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By J. L. Hopgges, Jr.! anD E. L. LEHMANN?

University of California, Berkeley

1. Introduction and summary. Consider a statistical procedure (Method 4) which
is based on n observations, and a less effective procedure (Method B) which requires
a larger number k, of observations to give equally good performance. Comparison
of the two methods involves the comparison of k, with », and this can be carried
out in various ways. Perhaps the most natural quantity to examine is the difference
k,—n, the number of additional observations required by the less effective method.
Such difference comparisons have been performed from time to time. (See, for
example, Fisher (1925), Walsh (1949) and Pearson (1950).) Historically, however,
comparisons have been based mainly on the ratio k,/n. Thus, Fisher (1920), in
comparing the mean absolute deviation with the mean squared deviation as esti-
mates of a normal scale, found this ratio to be 1/1.14. Similarly in 1925 he found a
large-sample ratio of 2/n for median compared with mean for estimating normal
location, and the same value was found by Cochran (1937) for the sign test relative
to the t-test in the normal case.

The reason for using the ratio rather than the difference in these cases is of course
that the ratio is stable in large samples, so that a single limit value, say
e = lim,_,, n/k,, known as the asymptotic relative efficiency or ARE of B with
respect to A, conveys a great deal of useful information in a compact form. When
e < 1, the difference k,—n, is not a useful measure in large samples because it tends
to infinity with n.

The situation is however different, and in a sense even the reverse, in the many
important statistical problems in which e = 1. It is then possible also for the dif-
ference to be stable, and the main purpose of this paper is to point out a number of
problems in which this is the case. For the additional number k, —n of observations
needed by Method B we suggest the term deficiency. If it exists, the limit value
d = lim,_, (k,—n), will be called the asymprotic deficiency. The number d sum-
marizes the comparison much more revealingly in these cases than does the fact
that e equals 1. (If it is not known a priori, the latter does not even tell us which of
the two procedures is better.) Of course, d is less easy to compute than e since it in
effect requires computing an additional term in the asymptotic expansions.

2. General properties of deficiency. We shall now introduce several conceptual
and theoretical aspects of deficiency, using as the motivating topic the comparison
of two methods of point estimation in terms of expected squared error. Suppose
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that 4 and B are methods of point estimation and let their expected squared errors
be denoted by ¥, for Method 4 and by V,’ for Method B, when each estimator is
based on n observations. Then for each sample size n for 4 consider the equivalent
sample size k = k,, for B, such that V¥, is equal to V, or as nearly equal as possible.
In the problems with which we shall be concerned, ¥, and ¥V,’ will typically be of
the form

¢ a 1
(21) V,, = ;;‘FF'I'O(F) and

. ., ¢ b 1
(2.2) v, =?+;1—r-+—1+0 ;;_'_—1-

with r > 0. Here the positive coefficients of 1/n" are assumed to be the same since
otherwise the asymptotic efficiency of one procedure relative to the other would be
different from 1. It occasionally happens that the second terms are of order 1/n"**
with s # 1, and we shall see below how to modify the results for this case.

Let us assume, as will typically be the case, that both {V,} and {V,’'} are
strictly decreasing sequences. Since V, and ¥V,’ are inherently nonnegative, it then
follows that ¥, and V,’ are positive for all n.

In spite of the integral nature of sample size, let us for a moment continualize the
problem by defining ¥,’ for nonintegral k in such a way that it is a continuous,
strictly-decreasing function of k. (There are clearly many such functions; we shall
discuss a particular choice below.) Given such a function, let k, be the (unique)
solution of the equation V; = V,. As n— 0, it follows from (2.1) and (2.2) that
V,— 0, hence V; — 0, and thus k, - co. Equations (2.1) and (2.2) show further

that
1 1+a+0(1) =_1_ l+b+o(l)
n" cn k" ck,

and hence that

2.3) k,/n— 1.
Defining d, by
2.4 k,=n+d,,

the equation preceding (2.3) may be rewritten as

d b+o()) " - b 1
i PO} it PIRCACON g P LN ) )
n cn ck, ren  rck, n

By (2.3), this shows that

bh—
2.5) d,— >4 as n— .
cr
The same argument also shows that when the second term of (2.1) and (2.2) is
respectively a/n"*S and b/n"**, then d, > 0o ord—0ass<1lors> l.
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Formula (2.5), which is independent of the particular continuous function which
is interpolated between ¥, for integral k, suggests that the difference between the
numbers of observations required by the two procedures tends to a limit as the
sample sizes tend to infinity. However, it unjustifiably treats k as a continuous
variable and consequently is difficult to interpret. The difficulty can be avoided by
the method of stochastic interpolation introduced in [5], according to which sample
size k or k+1 is chosen with probability 1—= and = respectively. This yields a
continuous expected sample size k + 7. Let us suppose that the performance of the
resulting procedure is measured by Vy,, = (1—-m)V; +nV,’, as will be the case
when V' is a probability, an expectation or a variance. This defines V'’ as a con-
tinuous strictly decreasing function of its subscript as required, and it follows that

(2.6) d,=k,+n—n
tends to 4
2.7 d=(b—a)lrc,

which we shall call the asymptotic expected deficiency (AED) of procedure B relative
to A, or simply the deficiency of B relative to 4 when no confusion is likely.

