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0. Abstract. It is known that any functional of Brownian motion with finite
second moment can be expressed as the sum of a constant and an Itd stochastic
integral. "It is also known that homogeneous additive functionals of Brownian
motion with finite expectations have a similar representation.

This paper extends these results in several ways. It is shown that any finite
functional of Brownian motion can be represented as a stochastic integral. This
representation is not unique, but if the functional has a finite expectation it does
have a unique representation as a constant plus a stochastic integral in which the
process of indefinite integrals is a martingale. A corollary of this result is that any
martingale (on a closed interval) that is measurable with respect to the increasing
family of g-fields generated by a Brownian motion is equal to a constant plus an
indefinite stochastic integral. Sufficiently well-behaved Fréchet-differentiable
functionals have an explicit representation as a stochastic integral in which the
integrand has the form of conditional expectations of the differential.

1. Introduction. It is known that any functional of Brownian motion with finite
second moment can be expressed as the sum of a constant and an Itd stochastic
integral. This result,2 which was pointed out to me by T. Duncan and T. Kailath,
is a direct consequence of a modification by Itd [4] of the expansion of Cameron
and Martin [1] for square-integrable functionals. The argument goes as follows:
If {x(#):0 < ¢ <1} is a Brownian motion and ¢ is a functional of x(z) with finite
second moment, 1t6’s expansion for £ is of the form:

E=EC+),0 1,

where the /, are iterated stochastic integrals. The infinite sum converges in quadratic
mean and can be condensed by a completion argument into a single stochastic
integral, so that

& = E&+ o ¢(2) dx(1)

for some random function ¢(z).
It is also known that all homogeneous additive functionals of Brownian motion
with zero expectations are of the form

§of (e(u)) dx(u).
This is due to Ventsel [8].
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2 This result has also been proved by Kunita and Watanabe [6].
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These results raise several questions on the nature of the relation between
functionals of Brownian motion and stochastic integrals, and some of these are
considered in this paper. The results are as follows. Sufficiently well-behaved
Fréchet-differentiable functionals have an explicit expression as a stochastic integral
in which the integrand is made up from conditional expectations of the Fréchet
differential. Functionals with finite expectations have a unique representation as a
constant plus a stochastic integral, the process of indefinite integrals being a
martingale. The corollary of this result is that any martingale (on a closed interval)
that is measurable with respect to the increasing family of o-fields generated by a
Brownian motion is equal to a constant plus an indefinite stochastic integral.
Finally, we show that for any finite functional of Brownian motion there exists a
stochastic integral equal to it.

2. Itd integrals. We briefly review some of the properties of Itd integrals. Let
{x(1):0=t< o0} be a Brownian motion on a probability space (Q, 4%, P). Let
{##,:0 £t < 0} be an increasing family of o-fields in &, each #, containing the
negligible sets of %, such that (i) x(¢) is 5#,-measurable and (ii) x(¢')— x(¢) is in-
dependent of 5, for all 0 < ¢t < ¢'. Then the following conditions are sufficient for
the existence of the stochastic integral [$¢(r)dx(?) [2], [3], [5]:

CONDITION A. ¢(-,-) is an o7 x #-measurable function, where & is the o-field
of Lebesgue-measurable sets on [0, o), and for fixed ¢, ¢(¢, ) is #,-measurable.

ConpITION B. 7 ¢(1)*dt < 0 a.s.
Condition B can be replaced by the stronger version:

ConbitioN B'. (3 E[¢(t)*]dt < co.
If B’ holds, then for s = 0

E[[? () dx()| #,] =0 ass.
so that the family of indefinite integrals form a martingale, and
E[(7 ¢ dx(1))*| #,] = E[[? p())*dt| #,] as.
The following lemma is an almost immediate consequence of this property.

LEMMA 1. If a sequence of stochastic integrals &, =[5 @, () dx(t) n=1,2,---,
converges in quadratic mean to &, and if the integrands ¢,(t) satisfy B’, then there is a
Sfunction ¢(t,0) satisfying A and B such that

@ ¢=[oo®dx(t) as.
PROOF. Since lim,, ,E[(£,—&)*] =0, {&,} is a Cauchy sequence in L,(Q). But
E[(&,—&w)?] = [ E[(@s(1) — 0,(1))*] at.

