The Annals of Mathematical Statistics
1970, Vol. 41, No. 2, 446-456

SUFFICIENT CONDITIONS FOR THE ADMISSIBILITY UNDER
SQUARED ERRORS LOSS OF FORMAL BAYES ESTIMATORS!

By J. V. ZiDEK

The University of British Columbia

1. Introduction and summary. This paper is concerned with the problem of
finding reasonably explicit sufficient conditions for the almost admissibility of
formal Bayes estimators (for definitions, see Section 2), where the underlying
distribution is assumed known up to a single real parameter, and a real function
of this parameter is being estimated with squared error as loss. The parameter
space is assumed to be a possibly unbounded interval. These conditions are derived
in Section 3. They are similar, in appearance, to results obtained by Karlin [3]
when the underlying distribution is a member of the family of one parameter
exponential distributions and the mean of this distribution is being estimated. The
results of Section 3 should be viewed as a refinement of a heuristic argument given
by Stein ( [6] and [7] pages 233-240).

In Section 2, some preliminary results and definitions are given. The results of
Section 3 are applied in Section 4 to problems involving either the one dimensional
exponential family or the estimation of a function of a single location parameter.
Some of the results are known, in at least a similar form, while others are new.

A counterexample based on a one dimensional location parameter problem is
given in Section 5. It suggests that conditions of the type obtained here may even
be necessary.

2. Definitions and preliminary results. Let (', #) denote a measurable space and
X a random variable taking its values in Z. Assume X is distributed according to
an unknown but unique member of a family of probability distributions indexed
by a set ©, a subinterval of the real line with upper and lower endpoints 6, and 0,,
respectively. After observing X, a real-valued function g: ® — R is to be estimated
with squared error as loss, that is, if the estimate is # and 0 € © is the *“‘true state of
nature” a loss, L(¢, 0) = (t— g(0))?, is incurred.

Suppose u is a o-finite measure on & which dominates the family of underlying
probability distributions. Let p(- | 0), 0€©, denote the density of the probability
distribution corresponding to 6. We assume p(- | -) is jointly measurable in its
arguments.

Suppose given a probability measure IT on the Borel subsets of ®. The Bayes
procedure with respect to I1, ¢, is given by

2.1) ¢n(x) = fog(0)p(x | 0) dTI(0)/fo p(x | 6) ATL(9),
provided its Bayes risk is finite.
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ADMISSIBILITY OF FORMAL BAYES ESTIMATORS 447

¢ depends on IT only through the posterior probability distribution, Py,
defined by

@2) Pu(B| X = x) = [ p(x| 0) dTI(6), ae. [ul,

for all Borel subsets, B, of ©. .

From some points of view it is reasonable to allow IT to be a o-finite measure.
Provided Pn(®|X =x) < o0, a.e. [u], IT is called a prior measure (improper if
I1(®) = ). We can define the formal posterior distribution of 0 using Equation
(2.2). A formal Bayes estimator of g(0) is defined as any measurable function on
Z which, evaluated at x, minimizes and makes finite

2.3) J(t—g(0))*Pr(df| X = x)

a.e. [u] as a function of ¢. If such a procedure exists, it is unique and given by (2.1),
except, possibly, on a set B for which

2.4 Jpdu(x) fo p(x | 6) dII(0) = 0. The condition
@.5) [(+4%(0))p(x]0)dII(0) < oo, a.e. [u],

is sufficient to insure that ¢ is the formal Bayes estimator with respect to IT.

Let ¢ denote any estimator of g(6). Its risk function will be denoted by r(¢, ),
0e®. ¢ is called almost admissible with respect to I, if for any other estimator ¢*,
satisfying r(¢*, 0) < r(¢, 0), 0€O©, r(¢*, 0) =r(¢,0) a.e. [II]. Obviously, any
Bayes procedure is almost admissible with respect to the prior from which it is
constructed.

The results of this paper will be concerned with almost admissibility rather than
admissibility. A useful theorem giving conditions under which admissibility follows
from almost admissibility is the following (see, for example, Stein [8]).

THEOREM 2.1. Suppose for every element 0,€® and every set Be R for which
8p(x|00) du(x) > 0, TI{0: [5p(x|60)du(x) > 0} > 0. Then if ¢y is almost admis-
sible, it is admissible.

