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ERROR ESTIMATION FOR A LIMIT THEOREM
FOR DEPENDENT RANDOM VARIABLES'

By H. W. BLock
University of Pittsburgh
1. Introduction. Let (X,;),k=1,2, -*-k,; n=1,2,--- be a system of random
variables. We investigate a limit theorem of a type studied by Loeve [3] and
particularly an error estimate for this theorem. The method used in finding the

error estimate in this case applies to finding estimates for several of the theorems
of [3].

2. A convergence theorem for independent systems. Let each X,, have mean pu,,
and variance 62, which we shall assume exists. Let S, =Y ¥, X,; and 0,2 =Y ¥, 02
If for each n, X,;, X,, ", Xy, are independent we say that (X,) is an independent
system. We write Z(S,) —» £ (X) if F,(x), the distribution function of S,, converges
to F(x), the distribution function of X, at each continuity point of X. We write
L(X) = Z(Y)when X and Y have the same distribution.

It is well known that if a random variable is infinitely divisible and has finite
variance it can be represented by the formula of Kolmogorov [2] with unique real
constant ¢ and bounded nondecreasing function K(x) which is right continuous and
K(— o0) = 0. (Henceforth, we shall call a function with these properties a Kolmo-
gorov function). Also it is known [2] that if (X,,;) is an independent system of random
variables having finite variances and such that (X,;—p,) is infinitesimal, then
ZL(S,) = Z(X) if there is a Kolmogorov function K(«) and a constant ¢ such that
asn — oo

2.1) kn [ o x2dF(x+u,) — K(u) at continuity points of K(u),
(22) ZZ"= 1 J.O—ooo x2 ank(x +:unk) - K(GD),
(2.3) A1tk = €

where #(X)is the infinitely divisible distribution determined by K(«) and c.

3. A convergence theorem for dependent systems. The following notation is the
same as that used in [3] and [4] with the exception that distributions will be used in
the usual sense (i.e. F(o0)= P(—o0 < X < o0) =1) rather than in the more
generalized sense of Loéve (i.e. F(0) < 1). We recall that

Fo(x) = P(X,; £ X/Z’;;} an)

E’(Xnk) = E(Xnk/zlj‘;i an)
arlll% = E( (Xnk - E(Xnk) )Z/ZI;; } an)'
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We say S is a constancy set of the function K(u) if S = U}~ I, and I, is an interval
of constancy of K(«) and has for its endpoints continuity points of K(u).

The following is representative of a class of limit theorems which can be obtained
using the Comparison Theorem of Loéve.

THEOREM 1. Let (X,;) be a system of random variables such that (X, — p) is
infinitesimal. Then £(S,) = L(X) if there exists a Kolmogorov function K(u) and a
constant ¢ such that as n - 0, (2.1), (2.2) and (2.3) hold,

(3.1) k21 E|E'(X) — E(X,)| -0,

there is a constancy set S (S can depend on n and|or k) of k(u), whose complement,
S°, is a bounded set, such that

(3.2) i 1 E(Jse |d(F (X + i) = F (X + i) )l) - 0.

The random variable X has the infinitely divisible distribution determined by K(u)
and c.

Proor. The proof follows from Loéve’s Comparison Theorem ([3] or [4]) since
Yin, E ”s X A(F (X + po) = F (X + ti) )l
< Zz"= 1 E |E,(Xnk)_E(Xnk)|
xl) : Zz"= 1 E(,fsc (d(Fl’tk(x +#nk) - Fnk(x +.unk)|)

+(max, . g
and

Yin E | Is |x|2 Id(Fr’lk(x+#nk)_Fnk(x+/'lnk))| S2) o Yy In, X% dF (X + ).

In this finite variance case a similar theorem has been obtained by the author for
convergence to the Poisson distribution. Convergence theorems to the normal
distribution are proven in [3] and [4].

4. Error estimates. We consider the behavior of M, = sup_, <, < | F,(x) — F (x)|
where F,(x) is the distribution function of S, and F(x) is the distribution function
of X'in Theorem 1.

