y . But $f(X_{T_n}) - \bar{f}(X_{T_n}) \geq \varepsilon$ almost surely on $\{T_n < \infty\}$ and so using the right continuity of $t \to \bar{f}(X_t)$ and the above inequality we have $f(X_T) - \bar{f}(X_T) \geq \varepsilon$ almost surely P^y on $\{T < \infty\}$. Therefore

$$(2.4) P^{y}[X_{T} \notin A_{\varepsilon}; T < \infty] = 0 if y \notin A_{\varepsilon}.$$

Now fix x. Then it is easy to see that $P_t f(x) = P_t \bar{f}(x)$ for all but countably many values of t, and so we can choose a strictly decreasing sequence $\{t_n\}$ of positive numbers tending to zero such that $P^x\{f(X_{t_n}) \neq \bar{f}(X_{t_n})\} = 0$ for each n. Define $R_n = t_n + T \circ \theta_{t_n}$. Then using (2.4) and the fact that $X_{t_n} \notin A_{\varepsilon}$ almost surely P^x , we have

$$\begin{split} P^x\{X_{R_n} \notin A_\varepsilon \,;\, R_n < \infty\} &= E^x\{P^{X(t_n)} \left[X_T \notin A_\varepsilon \,;\, T < \infty \right] \} = 0. \end{split} \quad \text{Therefore} \\ E^x\{f(X_{R_n})\} &\geq E^x\{\bar{f}(X_{R_n}) + \varepsilon \,;\, R_n < \infty\} = E^x\{\bar{f}()\} + \varepsilon P^x(R_n < \infty), \end{split} \quad \text{while} \\ E^x\{f(X_{R_n})\} &= E^x\{E^{X(t_n)}\{f(X_T)\} \leq E^x\{f(X_{t_n})\} = E^x\{\bar{f}(X_{t_n})\}. \end{split}$$

Combining these inequalities yields

$$E^{x}\{\bar{f}(X_{t_{n}})\} \geq E^{x}\{\bar{f}(X_{R_{n}})\} + \varepsilon P^{x}(R_{n} < \infty).$$

As $n \to \infty$, $t_n \downarrow 0$ and $R_n \downarrow T$, and this last inequality becomes (\bar{f} is excessive)

$$\bar{f}(x) \ge E^x \{ \bar{f}(X_T) \} + \varepsilon P^x (T < \infty),$$

which is (2.3) when $\alpha = 0$. Thus Proposition 2.2 is established.

COROLLARY 2.5. Let f be strongly α -super-mean-valued. Then $\{\bar{f} < f\}$ is semi-polar.

PROOF. Since $f \wedge n$ is strongly α -super-mean-valued the argument in the first paragraph of the proof of (II-3.6) of [1] shows that it suffices to prove Corollary 2.5 when f is bounded. Thus it suffices to show that each A_{ε} is thin when f is bounded. But if x is regular for A_{ε} , (2.3) implies that $\bar{f}(x) \geq \bar{f}(x) + \varepsilon$ which is a contradiction since $\|\bar{f}\| \leq \|f\| < \infty$. Thus each A_{ε} is thin and Corollary 2.5 is established.

REMARK 2.6. The inequality (2.3) implies a sharper result if $\alpha=0$ and if \bar{f} is finite. Namely that almost surely the path $t\to X_t$ is in A_ε for at most *finitely* many values of t. To see this let $T_0=0$, $T_1=T$, and $T_{n+1}=T_n+T\circ\theta_{T_n}$ be the iterates of $T=T_{A_\varepsilon}$. Iterating (2.3) with $\alpha=0$ yields $\bar{f}(x)\geq\varepsilon\sum_{k=1}^n P^x(T_k<\infty)+E^x\{\bar{f}(X_{T_n})\}$. In particular $\sum_{k=1}^\infty P^x(T_k<\infty)<\infty$ and so the desired result obtains. If $\alpha>0$ the same argument shows that $T_k\to\infty$ almost surely.

We say that an α -excessive function f is α -invariant provided that (i) f is finite and (ii) $P_K{}^{\alpha}f = f$ for all compact subsets K of E. Note that f = 0 is always α -invariant for all $\alpha \ge 0$. Probably the only case of interest in the following result is when $\alpha = 0$.

COROLLARY 2.7. Let f be strongly α -super-mean-valued and assume that \bar{f} is α -invariant. Then $\{\bar{f} < f\}$ is polar.

PROOF. It suffices to show that each A_{ε} is polar. Let K be a compact subset of A_{ε} . Then since $T_K \ge T = T_{A_{\varepsilon}}$ we obtain from Proposition 2.2

(2.8)
$$\bar{f}(x) \ge E^{x} \{e^{-\alpha T} \bar{f}(X_{T})\} + \varepsilon E^{x} (e^{-\alpha T})$$
$$\ge P_{K}^{\alpha} \bar{f}(x) + \varepsilon E^{x} (e^{-\alpha T_{K}})$$
$$= \bar{f}(x) + \varepsilon E^{x} (e^{-\alpha T_{K}}).$$

Consequently K, and hence A_{ε} , is polar.