Formula (2.7) shows that if ¥, and V,’ are given by (2.1) and (2.2), then deficiency
has the following two properties, which are analogous to the corresponding
properties for efficiency.

(i) Reflexivity. If d is the AED of B with respect to 4, then the AED of 4 with
respect to Bis —d.

(ii) Transitivity. If d, is the AED of B with respect to 4, and d, the AED of C
with respect to B (where the accuracy of C is of the same form as those of 4 and B),
then the AED of C with respect to 4 is d; +d,.

If interpolation is not acceptable, and only integral sample sizes are permitted,
the equivalent sample size k, may be defined as the integer(s) k for which V' is
closest to V,. For fixed n and d = k—n we find

o 1 1 a b +o 1
n+d n=20C (n+d)r nr (n+d)r+1 nr+l nr+1

= [crd—ab-i—o(l)]nir - [d-%”w(g]%';.

For all sufficiently large n, ¥, ., and V, are therefore made most nearly equal by
giving d the integral value closest to ab/cr (or one of the two nearest integers if
abjcr = 1/2, 3/2, 5/2,--). We shall call this value of d the asymptotic integral
deficiency of B with respect to 4. While for simplicity we have presented the dis-
cussion of deficiency in the context of comparing the squared errors of point
estimates, much of it applies to other measures of performance. Examples will be
given in Sections 4 and 5.

3. Further examples of point estimation. In the present section, we shall illustrate
the use of deficiency on some additional problems of point estimation. As measure
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of accuracy of an estimator, we shall continue to take the expected squared error.
Of course in the case of unbiased estimators, this is the variance.

EXAMPLE 3.1. Estimation of variance; price of not knowing the mean. Observa-
tions X, X,, - are drawn from a distribution F with expectation ¢ and variance
o2. If ¢ is given, the customary estimator for 62 based on n observations is

X;=0)*.

™M=

1
3.1) M,=-
n;

1

This estimator is unbiased and consistent, and its variance is
3.2 " =yot/n

where y+1 = p,/o* is the standardized fourth central moment of F.

The estimator M, is of course valid only if the value given for £ happens to be
correct. For this reason, even when a value for £ is available from theory or past
experience, one may often prefer an estimator which is robust against errors in &.
The conventional robust estimator is

1

- - 1
pcl (X;—X)*> where X=;ZXi.

M=

(3.3) M, =

]

1
This estimator is also unbiased and its variance (see Cramér (1946) formula
(27.4.2)) may be written as

. aYm—1)+2
(G4 V, =0 —_‘n(n—l)

In making a choice between these estimators a highly relevant factor is the price
one must pay for the robustness. The moments of any distribution F satisfy
Uy = o* and hence y = 0. In fact, y > 0 except for one special case which we shall
discuss separately. Assuming y to be positive, the variances V, and V,’ satisfy (2.1)
and (2.2) with r = 1, ¢ =y, a = 0 and b = 2. The asymptotic relative efficiency of
M’ relative to M is therefore 1, and the asymptotic expected deficiency is d = 2/y.

When Fis normal, y = 2 and hence d = 1. In this case the deficiency of M’ with
respect to M is equal to 1 in a stronger sense than that we have been discussing,
since for normal samples M, and M, , have exactly the same distribution for all
sample sizes rather than merely matching the variances in large samples.

While in the normal case it costs only one observation to protect against an
erroneous value given for &, the deficiency of M’ relative to M can be arbitrarily
large for certain nonnormal populations since y can be arbitrarily near zero. It is
easy to see that the limiting value y = 0 arises only when F puts probability 1/2 at
each of the points £ —¢ and é+6. In this case Var(M,) = O for each value of #,
corresponding to the fact that M, = o with probability 1. On the other hand,
Var(M,") = 26*|k(k—1) is always positive, approaching 0 as k — co. One might
thus say that k, = oo for every n, so that the ARE is 0 while the AED is co. This
agrees in a limiting sense with the conclusion that the deficiency is 2/y.
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In statistical practice, special interest attaches to populations that are generally
similar to the normal but depart from it by having somewhat heavier tails—corre-
sponding to the presence of an occasional gross error. In such populations one
would expect to find y greater than its value 2 in the normal case, and hence the
integral deficiency would be O or 1. It is reassuring that the large-sample cost of
the protection afforded by use of the robust estimator M’ will not exceed one
observation in these frequently-encountered heavy-tailed populations.

ExampLE 3.2. Estimation of variance; price of unbiasedness. In the preceding
example, suppose that ¢ is unknown but that instead of (3.3) we are willing to
consider any estimator of the form

(3.5) M,.=Y(X;—X)*/(n+o0).

If ¢ # —1, this will not be unbiased but may have a smaller expected squared error
than the unbiased estimator. The deficiency of M _, relative to M, will then indicate
how many observations one loses by insisting on unbiasedness, and thereby
provides a basis for deciding whether or not the price is too high.

From (3.4), one easily finds

0_4

(3.6) EM,—¢%)? = {(n=D[y(n—1)+2]+n(c+1)*}

" n(n +_c-‘)—2
and hence
c+1)2=2y+2-2c 1
(3.7 E(M,—6%)? = 04[% 4 nf y+0<ﬁ>:|.

