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ON AN ASYMPTOTIC REPRESENTATION OF THE DISTRIBUTION
OF THE CHARACTERISTIC ROOTS OF S;S, ! ¥

By TsenNG C. CHANG]

Purdue University

1. Introduction and summary. Let S;: p x p (i = 1, 2) be independently distributed
as Wishart (n;, p, ;). Let the characteristic roots of S;S,”! and £, E,”! be
denoted by I, (i=1,2,---,p) and A; (i=1,2, -+, p) respectively such that
L>l,>+>1,>0 and A, >2,>+>1,>0. Then the distribution of
Iy, 1, can be expressed in the form (Khatri [8])

(1.1  C|A| 7L == T2 (1= 1D} fom|I,+ A~ THLH'| ™3 *"2(H' dH)
where
C =27Pn#P = DT D/} T y(ny + 30 ){T,(3)T,(3n )L ,(Gn2)} 1,
[ (1) =nP®~ O[] T(t—4j+4%), L=diag(ly, -, 1,), A=diag(is, ", 4,

and (H' dH) is the invariant measure on the group O(p). However, this form is not
convenient for further development. Also, since

1.2) I =J I, +A™HLH' [} *")(H' dH)
0(p)

, K(_ A ! )CK(L)(nl + nZ)K
=C Z o k! Z c.d,)

where C’ = 2Pr#?®*D/TTP_ T(i/2) and the zonal polynomial C(T) of any p X p
symmetric matrix T is defined in James [7], where « is a partition of k into not more
than p parts, the use of (1.2) in (1.1) gives a power series expansion, but the con-
vergence of this series is very slow. In the one sample case G. A. Anderson [1]
has obtained a gamma-type asymptotic expansion for the distribution of the
characteristic roots of the estimated covariance matrix. In this paper we obtain
a beta-type asymptotic representation of the roots distribution of S; S, ! involving
linkage factors between sample roots and corresponding population roots. If the
roots are distinct the limiting distribution as #, tends to infinity has the same form
as that of Anderson [1]. If, moreover, n, is assumed also large, then it agrees with
Girshick’s result [4], which was also discussed in Anderson [1].

2. The asymptotic representation of /. The procedure used to find the expansion
of (1.2) is an extension of the method sketched below for the case p=2. In
the asymptotic theory it is necessary to assume [, >1[,>:-+>1[,>0 and
Ay > Ay >+ >1,>0. For the simplification of notations we let A = A1 e,
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a,=1/A(i=1,"++,p), 0<a, <a,<'+<a,<o©, and n=n,+n,. Thus for
p=2let 0¥(2) = {HeO(2), [H| = £1} then

(2. 1) 1 = 2]’0-}»(2) |12 +AHLH/|—%"(H/ dH).
Now let
H= c.osﬂ sin 6 Cr<fsm
—sinf cosf

so that (H'dH) = d6f and
2.2) I=4[(L+a 1) (1+a, )] ¥ [, [1+4c,,(1 —cos 20)] " *"do

where ¢;, = (a,—a ), —L)/{(1+a, 1)1 +a,1,)} > 0.
The integrand has a maximum of unity at # = 0 and then decreases to (1+c;,) *"
at 0 = +1in. Write (2.2) as

(2.3) AT (1 +a1)] 4 [+ exp { — dnlog (1 + e, (1 —cos 20) )} dO.

Since the integral is mostly concentrated in a small neighborhood of the origin,
for large n, we can expand the argument of the exponential function and cos 20
in the following form

24 4[Hi2=1(1+aili)]_%n ?”%nexp{—%nclzﬂz}exp {%”C1204+7}"C%264’" ++}do.

If the second exponential function in the integrand is expanded and the integration
performed term by term then for large » the limits can be set to + oo (see Erdélyi
[3]). Thus for large degrees of freedom 7 is approximately

s —n 2 \* E_L §
(2.5) [TF-: (L +a;1)] (612n> [1+n<2c12+4>+ ]

LemMA 1. If A and L are defined as before then f(H) = |I,+ AHLH'|, He O(p)
attains its identical minimum value |I,+ AL| when H is of the form