Therefore {@,(t,w)} is a Cauchy sequence in L,([0,1]x Q) and by completeness
there exists a function ¢(f,w) to which {¢,(f,w)} converges in quadratic mean.
So except perhaps on a (¢, w)-negligible set, on which we can take ¢(t,w) to be
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zero, there exists a subsequence {¢, (¢, w)} converging to ¢(t, ) for each ¢ and w.
¢(t, w) is therefore £ -measurable and ¢( -, ) satisfies A and B’. Moreover

E[&=-O"1=s E[(¢n(t) —¢(1))*] dt
and (1) follows.

3. Fréchet-differentiable functionals. Let x = {x(¢):0 <¢< 1} be a Brownian
motion on (Q, 4%, P) with continuous sample paths, and let &, be the o-field
generated by {x(s); 0 < s < ¢} together with the negligible sets of 4.

Let & be a functional on the Banach space of C[0, 1], the space of continuous
functions, together with the norm ||z|| = max,<,<,|2(¢)|. Let %, denote the Borel
field generated by the norm topology on CJ0, 1]. Suppose & is #.-measurable and
satisfies the following condition:

ConbitioN C. For all z,z' € C[0, 1],
z+2z)—&(z) = F(z,z')+R(z,2")
where F(z,z') is a continuous linear functional in z’ for each z and R(z, z’) satisfies
R, 2) < K|[2][t+][2]]oa+ 12

for some positive constants K, « and J. F(z, z’) is the Fréchet differential of ¢ and,
being a continuous linear functional on C[0, 1], has the Riesz representation

F(z,2') = 3 2'(s)A(ds, 2)

where A(s,z) is a function of bounded variation in s, which we shall take to be
right-continuous in s.

Now consider the functional of Brownian motion &(x). Our first result is the
following.

THEOREM 1. If & satisfies condition C and E[E(x)] = O, then
¥) &(x) = [SE[AL, )= 21, %)| #,]dx()) ass.

The following estimate of the modulus of continuity of Brownian motion will
be needed in the proof of this theorem.

exists a constant K such that for any h, 0 < h <1,
3) E[vy(h)***] < K;h**°.

PrOOF. Since v.(#) is monotone and nh — 1 as & — 0 where n is the integral part
of 1/h, we need only prove the assertion for 4 of the form 1/n. Let

nr+ = mathgtg(r+ 1)h [X(t)— x(rh)],
- = —minrh§t§(r+ 1)h [x(t)—x(rh)]

and let n, = max {n,*,n,”}. It can be easily verified that for any r, 1 < r < n, and
for r—DASsZtZ(r+1)h, max,,_s|§,,|x(t)—x(s)| < 3max {n,-,,n,}, and so

LEMMA 2. Let v, (h) = maxX),_<po<ssi<1|X¥()—x(s)|. Then for fixed 5> 0 there
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Ve(h) < 3maxo<,<p— 1 {n,}. Now n,, r=0,1,---,n—1, are independent random
variables with a common distribution; say F. Moreover, the variables n,* and 5,
all have the same distribution as |x(h)| (see [2] page 392, Theorem 2.1) which is the
modulus of a normal random variable with variance 4. Consequently,

P{maxo<, <, 11, < a} = [[720 P{n, < a}
= F(a)"
and noting that for all integral m, 7o®™ < (11o7)*™ + (1o~ )*", we have
E(MaXo<,<n—1M,)°" = n{%,a*"F(a)"~ ' dF(a)
Snf?,a*"dF(a)
= nE[n,*"]
= n(E[('?o+)2m] +E[(no7)*"]
=22m—-1)2m=3)---1.h"" 1

Now choose m sufficiently large so that m™'(m—1)(2+25) > 2+ and m > 2+20.
Then applying Jensen’s inequality in the form
E[x4+46] é E[XZ"'](Z +20)/m
we have
E[vx(h)4+46] é 34+45E[max0§r§"_ L nr4+46]
< 34+46K(2+26)/mh2+6
where K = 2(2m—1)(2m—3) - - 1, and the lemma follows.

PrOOF OF THE THEOREM. Let y/(t, w) denote E[A(1, x)— A(¢, x) | Z J(w). We begin
by verifying the following inequalities.