As an example, consider the classical estimator M. The deficiency of M _, relative
to M, is given by (2.7) withr =1, ¢ = y, a = 3—2y and b = 2, and hence is equal to

(3.8) d=Q2y—-1jy.

The classical M, is thus better than M_, when y > 4, with the situation reversed
when y < 1. When F is normal, in particular, y = 2 and d = —3/2. One can there-
fore save an expected 1.5 observations by using the biased estimator M,. The best
value of ¢ in the normal case is ¢ = 1 for which d = 2 and which therefore provides
an additional saving of .5 observations.

ExAMPLE 3.3. Median versus quasi-median. Consider the problem of estimating
the center 6 of a symmetric distribution. Let X, X5, - be a sample from the dis-
tribution, and denote the orderedsample by Y; < ¥, < - --. Suppose that the sample
size is odd, and consider as two unbiased estimators of 6: the median M’ =Y, ,
based on k = 2h+1 observations, and the quasi-median M = (Y,,+ Y,,.,)/2 based
on n =2m+1 observations. It was pointed out in [7] on the basis of a heuristic
argument that up to terms of order n~2, Var M = Var M’ provided k = n+2, for
all F satisfying suitable regularity conditions. For these F, the AED of M’ with
respect to M is therefore equal to two.
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EXAMPLE 3.4. Comparison of the minimax and unbiased estimator of binomial p.
Let X denote the number of successes in # binomial trials with success probability
p. Then the unbiased estimator of p with uniformly minimum variance is M, = X/n
while the minimax estimator is .

N X ]
M= T g

and these estimators have expected squared errors

pq 1
V,=— and V/=— —
n n an n 4(1 +\/n)2
respectively. If p # 1, the ARE of V,’ to V, is pg/4 < 1 so that for large n, M, is
superior to M,’. However, for p = 4, the situation is reversed. The ARE is 1, and

V,’ < V,. To determine the deficiency in this case, we must compare V, = 1/4n

with
.1 2 1
v =gl -Gl

Here the remark applies which was made following (2.5). We have r =l and s =1
and the asymptotic deficiency of V, relative to ¥,’ is infinite. In fact, if we equate
Vi, with V', we find k, =n+2n*+1 so that k,—n=2n*+1. The deficiency
computation thus shows that the classical estimator requires a much larger sample
size than the minimax estimates if they are to have the same expected squared error
at p = 4, in spite of the fact that the corresponding asymptotic efficiency is 1.

4. Confidence sets for normal means. Let X;;,j=1,"'-,n;i=1,-"-, p, be inde-
pendent observations from p normal distributions with expectations &;,- -+, £, and
common variance o2, and suppose we wish to obtain a confidence set for the
vector (&4, +, &,). It is sometimes possible to treat ¢ as known, the value being
taken from past experience or theoretical considerations. The best confidence sets
then are spheres centered at (X;., ', X,.) where X;. =) X;;/n and with a fixed
radius computed from the y2-distribution. The confidence coefficient of this pro-
cedure could of course be seriously invalid if the given value of ¢ should happen to
be incorrect. For this reason, it is often preferred to ignore the given information
and instead estimate ¢ from the data. The resulting confidence sets, which are
based on the F-distribution, will again be spheres centered on (X;., -, X,.) but
the radius will now be a random variable. Estimation of ¢ involves some loss of
effectiveness; the resulting confidence sets will tend to be larger. The choice between
the two procedures will depend mainly on two considerations: the degree of
reliance placed on the given o, and the cost of ignoring it. As a contribution to
the second aspect we shall in the present section determine the deficiency of the F-
with respect to the y*-confidence sets, where we shall take as our measure of
performance the volume or expected volume of the confidence spheres.
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For known ¢, the confidence sets at confidence level 1—« are given by

@.1) nY (&—X.) o S v,
Here v, is determined by the equation
“4.2) Y(v,) = 1—«a

where ¥ denotes the cumulative distribution function of the y2-distribution with p
degrees of freedom. For simplicity of notation, let us choose the scale so that ¢ = 1.
If ¢ is unknown, the confidence sets are

4.3) nZ(éi—Xi-)z =CT

where T=Y%(X;;— X;.)*/p(n—1). If we put t=p(n—1), then ¢T has the -
distribution with ¢ degrees of freedom. The constant C (which of course depends
on t) is determined by the equation

(4.4) E¥(CT)=1—a.

As t > 00, T— 6% = 1 in probability and hence C — v,. For a comparison of the
two families of confidence sets, it is necessary to find the difference between C and
v, to terms of order 1/z. Since T'is close to 1, this can be accomplished by expanding
¥ about C, and for this purpose we note that the density y of ¥ is of the form

4.5) Y(y) = Kytr~le™®
and hence that its derivative is

(4.6) ') =[Gp=D)y ' =1 ().
Thus

Y(CT) =Y¥Y[C+C(T-1)]
= ¥(C)+ (T — DY(C)+3CH(T — X' (C)+ Y "(U)CHT - 1)

where U depends on T.