+1 0
+1
(2.6) H=
0 +1
PRrROOF.
df = d|I,,+AHLH'|
= d|Ip+A*HLH’A* |

= |I,+ AYHLH'A*| tr {(I, + A*HLH'A*)"'(A* JHLH'A* + A*HL dH'A%)}
= |I,+A*HLH'A%| 2 tr {LH'A*(I,+ A*HLH'A*)~'A*HH’ dH}.
Note that H'dH is a skew symmetric matrix, therefore, df =0 implies that
LH'A*(I,+ A*HLH'A*)"'A*H is a symmetric matrix. But
H'AY(I,+ A*HLH'AY)"'A*H



442 TSENG C. CHANG

is itself a symmetric matrix and L is a diagonal matrix with distinct positive roots,
so H'A*(I,+ A*HLH'A*)"'A*H has to be a diagonal matrix, say D. Thus
A™'=H(D '-L)H'. This can happen only if H is of the form with 41 in one
position in a column or a row and zero in other positions. After substituting
those stationary values into f(H) we obtain a general form

(2‘7) l_lf,= 1 (1 + a; lo',-))

where /,, is any permutation of /(i = 1, - -+, p). Since any permutation is a product
of transpositions (2.7) attains its minimum value when /,, = [;(i=1,2, -, p). Or
f(H) attains its identical minimum value |I,+ AL| when H is of the form of (2.6).

The above lemma enables us to claim that, for large n, the integrand of 7 is
negligible except for small neighborhoods about each of these matrices of (2.6) and
I consists of identical contributions from each of these neighborhoods so that

(2.8) I 227y |L,+AHLH'|~¥'(H' dH),

where N(I) is a neighborhood of the identity matrix on the orthogonal manifold.
Since any proper orthogonal matrix can be written as the exponential of a skew

symmetric matrix we transform 7 under
2.9) H =expS, S a p x p -skew symmetric matrix,

so that N(I) - N(S = 0). The Jacobian of this transformation has been computed
by G. A. Anderson [1],

P—2 . 8=P . 4
2.10 =1 S trS44 .-,
( ) J + 2 tr +4><6! rS*+

Direct substitution of (2.9) into |Ip+ AHLH’| ~ ¥ yields
(2.11) |I,+AHLH| *"
= [I,+ AL+ASL—ALS + ALS?/2+AS’L/2— ASLS + - -| 7"
= |[I,+AL|"*"|I,+(I,+AL)"'(ASL—ALS + ALS?/2 + AS?L/2
—ASLS + -+ .)|-%n’

LEMMA 2. For any p x p matrix B and its characteristic roots b(i= 1,2, -, p), if
max, ¢ ; < ,|b:] < 1 then

(2.12) [T, +B|™*" = exp {~{ntr(B—3B*+1B°~ - )}.
PRrOOF.
[T, +B|™*" = exp{—4nlog[ ], (1+b)}
=exp{—n )l (b—1b’+1b°— )}
=exp{—4jntr(B—1B2+1B3— - ).

Now apply Lemma 2 to (2.11) and group the terms in the following form (we
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are not about to prove that the roots of (I,+ AL)~ 1(ASL— ALS +- - ) are less than
unity for HeN(I))

(2.13) [I,+AL|"* exp [ —4n(tr {S*} +tr {S*}+ - -+ +tr {S*}+ -+ )]

where {S*} is the group of terms of order of S*. With R = (I,+AL)™, it can be
shown that

(2.14) tr {S?} = tr [R(ALS? — ASLS) — {(RASL— RALS)?]

or simply

(2.15) tr {S?} = Y7 c;;5% where
(2.16) ¢ij = (a;—a)(;—1)[{(1 +a;1)(1+a;l;)} > 0.

Direct substitution into (2.8) yields
I=2°[] (L +agl) ™ jN(S=0) exp{—4n)rl.; cijsizj} exp { —dn(tr {S%}
+ W Th<; dsij-

For large n the limits for each s;; can be put to + co and we finally have the first
term of the expansion of I approximately

(2.18) 27 [Te= s (L4 a; )" * T TP {2mf(ne; )}

No proof has been given to show that (2.18) is an asymptotic representation for
I. Hsu’s extension of Laplacés method (as used in Anderson [1]) can be applied
to prove that the representation is asymptotic.