(i) E[&(x)*] < oo.
(i) [o E[A(t,x)*]dt < 0.
(iii) [o E[Y()*]dt < o0.
In Condition C set z’ to x and z to zero. Then
6| 5 |2+ 11173 s, )]+ K x|+t -+ o,

As we have already noted, ||x|| = max,<,<,|x(#)| is the sum of two variables with
the same distribution as |x(1)|, the moments of which are finite. So (i) follows.
Let {z,'} be a sequence of continuous functions for which

Znt(s)=1, 0§S§t

1>z,/(s)>0 as n—> oo for t<s<1.
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Then
Mt,z) = lim,_, ,, [§ 2,/ (s)A(ds, z)
since A(t,z) = A(t+,z). But by C
lim, o™ '{&(z +ez,)— E(2)} = [§ 2,/ (s)A(ds, 2).
Consequently [§ z,/(s)A(ds, "), and therefore A(z, -), is %.-measurable.

Using Condition C for the two cases where (z,z') = (0, x) and (0, x+2z,’) and the
inequality

(12, [* < (|l + |z D = 227+ [ []9)
which holds if « is taken to be greater than one, we obtain the estimate
|f8 2, ()Ads, x)| < |ECx+2,0| + |E(x)| + 2K (1 + |1x]1%)
< 2800)+(1+2||x]]) §& |A(ds, 0)] + K2+ ||x]|* * )1 +||x]|*)
F 22K+ x| PO +227 1+ | x|,

(ii) follows by dominated convergence. [§ E[(A(1,x)— A(t, x))*] dt is also finite and
(iii) follows from Jensen’s inequality for conditional expectations.

Let y = {y(t):0<t<1, y(0)=0}, be a Brownian motion with continuous
sample paths that is independent of x and therefore of #,. Let0 =1, <¢; <+ <
t, = 1. Define the family of processes x;,i =0, -+, n, by

x{() = x(1) it 0=t=1y;
= x(t)+y(t—1,) if <t
Then each x;-process is also a Brownian motion. Moreover, we observe that the

joint distributions of {x(#):0 <t < 1} are identical with those of {x(1):0=t< ¢,
xi(t):t; £t < 1}. Consequently,

4) E[¢(x)| #.] = E[&(x) | 7]
— E[e(x)| #,], as.

We now use this expression to obtain an expansion of &(x). Summing over i from
0 to n—1 we have

Q) &x) = Y {E[E®)| #,,, J-E[E® | F.1}
=YL E[E(xi ) —E(x) | F,]  as.
Now
Xi+1(—x() =0 if 1=t
(6) = x(t)—x(t;)— y(t—1t;)
= x(t;4 1) — x(t) +(x(O) = x(t;4 ) — y(E— 1)),
if 4 <t=tivns
= X(tip )= X(t)+ y(t— ;1) = y(—1y),
if <t
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and so by the différentiability of ¢

E[&(xi )= &) | F 1] = E[f6 Cerr () = x5S, %)+ R(X;, X141 = X;) | F 1]
= E[A(1, x) — A1, x) | F  J(3(ti4 1) — x(8:))
+E[[f, {y(s—tis )= y(s—1)}Ads, x) | ]
+EU§§“ {x(s) = x(t;4 ) — y(s — 1) }A(ds, x;) | Z4]
+E[R(x, X4y —x) | F1] as.
where the integrations are over (¢, ¢;,,] and (¢#;, ;, 1]. Observe that the conditional
expectation with respect to &, of the left side of this equation is zero. So we can

subtract from the right side its conditional expectation with respect to %, and leave
the equation unchanged. The result is

E[&(Xi4 1) —E(x) | F 1] = E[A1, x)— Ay, x) | F 1 J(x(ti4 ) — X(1)) + a;+ b, as.,

where

ay = E[Jrt (x(s)— x(tr,. )} Ads, x) | F ],

by = E[R(x;, X141 = %) | F 11— E[R(xs, Xp4 1 — X)) | F).
Noting that, like (4),

E[A(t,x)| #,] = E[A(t,x)| #,]

we have from (5) that
(M Ex) = Lov(t)x(tin ) = X(1)) + Y @i+ 3 by as.
Now it is possible to choose a sequence {¢"}m = 1,2, - -, of partitions of the unit
interval, with h,, = max; |t§"+ 1= t,-'”[ — 0, such that ([2] pages 440-441)
®) S Jomt B[ = (e} 1 dt > 0 and

(9) Y [ EL{A, %) — (™, x)}2] dt — 0.