Since E(T—1) =0, E(T—1)* = 2/t and E|T—1|> = O(¢~?), it can be shown that

1—a=Y(O)+3C*[(hp—1C™ = 4Y(C) +o(t™")
= W[C+Ct™H{(3p— 1)~ 4C} +o(™Y].

This result is obvious for values of p for which /() is bounded i.e. for p = 6, and
easily follows by truncation for the remaining values of p. Comparing this equation
with (4.2), we find v, = C+Ct ™ '[(3p—1)—3C]+0(t ') and hence
(%)) C=0v,—v,t" [(Gp—1)—30v]+0(™ ).

Since the radius of the confidence spheres (4.1) is r = (v,/n)* when ¢ = 1, their
volume is given by

(4.8) V, = K,r? = K,(pv,/N)**
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where N = pn is the total sample size and K, is a constant. Similarly, the radius of
the confidence spheres (4.3) is r’ = (CT/n)?, so that their expected volume is

4.9 E(V,)=K p(C/n)J-”’E(T“).
Now
(4.10) E(T?*?) = 1+A,,t‘1 +o(t™")

where we shall determine 4, below. Hence, using the fact that ¢ = p(n—1), we have

oy =k (P L P (P | A (L
4.11) E(Vn)—Isp(N) 1 Nl 5 1 > +N+o ~ )0
It follows that V, and E(V,’) satisfy (2.1) and (2.2) with r =4p, c=(pvp)*"Kp, a=0
and b = (pv,)**K,{4,—1p[(4p—1)—4v,1}. By (2.7), the AED is therefore
4.12) d,=2p '4,—(4p—-1)+1v,.
To complete the evaluation of d, it remains to find 4,. Now the moments of T
are given by (see for example [6])

t+2a—2)(t+2a—4)- - -1
E(T,}p)=(+2a )(;j-a ) t=1+a(at )+o<;1> if p=2a

and

E(T#) = (t+2a—1)(t+t2aa—-3). “(t+1)[1_;:‘ta+0<tl>]

1 1
=1+(a2—:1c); +o<;> if p=2a+1.

Substituting the values A,, = a(a—1) and A4,,,, = a*—1 into (4.12) shows that
for all p the deficiency of the F- to the y2-confidence sets is
(4.13) d,=1v,/2.

The deficiency thus increases with 1 —a and with p. The values of d corresponding
to a number of values of « and p are shown in the table below. It is interesting to
note how large some of these values are.

o
p
1 .05 .025 .01 .005
1 1.353 1.921 2.512 3.317 3.940
2 2.303 2.996 3.689 4.605 5.298
5 4.618 5.535 6.416 7.543 8.375
10

7.994 9.154 10.242 11.605 12.594
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The result extends without any difficulty to the case of unequal sample sizes.
If the number of observations in the ith sample is #;, the total number of observa-
tions N = Y n; and p; = n,/N, the confidence sets for known ¢ are

(4.14) N} p&i—X; ) [o* S v,

These are ellipsoids whose volume is K,(v,/N)?/p; -+ p, instead of (4.8). Similarly,
the expected volume of the ellipsoids for unknown o is K,(C/N)?E(T?)/p, """ p,
and (4.13) now follows exactly as before.

5. Student’s t-test versus the X-test. In the preceding sections we were concerned
with the comparison of two procedures the performance of which was measured
by a single real number: A variance, or volume of a confidence set, which happened
to be independent of the unknown parameters, or which we considered only at
specified values of the parameters. This is however atypical; more usually, per-
formance is measured by a function of the parameters and an equivalent sample
size will have to be defined in terms of an overall matching of two such functions.

In the present section we shall consider a testing problem, where the performance
is described by the power functions of the tests in question but where through
special circumstances the difficulty alluded to need be confronted only partially.
The problem is the normal one-sample location problem. The variables X, X,, ***
are assumed to be independently normally distributed with expectation ¢ and
variance 62, and the hypothesis H: ¢ = 0 is to be tested against the alternatives
¢ > 0. As in the preceding section, we shall compare the test that is appropriate
when a given value of ¢ can be relied upon, with the z-test, which places no reliance
on such an assumed value of g, in terms of deficiency. The determination of this
deficiency enables us to throw some fresh light on the interesting solution to the
cost problem given by John Walsh (1949). (We are indebted to Prof. J. Hemelrijk
for pointing out to us the connection of our results with the work of Walsh.)

When ¢ is known, the hypothesis H is accepted at level « on the basis of n
observations X}, -+, X, when

5.D) n*X,lc <u, where
(5.2) u, = ® (1 —a).

For simplicity of notation, we shall suppress the subscript « of u in the following
discussion and suppose furthermore that ¢ = 1. The acceptance probability of the
test (5.1) is then

(5:3) B(&, n) = B(u—n*¢) = d(u—0)

where 0 =n*¢.
Consider now the #-test based on k observations, with acceptance region

(54 KEX/S, < i
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where S,2 =Y (X;—X,)?/(k—1). The acceptance probability of this second test
can be written as

(5.5) (&, k) = E®(c, S, — k*).