Assume IT is absolutely continuous with respect to Lebesgue measure. Denote
its density by 7. We can regard (X, 0) as an “improper” random variable with a
joint distribution whose density with respect to u x m (m denoting Lebesgue
measure) is p(x | 0)n(0).

The formal posterior distribution of 6, given X = x, has a density with respect
to m. It will be denoted by pp(+ | X = x) and is obtained from equation (2.2). It is
useful to think of j'p(x|6)n(0) df as the marginal density of X even though its
integral with respect to u may be infinite.

By adopting this point of view we achieve a simplicity of notation and, in
addition, a more intuitive conception of the nature of many otherwise unintuitive
quantities which appear in the sequel. We can write, for example, ¢p(x)=
En(g9| X = x) and, letting p(0) = r(¢x, 0), 0€ O,

(2:6) [ ©)p(0)n(6) d0 = En{f (0)E[(9(0)— En(g | X))* | 61}
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Denote E(-|6) and E(-|X) by E°(+) and Ey*(-), respectively (similar notation
will be used for conditional covariances and variances). The results of this paper
will be consequences of a theorem due to Stein [6] (earlier forms of this result are
given in [2] and [8]). In stating this result, the following notation will be useful.
Let J = © be any compact subinterval of ®. Denote by F;, the class of all non-
negative functions, £, on O satisfying f(0) = 1, OeJ, Ef(0)p(0) < oo.

THEOREM 2.2. Suppose 11 is a positive prior measure which assigns finite measure
to every compact subinterval of ® which does not contain either endpoint of ©. If for
every such compact subinterval, J, of ® and & > 0, there exists f€ Fy such that

2.7 E{{Covy*(f,9)}*|En*()} < 6,
¢y is almost admissible, with respect to 11, as an estimator of g(0), under squared

error loss.

PRrROOF. Suppose ¢y is not almost admissible with respect to I1. Then there exists
¢* such that r(¢p*, -) <r(dy, -) and r(¢*, 6) < r(¢, ) for all 6 in a set of positive
IT measure. It follows that there exists § > 0, a set S;, and a compact subinterval
J, not containing the endpoints of ® such that II(S;nJ) >0 and r(¢p, 0)—
r(¢*, 0) = 4, 0€S;. Choose & < SII(S;nJ) and fe F; satisfying (2.7). Then

SNI(INS;) £ [5ns5,f (0) dT(O){r(¢r, 0)— (9™, 0)}
< Ex(fp)—inf, En{f(0)E%(9(0)— $(x))*}
which is less than &, since the last quantity is the left-hand side of (2.7). To see this
observe that the infimum in this quantity is
Enf(0){9(0)— Ex*(f9) En*()}* = En(fp)— E{[Covn*(f, 9)1*/Ex’*(f)}.
From the contradiction we have obtained, the conclusion of the theorem follows.

3. A sufficient condition for almost admissibility. In this section, Theorem 2.2. is
applied to obtain a sufficient condition for almost admissibility. This condition
and Theorem 3.1, in which it is obtained, involve a function M: & x ® — (— o0, 00)
defined by

(G M(x,0) = [(9()—d())p(t| X = x)dt/p(0| X =x),  p6|X =x)>0
=0, pO|X =x)=

In (3.1) we have omitted the subscript IT. As there is little danger of confusion, we

shall continue to do so throughout the remainder of this paper. In particular, ¢

will always represent ¢y .
Let

(3.2) h(t) = E(M*(X,0)|0 = 1).

Assume:
(D) =(¢)h(2) is bounded away from zero on compact subintervals of @
(1) {0:p(x|0) > 0} is an interval a.e. [u].
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THEOREM 3.1. Under Assumptions 1 and 11, ¢y is almost admissible with respect to
I1 as an estimator of g if, when (i) [ n(f)p(t)dt =.c0, (ii) [2dt/[n(t)h(1)] = oo and
when (i)’ [5,n(t)p(t)dt = oo, (i)’ [6,dt/[n(t)h(t)] = 00, where ce(0,, 0,).