Let the partition {t;} be a member of such a sequence. The relation (8) implies that,
as h = max;|t;,,~t;| > 0, the Riemann-Stieltjes sum in (7) converges in quadratic
mean to the stochastic integral [§ y(t) dx(t). So to prove the theorem it only remains
to show that the sums ) ,a; and ) b, vanish. Let #; be the o-field generated by x;
and let Q,(w,dz) be a regular conditional distribution of x on £, given ;. This
exists since (C[0,1],4,) is a Borel space. Then A(s,x;) is #;-measurable and
x(s)—x(t;4 1), s = t;, is independent of #,;, By Jensen’s inequality for conditional
expectations

E[a?] < E[{[ii** (x(s) — x(t;4. 1) )A(ds, X))} ]
= E[E[{-}*| #.]]. as.



1288 J. M. C. CLARK

the term in the parentheses { - } being repeated. The conditional expectation in this
last expression is equal to

Jero, 13 {Ji+t 2(9) — 2(ti.4 DA(ds, x)}2Qu( -, dz)

which is a triple integral with respect to the measures A(ds, x;), A(ds’, x,) and
Qi(+,dz). Applying Fubini’s theorem, we can change the order of integration and
obtain

E[a?] = EU::“I:,':“ {ti+ 1 —max(s,s)}A(ds, x,)A(ds’, x;)].
The double integral within the expectation is over the rectangle #; <s < ;. 4,
t; <s' = t;.q. If this is split into the two triangles t; <s<t;,.,, t; <s' <s and
L <s<s',t;<s <t P., and Fubini’s theorem is again used, the double integral
becomes

Jab O 5% (tig 1 — A VA(dS) + i35 [5 78 (14 1 — ) A(ds) A(ds)
= ﬂ! 5Pty 1 — [ A(s +0) + A(s — 0) — 2A(t; + 0) ] A(ds)
= [i46 (141 —9)d[(4(5) — A(t;+0))?]
= [i*1(A(s) = A(t;+0))? ds

the last step following by integration by parts. Consequently, with the convention
that A(#, x) is right-continuous, the inequality of expectations reduces to

E[a] < E[[i** (Ms) = A(t;))* ds].

i
It can be easily verified that
E[(Ziai)z] = ZiE[aiz]'
If these last two relations are combined, it then follows from (9) that E[(},a;)*] - 0

ash—0.
By Jensen’s inequality

E[b] < 2E[R(xy, X141 — )]
< E[2K?||x;44 _xi||2+26(1 +||xi”a)2(1 +Hxi+ L= x]920,
which, by Schwartz’s inequality,
< 2K’E[] [Xis1 —x;|[***TE[(1 + | |xi”a)4(1 +| |Xi4 1 —xi“a)d‘]*'

Now the distribution of ||x;|| is, for each 4, the same as 5o(with 4 = 1), the random
variable occurring in the proof of Lemma 2, the moments of which are all finite.
Therefore the second expectation in the above expression is uniformly bounded in

i. From (6) we see that '

%41 =] | S val|ti4 4 =t +vy(|tis = 1))
Hence by Lemma 2, for some constant K’ independent of i,

E[b?] S K'|tiq _till S Kt — )R
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Consequently,
E[(Y.:b)*] = Y E[(b)*] < K'h**,
which vanishes with 4, and the theorem is proved.

4. Functionals with finite expectations. Suppose now ¢ is a general 4 -measurable
functional. First we restate and confirm the representation result for functionals
with finite second moments mentioned in the introduction:

THEOREM 2. If E[¢(x)] = 0 and E[¢(x)?] < oo, then

(10) ¢(x) = [op(Ddx(t) as.
where the integrand ¢(t, ) is unique in L,{[0,1]x Q}.

ProOF. Lemma 1 shows that if there is a set of stochastic integrals dense (in
quadratic mean) in the set of functionals of x with zero mean and finite second
moment then a representation of &(x) of the form (10) certainly exists. The partial
sums of Itd’s orthogonal expansion is such a set. Another is the dense set of
functions of the form g(x(¢,)," -, x(¢,) ), where g is continuously differentiable and
has bounded derivatives; for by Theorem 1 such functions certainly have integral
representations. ¢(#, ) is unique in L,{[0, 1] x Q} because if ¢'(¢, ) is an alterna-
tive integrand

6 E[(e(t)— ¢'(t))*]dt = E[(&(x)—&(x))*] =0.

The extension of this theorem to all functionals with finite expectation is as
follows.