Let us put n = k*¢, add and subtract ¢, within the parenthesis, and expand the
right-hand side about ¢, —6. Suppressing the subscript & in ¢ and S, formula (5.5)
then becomes

(& k) = E{®(c—n)+@(c—me(S— 1) +4¢'(c—=nec*(S = 1)* +30"(T)c* (S~ 1)},
where T depends on S and 7. From the facts that

1
E(S,,)—1+k+0<k2), Var(S,) = — +o<k2>

and E|S, — E(Sp|® £ MJk?, it then follows that

2
HE K) = D=+ 2 gle—n) + = 9/(e— n)+0(k2)

Here the boundedness of ¢’ insures that the error term is of order 1/k? uniformly
in . Using the fact that ¢’(x) = —x¢(x) and once more the expansion of @, y can
be now written as

3 2 1
(ot (-5 ofd)

Putting # = 0 in this equation yields

ac c* 1
l—a=du) = (I)<c+-E 4k>+0<k2>

u=c+— ac_¢ —+0 !
k 4k k)
and thus in particular also u = ¢+ O(1/k). Substitution in the last expression for y

and the equation n = (k/n)*0 finally gives the approximation

k\?* u?
(5.6) W, k) = @[u (n) 0(1—@>J+o<k2>,

where the error term is of order 1/k? uniformly in 6.

If we now equate expressions (5.3) for B(&, n) and (5.6) for y(&, k) to find the
value k = k, for which the two tests give the same power (up to terms of order 1/n)
for a fixed value of 6, we find in analogy to (2.5) that

and hence

(5.7 d, = k,—n-u??2.

This result is independent of 6 and hence of £, and we see in fact that the maximum
difference sup |B(é, n)—7y(&, k,,)] is of order 1/n? if and only if k, satisfies (5.7).
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As did (2.5), relation (5.7) suffers from the difficulty that k is not a continuous
variable. This can be avoided as before by stochastic interpolation. Instead of a
fixed sample size k, we take either k or k+1 observations with probability 1 —=
and = respectively, the acceptance probability of the resulting test being

(1=m(&, k) +my(&, k+1).

If this is equated with (&, n) we find as in Section 2 that the difference between the
expected sample size k,+ 7 for the t-test and the sample size n for the normal test
tends to

(5.8) d=

which is therefore the AED in the present case. The followmg are the values of d
corresponding to a number of values of o.

o .10 .05 .025 .01 .005
d .821 1.353 1.921 2.706 3.3175

2
u,”,

N

In large samples, those values may be interpreted as the price, measured by the
number of additional observations, required to protect oneself against possible
error in the given value of ¢. In our judgment, the values of d are small enough so
that it would rarely be reasonable to rely on the given o.

Since the value of d is asymptotic, the question arises how good the approxima-
tion is for a given finite value of n or k. Some indications regarding the accuracy of
the approximation for small samples will be given at the end of the section.

In the foregoing, we were concerned with testing the hypothesis ¢ = 0 against the
alternatives ¢ > 0. By symmetry, (5.8) is clearly also the deficiency when the problem
is that of testing & = 0 against the alternatives & < 0. Consider now the problem of
testing £ = 0 against the two-sided alternatives ££0 at significance level «. The
power function of the symmetric two-sided normal or z-test is just the sum of the
power functions of the corresponding two one-sided tests at level «/2. Since an
expected addition to n of d = 4uZ,, observations will bring both of the one-sided
t-power functions into coincidence with the corresponding normal power functions,
it is seen that the deficiency in the two-sided case is just

(5'9) d = %u:lz.

This two-sided testing problem is closely related to the problem of obtaining
confidence intervals for &, which in turn is the special case p = 1 of the problem
treated in Section 4. The deficiency found there was v, with v defined by ¥(v) =
1 —o where W is the cumulative distribution function of a ¥ variable with 1 degree
of freedom. Clearly v* =u,,,, and hence the deficiency (5.9) agrees with the
deficiency (4.13) for p = 1.

Procedures intermediate between the one-sided and symmetric two-sided tests
are the asymmetric two-sided tests. The corresponding comparisons in these cases
are quite different from those treated above, because it is not possible to match the
power curves to the same order as in the one-sided case.
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Let us return now to the one-sided case and, as in Section 2, consider the alterna-
tive approach of integral deficiency, in which the equivalent sample size is defined
as the integer k, for which y(¢, k) is closest to (&, n). To make this precise, it is
necessary to specify what is meant by the functions y{(&, k) and (&, n) being as close
as possible. Since (5.3) and (5.6) express  and y conveniently in terms of 8, we
could specify a value of 0 and ask that the acceptance probabilities be as close as
possible for this particular value of 6. However, such a choice would typically have
to be rather arbitrary (although in the present case the large-sample result would be
independent of 0) and we shall instead define the equivalent sample size to be the
integer k, which minimizes

(5'10) Supe I')’(f, k)—ﬁ(és n)l'
Here the supremum is taken over & > 0 since the tests are one-sided.

To examine the behavior of y(&, k) for k near n, let us write k = n+d where d is
now an integer. Then

k 3 E
() = () =resmeola)
n n 2n n
so that by (5.6)

(5.11) Y& n+d) = fb[u—(’(”%‘g)}w(hl_l)
- (D(u—9)+’—lz(%u2—d)'%9¢(“—9)+0(;,1_2>’
and hence
Y&, n+d)—B(¢, n) = Gu*—d)10¢p(u—0) $+0<;11_2>

Let us now find the value of d for which y(¢, rn+d) fits most closely to S(&, #) in the
sense of minimizing (5.10).