(2.17)

Lemma 3. (Hsu). Let ®(uy, -, u,,) and g(uy, -, u,) be real functions on an
m-dimensional closed domain D such that

(i) g >0o0nD.
(ii) ®(g)" is absolutely integrable over D,n=0,1,2, -,
(iii) All partial derivatives g,, and g,,,, exist and are continuous, i, j =1, 2, *++, m.
(iv) g(u) has an absolutely maximum value at an interior point & of D, so that all
gui(f) = Oa and I — Gy, u,(é)l > 0.
(v) @ is continuous at & and ®(&) # 0. Then for n large

[o®(g) duy -+ duy, ~ [OENGE)V'I(AC 1, > En)) 12n[m)™

where g(u) = exp {Y(u)} and Auy, *++, tp) = | =Yyl
This lemma is used to prove that we have an asymptotic representation for 7.

THEOREM 1. Under the same conditions as before
I~2° Hf’= 1 (+a; 1)~ Hf’q {2“/(’10;';)}%'
ProoF. After substituting H = exp S in (2.8) we can write I as approximately

2°ys=0) {exp[—}log |[I,+ AHLH'|]}"(1 + 2%(p—2) tr 8>+ - - ) [ ]! ; dsi;
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so that
g=exp[—3}log|l,+AHLH']], @ =1+,%p-2)trS*+
Y =(—4)log|I,+ AHLH'|

and D = N(S = 0). Also & corresponds to the point S =0 and it is clear that all
conditions of Lemma 3 are satisfied. To find | =y, . . (S = 0)| we essentially use

(2.19) hﬁ = 1“%2.’:: 1 SIZ_’ and
(2.20) hij = Sij+%Zf=1 sikskj(i # ),

since we are to differentiate the elements of H =expS at most twice and
then set each s;; to zero. With ¢ = (—4)log f where f= |I,,+AHLH’| we have
02 Y052 =(— DU 0105%,— 1050 Yf*  and 0% [0y, 05,y = (— DL O]
Sy ny Oy wy— (O 10, n,)Of 108, w) 1f*. Now we make use of (2.19) and (2.20)
and it can be shown that in evaluating at S =0, 3f/0s,,, = 0*//05,, w, OSm, n, = 03

0%f|0s2, =2Aa,—a,)Il,—1,) HH&,,,’,#,, (1+a;l,) for m < n. Therefore, it follows that
— 0% /05ty = Coun 3 0°W[0S . n, OSm,w, = 0, and the lemma shows

I~ 27[|L,+AL| " # ]t e ¥](2n/n)*P= V.

THEOREM 2. The asymptotic distribution of the roots, I, > 1, >+ >1,>0, of
S, S, ! for large degrees of freedom n =n,+n, when the roots of £, X, are
A >2,>>2,>0anda;=1/A(i =1, -, p), is given by

+
2.21) Czpl‘l ([ —1) l‘[ [(l)%(nl -p- ”(a )&n1(1+a 1)~ %(n1+nz)]n[ (n27:_nz):|

The asymptotic formula shows that the joint distribution function of the roots
of S; S, ! is sensitive only to those adjacent roots which are close to each other.

3. Comparison in limiting cases. The asymptotic distribution of the characteristic
roots of S; S, ™! given in (2.21) can be rewritten as

(3 1) FI(A)HKJ(I_IJ)%H l[l%(nl p— 1)(1+a l) A(ni+ny— p+1)]H

where F,(A) (also F,(A) and F5(A4) below) depends on a;’s but not on/;’s. If we make

gi=nl(i=1,2,---, p)and let n, tend to infinity then (3.1) reduces to the limiting
form

(3.2) Fz(A)l_[ 19T Dexp [ -4 Y0 ai9:] Htp<j(gi'—gj)i1—[ip=l dg;.
Moreover, let [,* = g;/n, (i=1, 2, -+ -, p) then (3.2) becomes
(3.3) Fy()J]r=y ¥ P Vexp[—4n Y Py a ¥ [ [0 (5 = 1) T P=, dI*
It can be easily shown that

F3(4) = {(3m)rm =4O T2 T[(ny —j+ D21 [ 1< (a;— a) H{[ [= 0™}

and that (3.3) agrees with Anderson’s [1] asymptotic distribution for the characteristic
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roots of n; ~'S; when S, is distributed as Wishart (n,, p, £,). Therefore, for n,
large enough, by analogy to Anderson [1] [P ;(1;* —1;*)* tends to [ [/« (4;—4,)*
and the resulting independent chi-square distributions tend to normals. This
agrees with Girshick’s [4] asymptotic normality as noted by Anderson [1].
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