ProOF. In the notation of Theorem 2.2, suppose J = [¢; , ¢,] is a compact sub-
interval of ®, where c; is not an endpoint of @, i = 1, 2. Let f be any nonnegative
function which is absolutely continuous, vanishes outside a compact subinterval
of ®, has bounded derivative, and is identically 1 on J. Then

3.3) f0) = jg,f "t dt+£(0), 0e0®.
It follows that
(34 Cov*(f,9) = [5“f (VE*[(9(0)— E*(9) (0, 1)] dt

where (0, t) is 1 or 0 according as 0 > ¢ or 0 < . For convenience, let f=r? so
that f' = 2rr’. Then

(3.5) [Cov*(£,9)]* = 4{f ' )r(D(E*[(9(0) — EX(9) (6, ]/ p(t | X))p(t | X) d1}?,

where, according to a convention that will be adopted here, (p(f| X))*/p(t| X) =0
when p(t | X) = 0. Equality holds in equation (3.5) because of Assumption II, for
it implies EX[(g(0)— E*(g))¥(0, t)] vanishes when p(¢| X) vanishes. After applying
Schwarz’s inequality on the right-hand side of equation (3.5) we obtain

(3.6) E{[Covx (f,9)*/EX(r*(0))} £ 4 (r'(t) *n(D)h(t) dt,

where 4 is defined by equation (3.2).
The remainder of the proof is suggested by an argument due to Stein ([7] pages
235-236). Define monotone transformations y/;, i = 1, 2, by

(3.7 V() = [¢, ds/[m()h(s)], te®n(cy,0,] and
(3.8) ¥1(0) = [i* ds/[()h(s)], te®n[6;,cy).

By Assumption I, /, (/) is one-to-one and onto if condition (ii) ((ii)’) holds.

Let A be any positive constant. Let r(¢) = 1 for te[c, , ¢,]. If condition (i) fails
to hold let r(f) = 1, te®n(c,, 0,). If condition (i) holds, let r(f) = 1— A~ 'y,(),
c; <t= Y, Y(4) and r(t) =0, 0,=¢t> Y, '4. In a similar way using ¥, and
depending on whether (i)’ does or does not hold, r(¢) is defined on the remainder
of ©. For definiteness, assume both (i) and (i)’ hold (the remaining cases are treated
in a similar way). Then

r'(H) =0, ¢, <t<cy
(3.9) = —[An(DR®)],  cr <t <y, '(A)
= 1/[An(Dh(D)], UM A) <t <c
=0, O, <t<y, Y4), Y,7'(4A)<t<b,
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and, consequently,
(3.10) JO'@Yah®) dt = A2~ (A)+ A7 200,71 (4)).

The last quantity is just 2/4. If A is chosen sufficiently large, condition (2.7) is
satisfied. The conclusion then follows from Theorem 2.2.

4. Applications. Theorem 3.1 is applied, in this section, to several examples
involving either the one dimensional exponential family or the estimation of a

single location parameter.
Consider first the case of the exponential family. The following specializations

are involved: &’ < (— 00, o), p(x | 6) = B(6) exp (x0),
@4.1) © = {0:1/8(0) = [ e du(x) < 0}.

@ is, of course, an interval.
Suppose we are interested in estimating an arbitrary, piecewise continuous
function, g. Define a function n by

(4.2) m(6) = exp[ - [2 g(w) dw]/B(0),

where ce(6,, 6,). Then

(4.3) (x—g(0))B(0) ¥ n(6) = (d]dO)B(6) €™ n(6). If
4.4) [ B(0) e n(0) A6 = [exp [x0—[?g(w) dw]dO < o,

7 is the density of a prior measure I1. Furthermore, if

4.5) exp [x0— [2g(w)dw] — 0

as 6 -0, or 6 —0,, the formal Bayes or Bayes estimator of g, say ¢, is easily
shown to be ¢(x) = x. The function M which appears in equation (3.1) is just 1.

THEOREM 4.1. Under the conditions given in (4.4) and (4.5), X is an admissible
estimator of g if

(4.6) Jo BBy exp [ [ g(w) dw] do = [5 B(60) exp [ [2 g(w) dw] dO = oo.

Proor. With n defined as in equation (4.2), X is a Bayes or formal Bayes
estimator of g. Theorem 3.1 and Theorem 2.1 together imply X is admissible when
the hypotheses are satisfied.

A special case of this theorem which has been treated by Cheng Ping [1], is that
concerned with the estimation of the function g(0) = a+yE®(X), where o and 7
are constants. Here

4.7 f9(w)dw = ab—ac—y1In B(0)+7y1n p(c).
We conclude X is an admissible estimator of g provided

4.8) =" BN0) 50 ae. [u]
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asf@—0,0or0—6,,and
4.9) [opr=7(0) e db = [§5,8' 7"(0) e dO = 0.