It is necessary to distinguish three cases, and we first suppose that for some
integer d,,

(5.12) do < 3u? < dy+1.

The other two cases: d,—4 < 1u? < d, and d,+% = Ju? can be handled similarly.
Furthermore, we shall assume that « < 1 so that u > 0; again, the other case is
completely analogous. The function 10¢p(u—0) then achieves a unique maximum,
say h, at a point 6 = 0, > 0. The value of / is also the maximum of [}0¢(u—0)|. If
for the moment we ignore the uniform error terms of order 1/n?, we find that the
acceptance curves of the three t-tests y(¢, n+d,— 1), (&, n+d,) and y(&, n+dy+1)
all attain their maximum distance from B(¢, n) at 6,, where they are respectively:
low by (dy+1—4u?)h/n; high by (4u®—d,)h/n; and high by (3u®—d,+ 1)h/n. Of
these three curves, y(&, n+d,) is thus closest to B(&, n) and it is closer than its
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nearer competitor by [2(d,—3u*)+1]h/n = A. For values of k other than these
three, the superiority of fit of y(&, n+d,) is still greater: from (5.11), it is seen that
for £ >0, y(¢, n+d) falls monotonely as d increases, so that y(&, n+d,+2),
V(& n+dy+3), - are still further below B(&, n) than is (&, n+d,), while
Y&, n+dy—2), y(& n+dy,—3), -+ are still further above pf(£, n) than is
Y&, n+dy—1).

To summarize: if we ignore the error terms, the f-acceptance-curve which best
fits B(&, n) is (&, n+d,), and its superiority of fit over its nearest rival is propor-
tional to 1/n. However, we know that the error terms tend to zero uniformly at
rate 1/n2. For n sufficiently large and with k,/n near 1, the true acceptance curves
will all differ from their approximations by less than 14. It follows that for suffi-
ciently large n, the equivalent sample size is k, = n+d,. Dropping assumption
(5.12), the equivalent sample size is then finally k, = n+d where d is the integer(s)
closest to the AED namely 1u,”. '

The problem of determining the cost (in terms of the number of lost observations)
was treated as early as 1949 by John E. Walsh [10]. His solution was based on a
formula of Johnson and Welch (1939). By a heuristic argument, in which a chi-
variable is treated as if it were normal, these authors were led to

1z w T

as an approximation for the acceptance probability of the #-test. Walsh identified
this expression with the acceptance probability (5.3) of the X-test, treating » as if it
were a continuous variable. This leads at once to the expression

(5.14) k—n = $uk/(k—1)

which Walsh refers to as approximately the number of ‘“‘sample values ‘wasted’ by
using a t-test.” The quantity k—n is an approximation to what we have called

deficiency.
In order to compare (5.13) with our analysis, note that it can be written as

k 1 1 ‘
2 — 1,2 2
(5.15) 1u 1 Ju +2ku +0(k2>.

Walsh notes that the first term on the right-hand side can be used to approximate
the number of “wasted” observations if k is not too small. It is of course just our
AED (5.8). From this point of view we have provided a more rigorous justification
of Walsh’s formula, which is perhaps also more easily interpreted : With stochastic
interpolation (or some other equivalent interpolation method) the dominant term
of Walsh’s formula for the number of wasted observations is the limit value of the
difference of equivalent sample sizes.

We are however not able to give a similar justification to the second term of
(5.15). In fact, the correct term of order 1/k for the deficiency depends on the
1/k2-term in the power of t. Unfortunately, the normal approximation (5.13) has
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an error of this order. From the results of Section 6 of [6] it is easy to see that, for
fixed o and fixed noncentrality parameter J, the acceptance probability of the ¢-test
with f degrees of freedom is given by

516 o 5+5_uz+6u25—5u45+4u352 ‘o 1
(- ) u 4] 96f2 f3 *

On the other hand, the approximation (5.13), on expansion, can be written as

Su? 3u*s 1
(I)|:M~5+TJT+W:|+O<F>.

This differs from the correct value by a term of order 1/f2.

One could of course use (5.16) to derive an expression for the deficiency accurate
to terms of order 1/n. The deficiency to this order depends on the precise manner
in which the acceptance curves are matched. In particular, if they are matched at a
fixed power = (as well as at the null hypothesis) the 1/n term of the expansion for
k,—n would depend on the value of =.

We conclude with a numerical illustration of the comparison of 7 with X in the
one-sided case. The table below shows power values of the X-test at level « = .05,
for n = 4 and n = 8 observations. Also shown in each case are the corresponding
power values of the stochastically-interpolated t-test, as well as the power for the
bracketing values, the best fitting (with minimax matching) interpolated sample
sizes being k, = 5.6377 and kg = 9.5149 respectively. The small-sample expected
deficiencies (1.6377 at n = 4 and 1.5149 at n = 8) are close enough to the asymptotic
value (1.3528), so that the asymptotic theory provides reasonable guidance even
at these very small sample sizes. The approach to the limit is also consistent with
the fact that the difference between the small-sample value and the asymptotic
value is of order 1/n. Note that the matching is satisfactorily close (the maximum
difference is .00670 at n =4 and .00176 at n = 8), and is decreasing consistently
with the theoretical rate 1/n2.