THEOREM 3. If E[|&(x)|] < o0, there exists a function Y(t, w) such that for all s,1,0 <
sEtL,

(1D E[¢{) |7 ]-E[{™) | Z,] = [ dx(w) as.

and s is unique except perhaps on sets of (t, w)-measure zero.

An immediate corollary of this, obtained by simple rescaling of time, is that any
martingale on a closed interval that is measurable with respect to the increasing family
of o-fields generated by a Brownian motion has a unique representation as the sum
of a constant and an indefinite stochastic integral. This is a partial converse to the
result that stochastic integrals with square-integrable integrands are martingales.

PrOOF. We can choose E[£(x)] to be zero as this does not alter (11). Let z(z),
0 =t = 1, be a separable version of the martingale E[£(x) | Z,]. We begin by show-
ing that z(¢) has continuous sample paths with probability 1. Choose a sequence
{bp,n=1,2,-} of #-measurable random variables with finite second moments
in such a way that E|b,—&(x)| < 1/n* and let b,(r), 0St<1, be a separable
version of E[b,| #,]. Theorem 2 then tells us that b, = [§ ¢,(t) dx() where ¢,(t, w)
is some square-integrable function. The indefinite integral [, ¢,(s)dx(s) has the
property of being a martingale with respect to {#,}([2] page 444) and therefore

by(t) = [o @u(D)dx(t) as.
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But separable versions of {[, p,(t) dx(¢)} are continuous with probability 1, and so
b,(2) is also continuous with probability 1. Since z(¢)—b,(¢) is a martingale

P{supo<,<1 |2()=b(1)] > a} £ a™'E|z(1)~by(1)| < (an)™2.
Consequently, by the Borel-Cantelli lemma,

SUPo<i<1 [2()— b, (1) >0 as.

b,(t) is therefore a sequence of continuous functions converging uniformly to z(z)
with probability 1, and this implies that z(¢) is also continuous with probability 1.

Now let 7, be the last time that sup, << |z(s)| < n. It is clear that {1, < t}e#,.
1, is therefore a stopping time ([2] page 366) and Doob’s optional sampling
theorem ([2] page 376, Theorem 11.8) tells us that the stopped process z,(z), where
z,(t) = z(t, A 1), is also a martingale. Moreover,

SUPo<i<1 |z Sn as.,
and so, by Theorem 2,
z,(1) = Jo Yu(1) dx(t)

where (¢, w) is some square-integrable function.
Now consider the process

IO 'pm(s)X{SupO§r§s IZ(")i .—<_— n} dX(S)

where x{ - } is the indicator function of the set { - }. This is clearly z,,(¢) stopped at
7,, which is the same as z,(¢) for m = n. Therefore for m = n

Jo ELGm(8)1{suPo <5< [2(r)] < n} ()T ds = 0

and on the set {sup,<,<,|2(s)| < n}

‘l/n(t) = ‘l/n+ 1([) = l//n+2(l) _ e

for almost all (1, ), Now define y(f,w) to be ¥,(r,w) on {supy<,<|z(s)| < 1},
Yo(t,w) on {1 <supy < ,|z(s)| <2} and so on. ¥ is clearly a (, w)-measurable
function and for fixed ¢ is # ,-measurable. Moreover for arbitrary n

{Jow®?dt = o} = {J5 (W) —y,(1))* dt > 0}
< {supg<s<1 |2(s)| > n}

the probability of which vanishes as 7 — co.
So [o¥(s)*ds < oo a.s. and the integral [5y(s)dx(s) is well defined for each .
Now Itd’s property G.5 for stochastic integrals ([5] page 15) tells us that

P{[[o ()= () dx(s)| > 0} < P{[o (¥u(5)—¥(5))* ds > 0}

which, as before, vanishes as n — 0. z,(¢) therefore converges in probability both
to |5 ¥(s) dx(s) and z(¢). So

z(t) = (L ¥(s)dx(s) a.s.



FUNCTIONALS OF BROWNIAN MOTION 1291

The uniqueness for almost all (¢, w) of Y(¢) follows from It6’s Theorem 1.2 [3],
but its proof is simple enough: denoting the difference between two possible
integrands by y’(¢), and [, y/'(s) dx(s) by z'(¢), Itd’s rule ([3] Theorem 1.1) gives us

2(0)* = [oy/'(s)?ds+2[4 2/ (sWY'(s) dx(s) a.s.
and since z’(#) =0for0 St = 1,
Joy'(s)’ds=0 as.
This completes the proof of Theorem 3.

