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1. Introduction. Let A,(p x p)(r=1,---,q) and B(p x p) be independently
distributed according to Wishart (£, m,) and Wishart (Z,, n) respectively. Let

(LD L, =E*A(E™Y),

E* being a lower triangular matrix such that E*(E*) =E=Y?,A4,+B. The
purpose of this paper is to derive the joint density of L, L,,--:,L, an
asymptotic distribution for [[¢-,|L,| and an asymptotic distribution for

[1=X0-1 L.
2. Preliminary results.

LeMMA 1. If R and S are two positive definite symmetric matrices of order p, then
(Constantine (1963)),

(2.1) fgsoexp(—%trRE)|E|*"***VC(SE)dE = l“p(oz)]Rl %) Cx(R™1S).

LEMMA 2. If R is a positive definite symmetric matrix of order p, then (Constantine
(1963))
2.2 fo<z<1 |Z|"“’f“’+ ”II —Z]”'*“’* DC(RZ)dZ

= (T, ()T (b)/T (ot + b) J(()k/ (o + b)x Cx(R).

LeEMMA 3. If R is a positive definite symmetric matrix of order p, then

(2.3) J‘ .. '.[0<Lr<1, 0<Efoy o<1 H;;= L |Lr ar—3(pt 1)ll_zg= . Lrib—%(w 1)
"Ck(R Z'r’= 1Ly) H‘r1= 1dL,
= (L@ [ 7= 1 Tpo)/Tp(o+ 5) )((@)x/(2 + b)) Cx(R)

where o =Y 9_, a,.

Proor. Let ¢(L,, -, L) =]]%, ]L, “""I("“)|I— ‘,‘=1L,|"‘*(p+”. It follows
from Tan (1960) that the integral of ¢ w.r.t.L,, -, L, over the space Z = Z;’:l L,
is

(2-4) IZ=£?=1L,¢(L1’ “"Lq)].—_[g=1dLr
= ([T=1 T (@)L (a))|Z|* 2P+ DI —Z]P =3+ D,
Hence (2.3) can be written as
jo<z<1(jzﬂ=,L,=z ¢(L1’ ) Lq) Hg=1 dLr)CK(RZ)dZ
= ([T T,Gm)T,Gm) fo<z</ |Z[*" P~ VI -2

#n=r=DC(RZ)dZ.

Received Febuary 28, 1969; revised November 21, 1969.
1091

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to |

£

The Annals of Mathematical Statistics. RIKGIS ®

www.jstor.org



1092 D. J. DE WAAL

Using (2.2), the lemma is proved.
3. The joint density of L, -, L.

THEOREM 1. If L, is defined as in (1.1), then the joint density of Ly, '+, L, is
given by

(1/rp(%n)ng=1 Fp(%mr))|z1_lzzlémpzzr%(m“)
e (L PP D= Y, L[ e D
(3.1 [e>oexp(—}trZ, 'E)|E[}mtrmrm D
“oFo(3I =%, 'Z)%, " 'E* Y I L(EY) dE,
L, >0, Z‘,’=1L, <I,m=Yi,m,

Prook. The joint density of L(r =1,--, q) and E is easily obtained from the
joint density of A,(r=1,""-,q) and B. The Jacobian being J(4,,**, A, B~
Ly, L, E)=|E[**?* D, Integration with respect to E gives the desired result.

From (3.1) we can obtain the moments of [[¢-, |L,| and |[I—) -, h,| using (2.3)
and (2.1) successively, i.e.

E([Ti= 1 |L|"™) = (C,G(m+m) [Ti= 1 TpGm, + (T ,m+n)+ D [i- . T,(3m,)))
(2 [T I Gm b, HmAn); JmAm)+hy =27 ',),  h=}liih,

and
(3.3) E[I-YiL]|" = ,(G3m+n)l,Gm+h)/(T,GmI,(G(m+n)+h)))
: |21 N 122|%m2F1(%m, Ym+n); Hm+n)+h; I-%,7'Zy).

4. Asymptotic distributions. Asymptotic distributions for []¢,|L,| and
|I- Y9_, L,| will now be derived using the moments (3.2) and (3.3) respectively.
The following approximation procedure will be used (Box (1949), Anderson
(1958)) (see also de Waal (1968)): Consider a function g of the form

4.1) g@® = c(x*]¢=, X,¥r) 2itep
1221 ([Te= 1 Tox,(1 = 2it) + B, +v ) T(px(1 =2it)+ B+v;+7)))

where ¢ is a constant such that g(0) =1, p a chosen constant Y ¢_; X, = X, f, =
(1=p)x,, B =(1—p)x and i = (—1)*. Ignoring terms of order x~? and higher, this
function can be written as

4.2) g(1) = (1=2i) ¥ (1 +o((1-2it) ' =1))+0(x"?),
assuming O(x~ %) small, where

4.3) f=20=1((g=DA=2v)+7)),

(4.4) o =GP h=1 (=1 (1/x)—1/x)

VA=V + D)= +2v9;—)x) == p)f).
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The following theorems can now be proved:

THEOREM 2. If Ly, - -+, L, are distributed according to (3.1) then

4.5 P(Q-pYi-ymlog|L,| < z) = P(x,> £ 2)+0(m™?)
where

(4.6) Q = pp(} i-1 m,log(3m,)—mlog(3m)),

4.7) p =1+4(n—p—1)/m+2d/mp—(2p*+3p—1)/12n,
(4.8) d= |Z1 N 1221%»: Zk ZK k(Zm)xCx(I -2, '2,)/k!

and y* is a chi-square variate with

4.9 f=4p(2n+(@-D(p+1))

degrees of freedom.