6. Bayes versus unbiased estimation of a normal mean. In a deficiency investigation
in which the performance of the procedures in question depends on a parameter,
this will typically also be true of the deficiency. For an overall comparison of the
procedures it is then necessary to adjust the sample sizes so as to provide an opti-
mum fit for the two performance curves, for example, by minimizing their maxi-
mum difference, This approach which was illustrated in the preceding section,
arises also in the following example.

Let X, - - -, X, be independently normally distributed with mean 6 and common
variance which without essential loss of generality we shall take to be equal to 1,
and consider the problem of estimating 0, with squared error as loss. The standard
estimator is 6 =X =) X,/n with risk equal to

(6.1) R(0)=n"".



DEFICIENCY

TABLE 1

Power of X-test with n observations, matched by t-test with

k observations, o = .05

n=4
t-power: X-power:
4*A k=S5 k=6 k = 5.6377 n=4 difference
—.8 .00797 .00606 .00675 .00725 —.00050
0 .05 .05 .05 .05 0
.8 .18549 21366 20345 19910 .00435
1.2 29964 35457 33467 32821 .00646
1.4 .36606 43494 40998 40328 .00670
1.6 43638 51779 48830 48211 .00619
2.0 .57976 67695 64174 .63876 .00298
2.4 71191 .80806 77322 17491 —.00169
2.8 81942 .89964 87058 .87598 —.00540
3.0 .86193 93094 90594 91231 —.00637
3.2 .89690 .95406 93335 .94004 —.00669
34 92485 97046 95394 96038 —.00644
4.0 97484 99361 98681 .99074 —.00393
4.8 99585 .99949 99817 .99920 —.00103
n=2_8
t-power: X-power:
8*A k=9 k=10 k=9.5149 n=38 difference
-8 .00762 .00663 00711 .00725 —.00014
0 .05 .05 .05 .05 0
.8 .19303 20704 .20024 .19910 00114
1.2 31588 34312 32991 32821 .00170
1.4 .38750 42156 40504 .40328 .00176
1.6 46308 50316 48372 48211 .00161
2.0 61522 .66238 .63950 .63876 .00074
2.4 75098 79649 77441 77491 —.00050
2.8 .85572 .89223 .87452 .87598 —.00146
3.0 .89485 92547 91062 91231 —~.00169
3.2 92563 95022 93829 .94004 —.00175
34 94898 96791 95873 .96038 —.00165
4.0 .98634 99308 98981 99074 —.00093
4.8 99849 99947 99899 199920 —.00021

797
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Most Bayesian analyses presuppose that § has a prior normal distribution, say
with mean p and variance t2. The Bayes estimator resulting from this assumption is

(6.2) 8" = (u+nt’X)/(nt*+1)
and its risk function is
(6.3) R, (6) = [nt* + (6 —p)*]/(nt*+ 1)

The estimator ¢’ arises also in a different context. Suppose there are available m
earlier observations U, - *-, U,, from a normal distribution with unit variance and
hopefully the same mean 6. Then instead of § one might wish to use the estimator
(mU+nX)/(m+n). For given U, this coincides with &' if we put 72 =m"~! and
u=U.

In trying to compare the two estimators 6 and ¢’, we note first that for every
value of 0, the asymptotic efficiency of §’ relative to d is 1. Efficiency thus suggests
that there is little to choose between the estimators; as we shall see, a deficiency
analysis shows instead that the differences between the two estimators may be
quite striking and that their comparison presents a rather complex problem.

In view of the equivalence, established in Section 2, of stochastic interpolation
with the formally simpler treatment of sample size as a continuous variable, let us
suppose that & is based on n+d observations without restricting d to integral

values. Then

1 d 1 .
(64) Rn +d(9) = ; - }? +o (n—z‘) while

1 1 1
(65) R/ = 4 1 [0 ~2¢7] +o<;l—5>.

Thus, putting D() = n®t*[R,' () — R, . 40)], we have
(6.6) D(0) = (60— )* —27% +di*.

Suppose now that we wish to determine the deficiency d = d(f) at a fixed given
value of 0. This is obtained by setting D(f) = 0, and yields

2 (0-w?
(6.7) =?—Lﬁi.
As 0 tends to +00 or —oo, d tends to — oo, so that for large values of 0], & is
greatly superior to §’. The maximum value of d occurs for § = p and is 2/1%; for
0 = p and small values of 7, §’ is therefore the much better estimator. (Note however
that d takes on large negative values for any value of 0 # u if 7 is small.)

In view of this very strong dependence of d on 6, one cannot expect to find a
compromise which is generally satisfactory. Nonetheless, it is interesting to see
what results are obtained by different criteria.

As a first possibility, let us suppose that 6 is really a random variable with the
postulated prior distribution. Then the average number of observations lost as a
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result of using J instead of 6’ is obtained by determining d so that ER,, ,0) =
ER,’(9), where the expectation is taken with respect to the assumed normal distri-
bution of 6. Then
11 d
ER,'(0) = P while ER, 4 0) = ;11-— )
and the Bayes deficiency is therefore d = 7~ 2. It is interesting to note that in the
non-Bayesian model with m prior observations, 1”2 = m is just the number of
observations lost if § is used instead of &'.