5. The general case. First we note that Theorem 2 and Theorem 3 can be re-
phrased with the time-domain of the Brownian motion and the stochastic integrals
taken as [0, c0) rather than [0,1]. This follows because any functional of the
Brownian motion {x(¢):0 < ¢ < o0} is also a functional of the Brownian motion
{x'():0<t' <1}, where x'(t) = [,e *dx(s), t'=1—e"", and a stochastic
integral on x'(¢) can be transformed into one on x(z) with the formula

[EW®dx' () =g ¥ (l—e e ¥ dx(t) as.

In this section we shall work in terms of the Brownian motion x = {x(#):0 <
t < o0}. & will be taken to be a & ,-measurable random variable, %, being the
o-field generated by {x(#):0 <t < o0}, rather than an explicit functional on the
value space of x.

Consider the following identities (shown me by L. A. Shepp; see Lemma 3 for
their proof): for any constant K

K = j‘go X{Supogsgtx(s) é K} dX(t),

and
0= jgo (x{supo <5< X(s) £ ‘1} + x{info <5<, %(s) =2 —1}) dx(t).

It follows from the first identity that any function with finite expectation, which by
Theorem 3 is equal to the sum of a constant and a stochastic integral, is also equal
to a single stochastic integral, though the resulting indefinite integral is no longer
generally a martingale and no longer represents the conditional expectations of the
functional. And it follows from the second identity that such a representation of a
functional is not unique. It turns out that this simpler type of representation is
possible for all functionals:

THEOREM 4. For any finite, & -measurable random variable £ there exists an
integrand Y(t,w), jointly measurable and F ~-measurable for fixed t, such that
E=[Rw®dx(t) as.

From our earlier remarks it then follows that:
COROLLARY. If & is in addition F -measurable, the Y(t) can be chosen so that

¢ = [ou(s)dx(s). as.
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As we shall see in Lemma 3, it is straightforward to represent any & ,-measurable
variable as a stochastic integral on [0, c0); what difficulty there is in the proof of
Theorem 4 lies in showing this is true for all # -measurable variables. The proof
is based on a generalization of Theorem 2: we show there is a finite stopping time
T such that & has a finite conditional second moment given & 7, and then represent
¢ as the sum of its conditional mean and a stochastic integral of the Brownian
motion beyond 7,

LEMMA 3. Let 5, be a o-field independent of F ., and let #, be the c-field
generated by #, and F, Then any H ,-measurable random variable n has the
representation :
n =[5 M) dx(t) as.
where ¢(t) is H# -measurable for fixed t.

ProOF. Let T, be the stopping time inf {r/n:x(r/n) 2 1, r =0,1,---}. Then by
the continuity of the sample paths of x, as n — oo, T, — T, the first passage time
by x of the level 1, and x(7,) » x(T) = 1. But

x(Tn = Y 2 onx{rin < T,}(x((r+1)/n)—x(r/n))
= [&nx{t < T,} dx(1),

et < T} =x{t < TH?dt < n~'n* -0,

and since

the last expression converges in probability to [§nx{t < T} dx(t) and the lemma
is proved.

Lemvma 4. With {#,} defined as in Lemma 3, if n is # ,-measurable and
En? | H ] < 0 a.s., there exists an integrand ¢(t), H# -measurable for fixed t, such
that

(12) n=E[n|#,]+[5 ¢@®dx(t) as.

In the above formulation E[n? | H# o] is a generalized conditional expectation in
the sense that we are not assuming that Ey? < oo (see, for instance, [7] page 121).

ProOF. First suppose En? < co. Then we can approximate # in quadratic mean
by a sequence of step functions #,, each taking only a finite number of values and
measurable on the field #,UF ,:

r’n=ZixH,-XFp Hie'%po, Fieyoo'

Theorem 2 gives us that
XF = EXF.-+I8° (1) dx(t)

for some appropriate integrand ,(¢), and approximating the stochastic integral
by a sequence of integrals with time-step function integrands then shows that

Mo = 2 Xu, Exr, WA ZOL0)
= E[n,| # 0]+ [§ ¢u(1) dx(2)
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where ¢,(t) is # -measurable and [§ E¢,*(1)dt < co. So by Lemma 1, 5 also has
the representation (12). In the general case, where E[y? [ H ) < o0, set

n=n if  E[n*|#,] < n;
=0 otherwise.