ProOF. Let
W = (Gm)™? /T Gm)* ") [T |L[*™

and M = —2log W. From (3.2), the characteristic function of pM can be written
as

(4.10) o) = (@Am)™[Ji=: Gm )™ ")E o, |L,| "o
= |2, 718 Y Sk Gmk 91 (DG (DCxI =2, T E) k!
where

9:(8) = (Gm)*™?[[[i= L Gm,)*™) 24T (3m)
T18= 1 Tp(3m,(1 = 2itp) (T ,(3m(1 = 2itp)) [ [}= 1 T,(3m.))
and
9:(t) = T,(3m(1 = 2itp), K)T,(3(m +n), K)/(T,(3m, K)T,(3m(1—2itp) +1n, K)).
Use was made of the expression (a)x = I',(a, K)/T ,(a) where
Iy a, K) =[]0~ O[] T +3(1-)+K),
K=(K=(Ky, ", K,) being a partition of k, and
I, (a) =T (a,0).

Using these expressions for the gamma functions, g,(¢) and g,(t) can be written
in the form (4.1).

Comparing g,(f) with (4.1), it follows that x, = 3m,, v; = $(1—/) and y;=0.
Hence, from (4.2), g,(t) can be written as

g,(t) = (1=2i) ¥ (1 +w,((1-2i) ' =1))+0(m™?)
with f; = p(g—1)(p+1) and
o, = (=12p)((1=p) [, = (p T2 (1/m)— p/m)(2p* +3p—1)/12).



1094 D. J. DE WAAL
Comparing g,(t) with (4.1) it follows that ¢ = 1, x = 3m, v; = 3(1—/)+K; and
y; = 3n. Therefore g,(¢) can be written as
g,(t) = (1 =2it) ¥ (1 + w,((1=2i) "' = 1))+ O(m~?)
with f, = mp and
@, = (= 1/20)((1 = p) f + n(4np—1$p* +2k—%p)/m).
Hence
4.11) 9:1(0g,(0) = 1 =2it) ¥ (1 —w((1=2it) " ~1))+0(m~?)
where /= f, +f, = 3p2n+(qg—1)(p+1)) and
W, =W, + 0,
(4.12) = (=1720)((1=p)f+n(Gnp—1p* + 2k —1p)/m
—p(Xi=1 (1/m,) = 1/m)(2p* +3p—1)/12).
Substituting (4.11) in (4.10),
(4.13) ¢(t) = (1.2i) ¥ +((1 =2it) 2 +D (1 =2it)~¥)
=T o[ F Yk Yk (3m)g @ Cx(1 =2, 7' E)) k! + o(m™?).

Choosing p such that w, = 0, we have p as given in (4.7). Hence w, can therefore be
written as

(4.14) w, = n(d—k)mp.

Substituting (4.14) in (4.13) we note that the second term vanishes if d is chosen
equal to (4.8). Hence the characteristic function of

(4.15) pM = Q—pY i m,log|L,,
Q being given in (4.6), becomes
(4.16) d(t) = (1=2it) ¥ + 0(m™?).

This is the characteristic function of a chi-square distribution with f degrees of
freedom and hence the theorem follows.

THEOREM 3. If L,, - -+, L, are distributed according to (3.1) then
P(—nplog|[I-Y %, L,| £ 2)
(4.17) = |21—1}:2l%m Zka (Em)k P(X}k £ 2)CxI -2, 71Ty k!
+Izl—lzzl%mZkZK(%m)K(P(Xi‘k-!—z.é z)—P(x}, £ 2))
cwy Cy(I =2, 1 Z)) k! +0(n™?),
where

(4.18) p=1+4(m—p—1)/n,
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(4.19) o, = (=1/p)(k(1—p+m/n)+ ;K> =3, K;))/n)
and x5, a chi-square variate with

(4.20) fu =mp+2k

degrees of freedom.

PrOOF. Let U = [I-Y?_, L,[* and N = —2log U. From (3.3), the characteristic
function of pN can be written as

(4.21) L OES lzl N lzzl%m Y Yk (Gm)ggs(t) Cx(I—2, 7 '%,)/k!
where

93(t) = I' (3(m+n), KT (3n(1 —2itp) )T ,(3m)T ,(3n(1 —2itp) +3im, K)).
g5(t) can be written in the form (4.1) with g =1, x = in, v; =3(1—j) and y; =
im+ K;. Hence, using (4.2),
(4.22) o) = [, 71 Y Yk Gm)k(1 = 2in) " H

(I+o((1=2i) ' =1))Cx(I =2, 7'Z,)/k!+0(n"?)

with f; given in (4.20) and
(4.23) = (=12p) (1 =p) f+im(m—p—1)+2mk[n+2(} ;K> =Y ; K;j)/n).

Let w, = 0 and solve for p. Hence p becomes as given in (4.18) and w, can be
written as (4.19). Taking the inverse of (4.22) (Anderson (1958), page 206) the
theorem is proved.
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