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ANOTHER LOOK AT DOOB’S THEOREM

By R. K. GETOOR! AND MURALI RaO

University of California at San Diego and Aarhus University

1. Introduction. Doob’s theorem in probabilistic potential theory states that if f
is the limit of a decreasing sequence of excessive functions, then f differs from its
excessive regularization on at most a semi-polar set. This result is a generalization
to probabilistic potential theory of an important theorem of Cartan in classical
potential theory. The purpose of this note is to isolate the property of a super-
mean-valued function f which enables one to conclude that f differs from its
regularization on at most a semi-polar set. This leads to a slight generalization and,
at the same time, a new (and simple) proof of Doob’s theorem. Moreover our
method enables us to conclude in a number of important cases that the exceptional
set is actually polar rather than semi-polar.

2. The main results. All terminology and notation are the same as in [1]. In
particular we fix once and for all a standard process X = (Q, .#, 4 ,, X,, 0,, P¥)
with state space (E, &) and, for simplicity, we assume that ./# = % and /, = &,
for all t. Recall that a universally measurable nonnegative function f is called
a-super-mean-valued provided that P,*f< f for all ¢, and that for such an f; the
function f = lim, , P, f exists and is the largest a-excessive function dominated by
f. One calls f the (a-excessive) regularization of f and it is easy to see that {f < f}
is of potential zero. See ([1] page 81 and (II-3.17)).

DeriNITION 2.1. A nonnegative function f is strongly a-super-mean-valued
provided

(a) f'is nearly Borel measurable.
(b) P*f < ffor all stopping times 7.

Note that if £ is the limit of a decreasing sequence of a-excessive functions {f,},
then f'is strongly a-super-mean-valued since each f, satisfies Definition 2.1 (a) and
(b) and these properties are preserved under the taking of decreasing limits. We
will show that if fis strongly a-super-mean-valued, then {f </} is semi-polar. In
light of the above remark this is a generalization of Doob’s theorem. We come now
to our key observation.

PROPOSITION 2.2. Let f be a strongly a-super-mean-valued function and assume
that f is finite. Given ¢ > 0 let A, = {f—f = ¢} and let T be the hitting time of A,.
Then for each x

23) J() 2 E¥{e™*T f(X )} +eE*{e™ "}
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ProoF. Since the proof is exactly the same for all «, we will write out the details
under the assumption that o« = 0. First of all fix y not in 4,. (Note that A, is of
potential zero so that its complement is finely dense.) Let {K,} be an increasing
sequence of compact subsets of 4, such that if 7, = Ty _then 7, | T almost surely
P’where T=T, .Let D,= Dy =inf{t 2 0:X,eK,}. Then

T, =Ty +D,005,,,;  T,=T+D,o0;

since K, = K,,; < A, for all n. Consequently using the strong Markov property
and Definition 2.1 (b)
B{f(X1,)| Fr,. } = EXT0{f(Xp)} < f(Xr,. )

In the present situation {¥, } is a decreasing sequence of g-algebras and so Y =
lim, f(X7,) exists almost surely P”. See ([3] page 137). Similarly E*{ f(Xr,) [ Fr} £
S(Xp). Using Fatou’s lemma for conditional expectations ([3] page 122) and the
fact that #, = nF_almost surely P” we obtain Y < f(X;) almost surely P’.
But f(X71,)—f(X7,) 2 € almost surely on {T, < oo} and so using the right continuity
of ¢t — f(X,) and the above inequality we have f(X;)—f(X;) = ¢ almost surely P’
on {T < oo}. Therefore

24 P[X;¢A4,; T<o]=0 if yé¢A,.
Now fix x. Then it is easy to see that P, f(x) = P, f(x) for all but countably many
values of ¢, and so we can choose a strictly decreasing sequence {¢,} of positive

numbers tending to zero such that P*{f(X,) # f(X,)} =0 for each n. Define
R, =t,+To0, . Then using (2.4) and the fact that X, ¢ A4, almost surely P*, we

have
P*{Xg ¢A,; R, < o0} = EX{P*™ [X;¢A4,; T <]} =0. Therefore

E*{f(Xg,)} 2 E*{f(Xg,)+¢&; R, < 0} = EX{f( g )}+€eP*(R, < ), while
E*{f(X,)} = E{E*™{f(Xp)} £ E*{f(X,)} = E<{J(X,)}.
Combining these inequalities yields
E*{f(X,)} Z E*{f(Xg,)} +eP(R, < o).
Asn— oo, t,|0and R,| T, and this last inequality becomes (f is excessive)
() z EX{f(X 1)} +ePX(T < o0),

which is (2.3) when o = 0. Thus Proposition 2.2 is established.

COROLLARY 2.5. Let f be strongly a-super-mean-valued. Then {f < f'} is semi-polar.

PRroOF. Since fAn is strongly a-super-mean-valued the argument in the first
paragraph of the proof of (II-3.6) of [1] shows that it suffices to prove Corollary
2.5 when f is bounded. Thus it suffices to show that each A, is thin when f is
bounded. But if x is regular for 4,, (2.3) implies that f(x) = f(x)+¢ which is a
contradiction since ||f|| < | /]| < co. Thus each 4, is thin and Corollary 2.5 is
established.



ANOTHER LOOK AT DOOB’S THEOREM 505

REMARK 2.6. The inequality (2.3) implies a sharper result if « = 0 and if f is
finite. Namely that almost surely the path ¢ — X, is in 4, for at most finitely many
values of ¢. To see thislet Ty =0, T, = T, and T,,; = T,+ T o0, be the iterates of
T = T,,. Iterating (2.3) with o = 0 yields f(x) = &) -, P (T}, < o0)+ E*{f(X1)}.
In particular Y i ; P*(T} < o0) < oo and so the desired result obtains. If « > 0 the
same argument shows that 7, — oo almost surely.