It is not difficult to show that condition (4.4) is fulfilled. Of these conditions, only
(4.9) is necessary for Cheng Ping’s result since he, like Karlin [3] (who considers
the case where a = 0) does not require that the estimator in question be a Bayes or
formal Bayes estimator.

We turn now to the problem of estimating a single location parameter, with a
single observation drawn from the underlying distribution. In this example, the
following specializations occur: ® = & = (— 00,00), u(dx) = dx, p(x | 0) = p(x—0),
E°X)=0. In order that Assumption Il hold it is necessary to assume
I': {x:p(x) > 0} is an interval. We also impose condition II': 7 is the density of a
prior measure, is continuous and satisfies )

(4.10) n(t)/n(0) < ay +a, |t—0]7, —w<t, O<oo,

where « and the q;, i = 1, 2 are nonnegative constants.
Without real loss of generality we take, in Assumption II’, @, = a, = 1. The
formal Bayes or Bayes estimator of 6, ¢ is given by

¢(x) = [ 0p(x — 0)n(6) d0/[ p(x — 0)m(6)m(6) db.

And the following theorem gives conditions for its almost admissibility. Its proof,
which is straightforward, is omitted. We remark that hypothesis (ii) is used to
obtain a constant which is a uniform bound for 4.

THEOREM 4.2. Subject to Assumptions 1" and II', ¢ is almost admissible as an
estimator of 0 if

Q) [2 d6jn(6) = [°., d6Jn(6) = oo and
(D) §pG+|x*{[p(x)]~* [ I(x, )L +|t|** p(r) dt}? dx < oo, where
I(x,H) =1, t>x, x>0

=0, tzx, x>0

= 1—I(|x|,t), x =<0.

.

Theorem 4.2 covers the case of estimating the mean of a normal distribution
where, without loss of generality, it is assumed that one observation is taken. From
it, we conclude that any formal Bayes estimator with respect to a prior measure
having a density, n, which satisfies Assumption II' and hypothesis (i) of the
theorem, is almost admissible.

Before considering a generalization of the single observation location parameter
problem, we prove a lemma which leads to a simplification of the conditions of
Theorem 3.1 at the expense of imposing a greater number of assumptions.

Assume I : 5(9)A(6) is bounded away from zero on compact subsets of (— 0o, o)
and II": g(8,) = —g(6,) = o g is continuously differentiable and g’ > 0.
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Define Ay by Ay = {x:x€Z, ¢(x) < g(6) }. Suppose given positive functions, ¢
and d, each with domain & x ©. Define a function H:® x & x ® — (0, o) by

H,(t;%,0) = sup, s, m(t';x,0)p(t' | x)/g'(f),  x€A,

(4.11) = supy g, m(t';x, 0)p(t' | x)/g'(1),  x¢A4,
=0, otherwise,
where
4.12)  m(t;x,0) = [14+((g(t)— d(x))/c(x, 0))* ™, xeZ, 0€0®, teO,

m' is any real number, with m’ > 1.
Assume III": H,,. (0; x, 0)g’(0)/[p(9[x)m(0;x, 0)] is bounded by d*(x, 0), for
some m’ > 1. )

LemMmA 4.1. Under Assumptions 1"-111", ¢ is an almost admissible estimator of
g(6) provided

@) [2(g'O)/[nO)Nu(0)+1a(0))]d0 = 0 when [2n(0)p(0)dO = co,
and
(i) [5,(9°(0))*/[m(O)u(®0) +1a(0))]d0 = 0 when 5 n(6)p(0)d = oo,
where ce(0,, 6,),
(4.13) u(t) = E{c*(X,0) d*(X,0) |0 = t},
pa(t) = E{d*(X, 0)(9(0)— $(X))*| 0 = t}.
PROOF. Suppose xe 4,4, te(0,, 6,). Then
_%%{Hm,(t; x,0)c3(x, 0) [1 +(9(-?(~;,iz§—x)>z]_(m’_ o= 1)}
‘= %(—(%Hm,(t;x, 0))c2(x, 0)[1 +(%>2]‘(m"1>/(m,_ 1)
+H,(t;x,0)g'(D[g(t) — p(x))/m(t; x,0)
2 H,(t; x,0)9'(0[g(1)— (x)]/m(t; x, 0).
Similarly, for x¢ 4y, 0, <t <8,
%(—%{H,,,,(t; X, 0)c2(x,0)[1 +<%)>2]_<m,_ 1)}/(m'— 1)
2 H,(1;x,0)9'(1) |9(t) = $(x)|m(t; x, 0).