For the next corollary we need to recall a definition and to introduce an auxiliary hypothesis on the process X. An α -excessive function f is regular provided that almost surely $t \to f(X_t)$ is continuous wherever $t \to X_t$ is continuous on $[0, \zeta)$. It is easy to see that if f is regular then f is quasi-left-continuous in the sense that if $\{T_n\}$ is an increasing sequence of stopping times with limit T, then $f(X_{T_n}) \to f(X_T)$ almost surely on $\{T < \zeta\}$. (See, for example, ([1] page 192); the hypothesis there that f is finite is irrelevant.) If X is a special standard process (i.e. satisfies (IV-4.1) of [1]), then these two properties are equivalent.

We next state a special assumption that we will impose on the process X. This condition is closely related to Hunt's hypothesis (B) ([2] page 78).

Assumption 2.9. Let K be a compact thin set and $x \notin K$. Then there exists an increasing sequence of stopping times $\{T_n\}$ which increases to T_K strictly from below almost surely P^x , that is, almost surely P^x , $\lim T_n = T_K$ and $T_n < T_K$ for all n.

Suppose X has continuous paths and that $\{G_n\}$ is a decreasing sequence of open sets such that $G_n \supset \overline{G}_{n+1} \supset K$ and $\bigcap G_n = K$. If $x \notin K$ then $\{T_{G_n}\}$ increases to T_K strictly from below almost surely P^x on $\{T_K < \infty\} = \{T_K < \zeta\}$. (Note that $\lim T_{G_n}$ may be finite on $\{T_K = \infty\}$.) If, in addition, X is special standard (satisfies (IV-4.1) of [1]), then one can modify the sequence $\{T_{G_n}\}$ to obtain a sequence $\{T_n\}$ which increases to T_K strictly from below almost surely P^x . See (IV-4.38) of [1]. Thus Assumption 2.9 is satisfied if X has continuous paths and is special standard. A sufficient condition that X be special standard is that for each $\alpha > 0$ the α -excessive functions are lower semi-continuous. Also if X satisfies the hypotheses of Section VI-2 of [1], then Assumption 2.9 holds. See (VI-2.9) of [1].

We are now in a position to state our final result.

PROPOSITION 2.10.² Let f be strongly α -super-mean-valued and let \bar{f} be quasi-left-continuous. Then if Assumption 2.9 holds, $\{\bar{f} < f\}$ is polar.

PROOF. As in the proof of Corollary 2.1 it suffices to consider the case of bounded f. (Note that $\overline{f \wedge n} = \overline{f} \wedge n$ is quasi-left-continuous if \overline{f} is.) If $\alpha = 0$ then f is strongly β -super-mean-valued for all $\beta > 0$ and the β -regularization of f is the same as the 0-regularization of f. Thus without loss of generality we may assume that $\alpha > 0$ and that f is bounded. Let K be a compact subset of A_{ε} . Plainly it suffices to show that K is polar. Evidently K is thin since A_{ε} is thin. Fix $x \notin K$ and let $\{T_n\}$ be as in Assumption 2.9. From Proposition 2.2 with T replaced by T_K (see (2.8)) and with the aid of the strong Markov property and the fact that $T_n + T_K \circ \theta_{T_n} = T_K$ almost surely P^x on $\{T_K < \infty\}$ and hence everywhere, we obtain

$$E^{x}\left\{e^{-\alpha T_{n}}\bar{f}(X_{T_{n}})\right\} \geq E^{x}\left\{e^{-\alpha T_{K}}\bar{f}(X_{T_{K}})\right\} + \varepsilon E^{x}\left(e^{-\alpha T_{K}}\right).$$

Letting $n \to \infty$ and using the quasi-left-continuity of \bar{f} and the fact that $\alpha > 0$, this becomes (note that $T_K = \infty$ on $T_K \ge \zeta$)

$$P_K^{\alpha} \bar{f}(x) \ge P_K^{\alpha} \bar{f}(x) + \varepsilon E^x (e^{-\alpha T_K}).$$

Thus $x \to E^x(e^{-\alpha T_K})$ vanishes off K and hence everywhere since it is α -excessive and K is thin. Therefore K is polar, completing the proof of Proposition 2.10.

The following example shows that Proposition 2.10 is *not* true for general standard processes. Let $E = (-\infty, 0] \cup [1, \infty)$. Starting from $x \ge 1$ the process is translation to the right at unit speed, 0 is an exponential holding point from which the process jumps to $\{1\}$, and starting from x < 0 the process is translation to the right at unit speed until it reaches the holding point 0. Let f(x) = 1 if $x \le 0$ or if x = 1 and f(x) = 0 if x > 1. Then f is strongly super-mean-valued. In fact, it is the decreasing limit of the sequence $\{f_n\}$ of excessive functions defined by $f_n(x) = 1$ if $x \le 0$ or if $1 \le x < (n+1)/n$ and $f_n(x) = 0$ if $x \ge (n+1)/n$. Clearly the regularization f of f is given by f(x) = 1 if f if f if f if f which is thin but not polar. Of course Assumption 2.9 is not satisfied by this process; take f is an exponential this process is quasi-left-continuous depends on the fact that the hitting time of f is totally inaccessible. This is easily proved using the fact that 0 is an exponential holding point. See, for example, the argument on page 68 of f

REFERENCES

- [1] Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and Potential Theory. Academic Press, New York.
- [2] HUNT, G. A. (1957). Markoff processes and potentials I-III. J. Math. 1 44-93.
- [3] Neveu, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco.

² A similar result has been obtained by P. A. Meyer. Private communication.