LeEMMA 1. Let K (x) and K,(x) be functions of the form

Kj(x) = jx—oo u2 dFJ(u +ﬂj)
where F{(x) is the distribution function of a random variable Y ; which has mean y; and
variance o ? forj=1,2.
Then
[[20 % ™2™ —1—itx) d(K (x) — K(x))]
=(5/4) |t|3 8o, +0,%)+41? Z?=o |K1(xj)_K2(xj)|

+2[t] A7'[K1(00) = K 1(4) + K5(0) = K5(A) + K1 (— 4) + K5(— 4)]
for any 4 >0, 0<d <24 with m=[24/5]+1 and any x;, j=0,1,2,"-, m,
satisfying —4 = xo < x; <*** < x,, = Aand max, < <,|x;— X;-,| < 8. (The proof
of this result is the same as the proof of the first part of Lemma 3 page 619 of [5].)
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Let (X,,) be a system of random variables and let (X ) be its independent version
(i.e. Z(X,) = (X)) and (X)) is an independent system). Also define

K(x) = fx— o U? dF (U + phy).
rllk(x) = j{w uZ dFrllk(u +/‘£nk)'
K,(x) = Y K(x).

LeMMA 2. Let (X,,) be a system of random variables and let (X,) be its independent
version. Thenforany A > 0,0 £ 6 < 24,m = [24/61+ 1andany x;,j =0, 1,2, -, m,
satisfying —A =xo <x<'<x,=A4 andmax1<j<m|xj——xj_1| < d we have
O£ 0] S 1] Tk 1 E|E (o)~ 0| + (512 |1] b6,

+%t22}"=0 21?; 1 E |Kr:k(xj)_Knk(xj)| +4 |t |0'n2/A
where 6,% = Y ¥, 0%, [,(1) and f,* (1) are the characteristic functions of S, and S, *.

PROOF. Let ¢,(t) = E(e"(X, k= Hnk) | ZL_ 1 X)) and @) = E(e"(X, e — M) )-
Using the same proof as in Lemma B page 65 of [3] we have the following in-
equality |/,(D—/,* (0| £ Ykv, E |¢u(1) — du(?)|. By Lemma 1, at each value of the
random variable K, (x) we have,

[0 x72(e"™ = 1= itx) d(Kpy(x) — Kul(x))|
=(6/4 Ms dojp+az)+1it? ZT:O |Kr’xk(xj)_Knk(xj)|
+2471 |t| IK;’:k(OO) — K (A) + K (0) = K (A) + Ko(— A) + Kl — A)l

Finally

IO =150 S Yhey B2 x7 2™ — 1= itx) d(K () = K (%) ) + i(E' (X i) = )|
< |f| Sk | E|E(X ) — E(X )| +(5/2) 1] 85,2
+42 3 Yk E|K (%)) — Ku(x))| + 410,/ 4

which is the required inequality.

We now investigate the behavior of M, for Theorem 1. A bound is first obtained
for this quantity. Then under the conditions of Theorem 1, it is shown that the
bound converges to 0 as n — co.

THEOREM 2. Let X be an infinitely divisible random variable with distribution
function F(x), mean u, variance o>, characteristic function f(t), and Kolmogorov
function K(x). Let (X,;) be a system of random variables with o2 < 1 for each X,
and assume dF(x)/dx < B for all x where B is some positive constant. Then it follows

that for any number a > 1 we have

Mn = SUP_p<x<oo |Fn(x)-F(x)l = k(a,B)g(n, m(A?é))
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where k(a, B) is a constant depending only on a and B,
g(n,m(4,9)) = [(5/16)n* max, ¢, <, 0]"° +[(5/6) 6(30,% + o) ]*
+[3 300 Tk B [Ko(6) — Koal)| +3 Lo [Kox) — K x| 1¥
+[2582 1 E|E'(X,) — EQX,0)| +2 |ty —
+447 (20,2 + K,(00) — K ,(A)
+K(c0)—K(4)+ K, (— )+ K(-4))],

and 6,2, 6, A, m(A, 8) = m, and {x;} are as defined in Lemma 2. (The numbers A and
6 depend on n).