Recall that if f is a monotone increasing function on [a, b], f’ exists almost
everywhere and

Jaf () dx < f(b)~f(a)
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(see, for example, Royden [4] page 82). Using this fact and the first of the two
inequalities obtained above, with xe 4,,

M(x,0) < [39'(O[9(6) — S JHLw (15 %, 0)/p(0 | x)m(s; x,0)di
< d*(x, 0)c?(x, 0) [1 + <g(0) — ¢(x)>2]/{2(in’ —1)g'(6)}.

c(x,0)

Observe that in evaluating the integral which bounds the integral in the first of
these last two inequalities at its upper limit we obtain

)— 27— (m’'— 1)
—lim, g H, (2 %, 0)c2(x, 0)] 14+(2D=2X) =0
“ c(x,6)
since H,(t; x, 0) £ H,(0; x, 0), t = 0 while g(¢) —» o0 ast — 0,.
The same inequality holds when x¢ A,. This is proved with the help of the
identity

(4.14) 09— d())p(t| X = x)dt = [, |9()— ()| p(t| X = x) dt,
for x¢ A,. Thus, there exists a constant M such that
(4.15) M?(x,0) < Md*(x, 0){c*(x, 0)+(9(0) — $(x))*}/(g'(0))*.

Using the hypotheses of this lemma and Theorem 3.1, together with inequality
(4.15), the desired conclusion follows.

While there do not appear to be natural choices for the functions, ¢, and 4, in
the general problem, we believe that in applications they may be suggested by the
structure of the problem.

Suppose we observe a random variable (X, Y) with X real valued and Y taking
its values in a space % and having a marginal distribution v. Furthermore, given
Y = y we assume X has a conditional distribution with density given by p*(x—6 | ¥)
where € ® = (— 00, 00) is unknown and p* satisfies

fp*(x|y)dx =1,  [xp*(x|y)dx=0.

In this context, the function 4, defined in equation (3.2) can be written as
(4.16)  [av(y) [ dx(f5° [9(t) — p(x, y)Ip*(x—t| y)n(®) d1/[p*(x~ 0 | y)n(6)])?

X p*(x —0 I Y),
where ¢(x, y) denotes the formal Bayes estimator with respect to the prior measure
with density #.

Reasonable choices, in this problem, of the functions ¢ and d, which were
supposed given in Lemma 4.1, seem to be ¢ = d with d*(x, y, ) = 1 +6*(x—6, ),
where a*(x, y) = E[(9(0)— d(x, y))*| X = x, ¥ = y].

Assume I'’": 7 is continuous, is the density of a prior measure, and satisfies
@.17) n(0)/(0) < 1+]0~1]%,

II"": g(00) = —g(— ) = 0. g is continuously differentiable and g’ > 0, and

II"': g'(OH(0;x, y,6) + {p*(x— 0] »)[1+(9(0) — $(x, »))*/(1 +0*(x— 0, »))]"}
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is uniformly bounded by 1+62(x—0, y) for some m’ > 1, where if
(4.18)  G(t;x,y,0) = (1+[t=0])[1+(g() — d(x, ))*/(1 +6*(x— 0, y))]™
x p*(x—t|y)/g'(®),
we define H}, by
(4'19) H:’(G;xa Vs 0) = SuptéOG(t;xLy’ 0)7 0 > (b(X,,V)
= supt§OG(t;x’y90)’ Gé (b(x,J’)
THEOREM 4.3. Under Assumptions 1'""'-II1""', above, ¢ is an almost admissible
estimator of g provided
@ 15 (9'(0))* dOj[n(O)(1 +pa(0))] = 0 when [§ n(6)p(6) df = oo;
(i) 2. (g'(0))* dO/[n(6)(1+14(6))] = c0  when  [§ n(6)p(0)d6 = oo,
with p, as defined in equation (4.13);
(ii)) Jdv(y)[dxp*(x| Y){E[(9(0)—E*"(9))*| X = x, Y= y]}} < c0.

Proor. Observe that u(f) (see equations (4.13)) is uniformly bounded by the
quantity whose finiteness is asserted in hypothesis (iii). Thus the conclusion of this
theorem is an immediate consequence of Lemma 4.1.

In [5], Stein treats the case where g(6) = 0 and = = 1. He concludes X is an
admissible estimator of 6 if

(4.20) Jav)[f x*p*(x | y) dx]* < oo.

