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A CLASS OF ORTHOGONAL SERIES
RELATED TO MARTINGALES'

By PauL 1. NELSON

Rutgers—The State University

1. Introduction. In this paper we study convergence problems for sums of
dependent random variables. The particular type of series considered here includes
all discrete parameter martingales, but is more restricted than the class of all
orthogonal series.

Let {X,}>, be a sequence of centered- (mean zero) random variables on a
probability space (Q, F, P) and {Y, =Y i-, X}, their sequence of partial sums.
Consider the following hierarchy of dependence. )

(1.1) Mutual independence:

JQG)(Xls XZ’ ) Xn)q)(Xn+ l)dP = Iﬂe(Xls X2’ T Xn)dPJQ(D(Xn+ 1) dpP

for all pairs (®(-), ®(+)) of integrable functions of the indicated variables,
n=12--.

(1.2) The martingale property: jnG)(X X, X)X,41dP =0
for all bounded measurable functions (- ) of the indicated variables, n =1, 2, - - -.
(1.3) The weak martingale property: [o®(Y,)X,dP =0

for all bounded measurable functions ®(Y,,)), 1 Sm<n=2,3,--.
(1.4) Orthogonality: [oX,X,,dP =0, n# m.

If X, X,eL! for m # n, the weak martingale property implies orthogonality
(Proposition 2.2). Otherwise, the increasing dependence of the hierarchy is clear.
If {Y,}2, satisfies (1.2), it is called a martingale. If {Y,},_, satisfies (1.3), we call
it a weak martingale. Weak submartingales are defined analogously. Clearly, every
martingale is a weak martingale and Gaussian weak martingales are martingales
(Section 3).

Martingales which converge in L?, converge a.e.; but, there are orthogonal series
which converge in L? and diverge a.e. ([1] Theorem 2.4.1, page 88). Since weak
martingales lie between orthogonal series and martingales in the hierarchy of
dependence, it is natural to investigate the pointwise convergence of L?>—con-
vergent weak martingales. We show that on totally finite signed measure spaces
martingales whose L? norms are bounded converge a.e. (Theorem 4.1). But, we
construct an example of an L2-bounded weak martingale on a totally finite signed
measure space whose paths oscillate between plus and minus infinity.
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Frank Knight and Donald L. Burkholder have given independent proofs (both
unpublished) that if the L! norms of a weak martingale are bounded, the weak
martingale converges in probability (Theorem 2.1).

2. Basic properties. Given a sequence of random variables ¥ = {Y,};>; on a
probability space (@, F, P), let F, =0(Y,, Y,, -, Y,) be the o-field generated by
{Yi}k=1. We use ||Y,||, to denote the L? norm of Y, and let || Y||, = sup, || ¥,||,-
The sequence Y = {Y,},2, is said to be LP-bounded if ||Y||, < co. Let I(-) be the
indicator function of the set within the parentheses and write Q—A4 as A’. We use
a A b to denote the minimum of @ and b. Unless otherwise noted, all integrals
are taken over Q. ‘

Weak martingales are most conveniently defined in terms of conditional
expectations. The weak martingale property, (1.3), may be expressed in the follow-
ing two equivalent forms.

DEFINITION 2.1. A sequence {Y, =Y %_,X,};2, of integrable random variables
is a weak martingale if and only if

(2.1) E(X,|Y)=0ae, 1Sm<n=23,---.

DEFINITION 2.2. A sequence {Y,};%; of integrable random variables is a weak
martingale if and only if

(2.2) E(Y,|Y,)=Y,ae, I1Sm<n=23,:-.

Clearly, if {Y, = Y%-, X}, is a weak martingale, then (2.1) and (2.2) imply
that

(23) E(X,) =0, E(Y,)=E(1) n=23,--

Future references to the weak martingale property will be to Condition (2.2).

The weak martingale property should be compared to the martingale property,
E(Yy11| Yy, Ya, " Y,) =Y, ae, n=1,2,---. In the language of gambling, a
martingale is a sequence of fortunes resulting from a game which is fair in the sense
that, given the gambler’s entire history up to time n, his average gain in the future
is zero. A weak martingale need only be fair given the gambler’s fortune at any
particular time; the possibility is allowed that some past histories are favorable,
on the average, to the future fortunes of the gambler.

Martingales have the property that {Y, ,,}s>, is also a martingale for all stopping
times ¢; this is not true for weak martingales.

PROPOSITION 2.1. Let {Y, =Y1_,X,}3_, be a weak martingale which is not a
martingale. Then, there is a bounded stopping time t(-) such that:

(i) E(Y;) > E(Yy)

(i) {Y;rn = Y5=1X,I(t Z k)}2-, is not a weak martingale.



1686 PAUL 1. NELSON

ProoF. Since {Y,}7., is not a martingale and E(X;) =0, there is a set A4 of
positive probability in F, such that E(X; |F2) <0 a.e. on 4. Let

Hw)=2 if wed;
=3 if wed'.
The random variable Y, = Z,?=1 Y, I(t = n) is clearly integrable and
IK dP = IAYZ dP+J.A/Y3 dP > JA(YZ +E(X3 | FZ)) dP+IA'Y3 dP
= IAY3 dP+J.AIY3 dP = IYI dP.
To verify (ii), observe that:
E(Y, ) = E(Y;) = E(Yy) < E(Y)) = E(Y, . 3).
Therefore, (2.3) does not hold and {Y,,,}3_, is not a weak martingale.
The following proposition states that a weak madrtingale whose difference

sequence has the property that X, X, €L’ for n #m is a sequence of the partial
sums of an orthogonal series. This is true, in particular, if Y,eL?>, n=1,2,---.