ProoOF. We let (X,;) be the independent version of (X,;). We then have

£ =] £ |fO-£*O1+|£XO—f @)

where Lemma 2 may be applied to the first term on the right-hand side of the
inequality. The second term may be bounded by A(t, n, m(4, 8)) for |t| < T, where

h(t,n,m(4,0)) = [(5/8)t*0,> max, <<k, o7+ [t| |1, — 11| + (5/4) |t]? 8(a,% + 62)
+41230, lKn(xi) - K(xi)l
+2[t] A7 {K,(0) — K,(4) + K(0) - K(4) + K,(— 4) + K(— A)}],
and
T, = [(1/3)0,” max, <, <p, om) /> +((5/6) 8(5, +62) ) + (3 Tt o |[Knx) — K (x) )
+(447H{K,(0) = K (4) — K(0) — K(A) + K,(— 4) + K(— A)} +2 |, — u)*] .

This follows from the proof of Theorem 3 of [5]. Letting T, = (g(n, m(4, 8))~! it
is observed that T,’ > T,. It is then easily seen that

1o, (O =f ()1 dt < g(n, m(4,5)).

Then applying a result of Esseen [1] we obtain that for every a > 1, there is a finite
positive number c(a) depending only on a, such that

M, £ 2m)~'a [T, [(f()=f(1))/t| dt+c(a)- B-(T,) !
< (2m)~'ag(n,m(4,6))+c(a)- B- g(n, m(4,5))
= k(a, B)- g(n,m(4,6))
where k(a, B) = (2n) ™' - a+c(a) - B which depends only on a and B. This completes
the proof.
In Theorem 2 let ¢ < & < 1 be such that +6 are continuity points of K(x) and
choose 4 = 6%, Let m(8) = m(8™%, &) = m(4, 9).

We now show that the bound obtained in Theorem 2 converges to zero as
n — oo under the conditions of Theorem 1.
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THEOREM 3. Let (X,,) be a system of random variables satisfying the conditions of
Theorem 1. Let F(x) be the limit distribution and assume that there is a positive constant
B such that dF(x)/dx < B for all x. Then there exists a sequence (3,) with0 < d, < 1
such that 6, — 0 as n —» oo and g(n, m(3,)) > 0asn — co.

Proor. We first show how the (J,) are chosen. Let S be a set satisfying (3.2).
Then

Yin E ’K:nk(xi) - Knk(xi)’ S2Y 0 fsX? d(F (X + )

+(max, . ge x°) Zi’é 1 E(fse |d(F (x4 ) — F (X + i) )l)
which converges to 0 as n — oo by (2.1) and (3.2). Thus foreach § <0
4.1) lim,, ., Y 59 Yk 1 B |Kou(x:) = K(x:)| = 0.

We also have lim,_, , K, (x;) = K(x;) by (2.1) since (x;) were chosen to be continuity
points of K(x). Thus foreach d < 0,

42 fim, ., 79 [K,(x) — K(x)| = 0.

It is then possible to choose (8,) with 0 < §, < 1 such that +45,”* are continuity
points of K(x), lim,_,,, 8, = 0, and (4.1) and (4.2) hold with ¢ replaced by J,,.

We need only notice that under the conditions of Theorem 1 lim,_, , 6,2 = 62,
where ¢ is the variance of the limit distribution, and lim,_, , max; <, <, 6, = 0.
Thus the theorem follows.

Also notice that under the conditions of the previous theorem o2, = 1 for large
n since lim,_, , max; <, <y, 62, = 0. This condition was needed in Theorem 2 to
obtain the bound and is not a serious restriction.

Using similar techniques bounds can be obtained for the aforementioned con-
vergence theorems to the normal and the Poisson law.
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