Subject to Assumptions I'’-III'”’, Theorem 4.3 yields the same conclusion (with
the help of Theorem 2.1) if

4.21) Jdv()[f x*p*(x| y) dx]? < co.

5. Counter example. In order to make hypothesis (i) of Theorem 4.2 seem more
natural, a counter example will now be given, which suggests that this condition
may even be necessary. Suppose a single observation is drawn from a uniform
distribution on [0—1%, 6+%]. Let n(6) = 1+|0], « > 1. Then the formal Bayes
estimator of 6, with respect to the prior measure determined by =, say ¢,, is

(5.1 ¢u(x) = [x+(x+5> = |x—1]>"9)/2+w)]
x {1+ (sgn(x+1%) |x+%|1+°‘—sgn(x—%) |x—4|"*9/1+a)} 1.
Assume x > 4. Then the quantity (1—1/(x+%))* a=a+1, a+2, can be
expanded in powers of z7! = (x+1) L. After doing so we obtain
(5.2 b)) =x+2"1 Y20 (a /N1 +27 +27 Y20 b,/27]7

where a, = (r+1/[2r+2)(r+3) 1L )(— 1), b, =Gi(=D)"F a+1), r=0,1,2,
-++. Assume x is sufficiently large, say x > M, > }sothat [z7*+z ') 20 b,/2'| < 1.
Then, after expanding [1+z~*+(z™*}.22 0 b,/z7)] !, in powersof z*+ 27 1) 2. b, /2"
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and collecting terms in the resulting expression for ¢,, we obtain ¢u(x) =
x +k(z)/z, where k is of the form

k(z)=£+i(z_1)+ ——z %=z~

a(8a® — 16oc+9)z_2 o &,y
12 24 360 12 12
(5.3) ’

1

The risk of ¢, is, for 6 > M, +1%,
(5-4) 16, ¢,) = p+2EU[Z—0—11k(2)/Z)+ E"(K(2)/Z)?,

where p = E®(X—0)? and Z = X +%. After considerable computation, this reduces
to '

a®—2a
144

(5.5 10, ¢.) = p+ 072 +0(07%)+0(0~ ).

Observe that a?—2q is increasing for a > 1. Choose B subject to 1 < < « and
My(> M, +1}) large enough so that if 6 > M,, r(-, ¢,) >r(:, ¢p). Furthermore,
choose M5 > M, so that on [M;, ), ¢,— ¢ >0and ¢, + @, is strictly increasing.
Define an estimator, ¢ *, by

(5.6) O*(x) = Pu(x), X <M;+1,
= ¢p(x), xZ=M;+1.

As we shall see, r(0, ¢,) = r(0, ¢*) with strict inequality when 6 —% > M3 + 1.

Let P° denote the (uniform) probability distribution of X. Then, for 0+1=
M, +1, P(¢*(x) = ¢o(x)) = PA(X < My +1) = 1. Consequently, r(0, ¢,) = r(0, $*)
for this range of 6. Now suppose 6—% > M;+1. Then Pl p*(x) = ¢pp(x)) =
PUX = M,+1) =1, and r(6, ¢,) < r(0, ¢,) because of equation (5.5 and 0 > M,.
It remains to consider the range where 8 +% > M;+1 = 6 —1%. There

10, 6. — (8, 6*) = [3i1 1 ($a(x)—0)" — (d5(x) — 6)” dx.

For convenience let T(x; 0) = (¢o(x)—0)2— (¢5(x)—0)>. Then T(x; 6) = (¢o(x)—
@ p(x) )(@o(x) + Py(x) —20). Also Bo(x) — () > 0, for x > M3 and P o(x)+ Pp(x) is
strictly increasing for x > M. Thus either T(x; 6) > 0 for all x in [M;+1, 0+%]in
which case (0, ¢,)—r(0, *) > 0 and the proof is complete or T (x;60)=0 at a
unique point x = xo€[M;+1, 0+3%]. This last result is a consequence of the
strictly increasing character of (¢,(x)+ ¢,4(x)—26) and

6.7 0 < (8, p)— 10, dp) = [573 T(x;0)dx

which imply T(0+%; 6) > 0. It follows that T(x;6) <0 for -1 < x<M;+1.
Thus, using (5.7), [4.% | T(x; 6) dx > 0 which completes the argument. Thus ¢, is
inadmissible.
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