We say that an a-excessive function f is a-invariant provided that (i) f is finite
and (ii) Pi*f=f for all compact subsets K of E. Note that =0 is always
a-invariant for all « = 0. Probably the only case of interest in the following result
is when a = 0.

COROLLARY 2.7. Let f be strongly a-super-mean-valued and assume that f is
a-invariant. Then {f < f} is polar.

Proor. It suffices to show that each A, is polar. Let K be a compact subset of 4, .
Then since Ty = T = T,, we obtain from Proposition 2.2

F(x) 2 EX{e™ T f(X 1)} +eE*(e™*T)
(2.8) 2 P f(x)+eE*(e™*T%)
= f(x)+eE* (e~*Tx),

Consequently K, and hence 4,, is polar.

For the next corollary we need to recall a definition and to introduce an auxiliary
hypothesis on the process X. An a-excessive function f is regular provided that
almost surely ¢ — f(X,) is continuous wherever ¢ — X, is continuous on [0, {). It is
easy to see that if fis regular then f is quasi-left-continuous in the sense that if {7}, }
is an increasing sequence of stopping times with limit 7, then f(X,)—f(Xy)
almost surely on {7 < (}. (See, for example, ([1] page 192); the hypothesis there
that f'is finite is irrelevant.) If X is a special standard process (i.e. satisfies (IV-4.1)
of [1]), then these two properties are equivalent.

We next state a special assumption that we will impose on the process X. This
condition is closely related to Hunt’s hypothesis (B) ([2] page 78).

ASSUMPTION 2.9. Let K be a compact thin set and x¢ K. Then there exists an
increasing sequence of stopping times {7},} which increases to T strictly from
below almost surely P*, that is, almost surely P*,lim 7, = T and T, < T for all n.

Suppose X has continuous paths and that {G,} is a decreasing sequence of open
sets such that G, > G,,; » K and n G, = K. If x¢ K then {7, } increases to T
strictly from below almost surely P* on {Tx < oo} = {Tx <(}. (Note that
lim 7;;, may be finite on {7 = o0}.) If, in addition, X is special standard (satisfies
(IV-4.1) of [1]), then one can modify the sequence {7} to obtain a sequence {7, }
which increases to Ty strictly from below almost surely P*. See (IV-4.38) of [1].
Thus Assumption 2.9 is satisfied if X has continuous paths and is special standard.
A sufficient condition that X be special standard is that for each a >0 the
a-excessive functions are lower semi-continuous. Also if X satisfies the hypotheses
of Section VI-2 of [1], then Assumption 2.9 holds. See (VI-2.9) of [1].



506 R. K. GETOOR AND MURALI RAO

We are now in a position to state our final result.

PROPOSITION 2.10.2 Let f be strongly a-super-mean-valued and let f be quasi-left-
continuous. Then if Assumption 2.9 holds, { f < f} is polar.

PROOF. As in the proof of Corollary 2.1 it suffices to consider the case of bounded
f. (Note that fAn = f An is quasi-left-continuous if fis.) If « = 0 then f'is strongly
p-super-mean-valued for all § > 0 and the S-regularization of fis the same as the
O-regularization of f. Thus without loss of generality we may assume that o > 0
and that f'is bounded. Let K be a compact subset of A4,. Plainly it suffices to show
that K is polar. Evidently K is thin since 4, is thin. Fix x¢ K and let {7} be as in
Assumption 2.9. From Proposition 2.2 with T replaced by Ty (see (2.8)) and with
the aid of the strong Markov property and the fact that 7,4 Tx 00, = Ty almost
surely P* on {Tx < oo} and hence everywhere, we obtain

EX{e T f(X 1)} = EX{e "% f(X 1)} +€E* (e7*T%).

Letting n — oo and using the quasi-left-continuity of f and the fact that « > 0, this
becomes (note that T = o0 on Tk = ()

Pg*f(x) Z Pg*f(x)+¢E* (e™*T%).

Thus x — E*(e~*T¥) vanishes off K and hence everywhere since it is a-excessive and
K is thin. Therefore K is polar, completing the proof of Proposition 2.10.

The following example shows that Proposition 2.10 is not true for general
standard processes. Let E = (— 00, 0] U [1, 00). Starting from x = 1 the process is
translation to the right at unit speed, O is an exponential holding point from which
the process jumps to {1}, and starting from x < 0 the process is translation to the
right at unit speed until it reaches the holding point 0. Let f(x) = 1 if x £ 0 or if
x =1 and f(x) = 0 if x > 1. Then f'is strongly super-mean-valued. In fact, it is the
decreasing limit of the sequence {f,} of excessive functions defined by f, (x) = 1 if
xZ0orifl £x < (n+1)/nandf,(x) = 0if x = (n+ 1)/n. Clearly the regularization
f of fis given by f(x) = 1 if x £ 0 and f(x) = 0 if x = 1. Moreover f is continuous
and hence regular. But {f </} = {1} which is thin but not polar. Of course
Assumption 2.9 is not satisfied by this process; take K = {1}. On the other hand
this is a Hunt process, and hence special standard, because { = co. (The fact that
this process is quasi-left-continuous depends on the fact that the hitting time of {1}
is totally inaccessible. This is easily proved using the fact that O is an exponential
holding point. See, for example, the argument on page 68 of [1].)
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