Then n,” —#n. Moreover E[n,’*] < n and so by our previous argument, for some
integrand ¢,’(¢)

' = E[n,' | #o]+[§ ¢,/ (1) dx(2).
But

j?)o E[(d)n,(t)—d)ml(t) )2 | '%0] dt = E[(rlnl_nm)z I ‘%0] —E['Inl m']ml I ‘#0]2
-0 as.

as m,n — co. Therefore [ (¢,'(t)—¢,,'(£))> dt - 0 in probability and, by the argu-
ment of the latter part of the proof of Lemma 1, there is an integrand ¢(¢) such that
[& (¢, (1) —(t))? dt - 0. The corresponding integrals thus converge and, since by
JTensen’s inequality and dominated convergence E[y,’ | Hol— Eln l # ] in proba-
bility, the lemma follows.

PrOOF OF THEOREM 4. We begin by proving that there is a finite stopping time T,
taking integral values, such that E[&? [ F 1] < 0 a.s. Consider the sequence
Z,= E[éz|.9°',,], n=0,1, -+, where the conditional expectations may take the
value + co. Though Z, is not a martingale in the normal sense since we are not
assuming that E|Z,,, < o0, it is uniformly bounded below and so can at least be
regarded as a generalized supermartingale as defined by Neveu ([7] page 131). So
by martingale convergence Z,, = lim,_, ., Z, a.s. exists and

E[Z.|#,]52Z,=E[¢*|#,] as.
Since this is true for all nand Z,, and &2 are measurable over %, which is generated
by U.= &, it establishes that Z, < &2 a.s. However for N =1, 2, -

z,=1im,Z, 2 1lim,E[¢* AN | #,]

=(2AN as.

and, since &2 is finite, Z, = £2 a.s. As its limit is finite the sequence {Z,} is finite
a.s. for all n sufficiently large. Now let 7= min {n: Z, < o0}. Then T < oo a.s. It
is easy to verify T is a stopping time, since it is countably valued. Moreover YASH

finite by the definition of 7, and since {Z, } is a positive supermartingale the optional
sampling theorem implies

E[8|F]SZr <0 as.

which is what we wanted to show.
Now by the strong Markov property of Brownian motions, x'(¢) = x(7+ 1)—x(T)
is also a Brownian motion and is independent of % ;. Now if in Lemma 3 and
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Lemma 4 we take the Brownian motion to be x'(t), and #, to be & , then H,
becomes & 1., and we have

&= E[E|Fr]+[3 ¢'(1)dx'(1)
= [@ ¥ (1) dx'(t)

for some '(t,w), which is jointly measurable, & ;, -measurable for fixed t, and
which satisfies [§y’(r)?dt < o a.s. It remains to show that this stochastic integral
in x'(¢) can be reinterpreted as an integral in x(¢). Let

V(O = W' (t=T)(T< 1} = YL oY/ (t—m)y{T = m},

where [ - ] denotes integral part. Then we can verify that y(t, w) is jointly measurable,
& -measurable for fixed ¢ and that [§y(1)*dt < oo a.s.; therefore Y(r) is integrable
with respect to x(¢). Let the sequence {r,}, depending on an integer n, be an ordered
version of the nonnegative elements of {r/n—a:r=1,2,-- } forsomea, 0 S < 1.
Let

V(1) = ¥'(1) for t;<t<ty,
Uu(®) = Y52 o' (t;—m)g{T = m} for ;<t<ty,,.
Then it is possible to choose « and a sequence of integers {n ;) sothatasn = n; — oo,
5 W/ (—y'(1))*dt >0
and
§§ WD —(1))* dt -0,
both in probability ([2] page 440). Then
§8 ¥ (1 dx'(0) > [ /(1) dx'(2)
and
I3 Wt dx(t) = & Y(1) dx(2)
in probability. But
80/ (0 dx'(t) = L' )T+t ) = x(T+ 1))
= 2 2ndo ¥ (= m{T = my(x(t;1 ) = x(1,))
= [& ¥u(1) dx(0).
Consequently '
&= TP dx'(t) = [F YD) dx() as.
and the theorem is proved.
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