At the other extreme, in a sense, is the minimax criterion according to which d
is determined so as to minimize sup |R, d(B)—Rn’(0)|. Neglecting terms of order
o(1/n?), this means minimizing sup |D(0)|, where D(6) is given by (6.6). Unfortu-
nately, it is seen that this maximum discrepancy is infinite for all values of d, so that
the minimax criterion breaks down.

A possible approach to the problem is presented by a compromise between the
Bayes and minimax principles. Prior information rarely prescribes a specific
distribution. Rather it may indicate that 6 lies in an interval, say I = (u— A4, u+ A4)
and that values closer to u are more likely than more distant values. If symmetry
with respect to u seems reasonable, mathematical convenience suggests a normal
distribution which is centered at p and assigns high probability to the interval I.
In comparing 6 with 6’ we may then be willing to restrict attention to 6 in I and
minimize sup |D()| for Ol

Since both D(u) and D(u— A) are increasing functions of d, it is easily seen from
(6.6) that the unique minimax solution is obtained by putting D(u) = — D(u— A).
The resulting deficiency is

2 A2
(6.8) d=5-73

and the corresponding minimax value is
(6.9 supye | D(0)| = 4%/2.

It follows from (6.5) that d > O (i.e. the Bayes estimator is “better”” in the sense
being considered), d =0 or d < 0 as

(6.10) T<A2, =A[2, or > A

This suggests that, when fitting a prior distribution to a given 4, one should choose
for 7 a value less than A/2. Condition (6.10) can be given an alternative formulation.
Suppose in deciding on a prior distribution we determine t, for a given value of 4,
so that P{|0— | < A} = y where y is some fixed probability level typically close to
1. Then A4/t = u where ®(u) = (1+7y)/2. Thus

2 2
(6.11) d=—2<1—'f7).

T
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The most interesting case is that of small 1, since in this case there is a substantial
difference between the two estimators 6 and §’ being compared. As 1 -0, d - + o©
or —oo as u is <2 or > 2, and remains =0 when u = 2. The condition u = 2
means that (approximately) y = .95. Thus, if we fit a normal prior to the given
interval 7, it should be such as to assign to I a probability of at least .95.

7. Further possibilities. There are many examples similar to the ones treated in
the preceding sections, which could be handled in a completely analogous manner.
The approach of Examples 1 and 2 of Section 3 to the estimation of variance ex-
tends, for instance, to the estimation of covariance and of higher moments. Simi-
larly, the result of Section 4 concerning confidence sets for the simultaneous
estimation of several means generalizes to confidence sets for the mean of a multi-
variate normal distribution. The method for obtaining the deficiency of Student’s
one-sample z-test applies also to the other #-tests, for example, the two-sample
t-test or the Bartlett-Scheffé test for the Behrens-Fisher problem. More generally,
it applies also to substitute ¢-tests in which the usual denominator is replaced by
some other estimator of the standard deviation, provided only this estimator is
independent of the numerator. (We plan to discuss such substitute ¢-tests in this
manner in a separate paper.) Finally, the comparison in Section 6 of the standard
estimator of a normal mean with a Bayes estimator extends to certain other situa-
tions involving exponential families, for example, the estimation of binomial p.

The extensions mentioned above require no new techniques and there are other
applications for which this is true, for example, to comparisons in certain design-
problems. More interesting perhaps are a number of problems in which the deficiency
concept appears to be useful but where its application presents certain technical
difficulties stemming from the fact that the computation of deficiency requires
higher-order asymptotic terms than we encounter in the usual efficiency analyses.
We shall mention only three problems of this type, all of a nonparametric nature:
(i) What is the deficiency of the normal scores test or of Van der Waerden’s X-test
with respect to the ¢-test? (ii) What is the deficiency of the test based on Kendall’s
rank correlation coefficient with respect to that based on Spearman’s coefficient?
(iii) If X, X,, - - - is a sample from a symmetric distribution centered on 6, what is
the deficiency of the Wilcoxon test of H : § = 0, and of the associated estimator of
6 based on all averages (X;+X)/2 with i < j relative to that based only on the
averages with i < j?

In addition to providing useful information for specific comparisons, the
deficiency concept raises a number of more general questions, of which we shall
again mention three. (i) In parametric situations such as that of Example (i) of the
preceding paragraph, there often exist rank tests of efficiency 1. Do there also exist
rank tests of deficiency zero? (ii) The asymptotic relative efficiency of two tests is
typically the same as that of two estimators based on them. Does this result in any
sense carry over to deficiency? (iii) In a situation involving several parameters,
consider the likelihood ratio test for the hypothesis specifying the value of one of the
parameters when the other parameters are either known or unknown. Under
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suitable regularity conditions, is it true that there is then a finite deficiency, and can
one give a simple formula for it? (A simple counter example is provided by the
problem of estimating the range a of the rectangular distribution R(6, 6 +a). Here
the asymptotic efficiency of the best unbiased estimator with unknown 6 to the
corresponding estimator with known 6 is 27%. However, in this case the estimators
of both g and 0 are superefficient.)
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