PROPOSITION 2.2. Let {Y,=Yr_,X,};>, be a weak martingale with X,,X,eL*
forns#mand Yy, = 0. Then,
jX,,,X,,dR =0, n#m.
ProoF. Note that E(X, | X,,) # 0; however, for n > m
|X.X,dP = (X (Y, Y,_,)dP = [E(X,| Y,)Y, dP— [E(X,| ¥-1) Y-, dP = 0.
An L*-bounded weak martingale, being an orthogonal series, converges in
probability. It is also true that L!-bounded weak martingales converge in prob-

ability. We present D. L. Burkholder’s proof, modified to cover the case of weak
submartingales.

THEOREM 2.1. (Burkholder) Let {Y,}., be an L'-bounded weak submartingale.
Then, {Y,}>- converges in probability.

Proor. With the aid of Jensen’s inequality it is easily seen that {(¥Y,—a)*}%,
is an L'-bounded weak submartingale for any constant . Given & > 0, choose
4> Osuch that 2 sup || Y,||,/4 < &. For & > 0, the set {(x, »); |x|+|y| £ 4, y—x = €}
is closed, bounded and hence compact. Therefore, there is a sequence of constants
{a;}{, such that for n > m,

P{Y,z Y, +¢}

S P{|Y,|+|Y| > B3 +P{|Y,|+|¥| £ 4, Y, 2 Y, +¢}
< 2sup || %[ /A+ 20 P{Y, > a;+¢/2, Y, < a;}
< 0+QOYi (Y, —a)* (Y, —a)* =0} dP
=06+Q2/e)yt1(J(Y,—a)* dP—[(Y,—a)" I{(Y,,—a)" > 0}dP)
= 0+(2/9 4= 1(J(Y,—a)* dP - [E(Y,—a)* | X, )I{(Y,—a)* > 0} dP)
< 0+Q/eY - (J(Y,—a)* dP—[(Y,,—a)" dP)
=d+o(l) as m, n —> 0.

Since J is arbitrary, P(Y,—Y,, =€) = o(1) as n > m — oo for all ¢ > 0.



A CLASS OF ORTHOGONAL SERIES RELATED TO MARTINGALES 1687

To prove the theorem, it is sufficient to show that there is a subsequence of the
positive integers {n; }3%; such that if {r,}% , is any subsequence of the integers with
r, 2 m for all k, then {Y, };%, converges a.e. We can choose, by using the above,
n such that

P{Y,-Y,>2"% <27%  forall n>m=n,
For any subsequence of the integers {r,}i%, with r, 2 n, k =1,2, -+, we obtain
(2.4 Yo P{Y,, ~ Y. >2" <Y 27" < .
The Borel-Cantelli Lemma and (2.4) yield
(2.5) Yoy, - Y) <o ae.
From Fatou’s lemma we obtain ‘
(2.6) fliminf|Y,,|dP < liminf(|Y,,|dP < co.

Hence, lim inf|Y,,| < oo a.e. Together with (2.5) this implies the a.e. convergence
of {Y, }i to a finite limit. The theorem is proved.

Uniformly integrable weak martingales can be characterized in much the same
way as uniformly integrable martingales. A chief difference is that a uniformly
integrable weak martingale is the restriction of a measure to o-fields which are not
necessarily increasing.

THEOREM 2.2. Let {Y,}-, be a weak martingale. The following are equivalent.

(i) {Y,},™ converges in the L* norm to an integrable random variable.
(ii) There is an integrable random variable Y such that

EY|Y)=7Y, ae. n=1,2---.
(iii) {Y,},% is uniformly integrable.

PrOOF. We use lim* to denote convergence in the L' norm. First we show that
(i) implies (ii). Let Y = lim*Y,. From the continuity of conditional expectations
with respect to L' convergence and the weak martingale property we obtain:

E(Y|Y,) = E(lim*Y,| ¥,) = im*E(Y,| ¥,) = Y,, ae.

The integrability of Y implies the uniform integrability of {E(Y|B,)},cr for
any family {,},.r of sub-o-fields. Thus, (ii) implies (iii).

Finally, (iii) implies (i) since Theorem 2.1 shows that {Y,},® converges in
probability. Recall that a uniformly integrable sequence of random variables which
converges in probability, converges in the L' norm.

3. Examples of weak martingales. We construct examples of weak martingales
which are not martingales by working directly with distributions. The general
procedure is to mix multivariate probabilities in such a way that their bivariate
distributions behave in the manner required by the weak martingale property.



1688 PAUL 1. NELSON

Recall that if X and Y are centered random variables with a joint normal distribu-
tion, then

3.1) E(Y|X) = XE(XY)/E(X?) = Xo,/0,% ae.

Since a centered Gaussian process is characterized by its covariance structure,
(3.1) shows that every Gaussian weak martingale is a martingale.

ExAMPLE 3.1. We need the following lemma, which shows that for « > 1 thereis a
centered Gaussian process {Y,};%, with
(3.2 E(Y,|Y,) =0aY, ae., 1Sm<n=23,-".
LEMMA 3.1. Given o > 1, a sequence of variances {c,>}-, may be defined so that
ifV, = (vy)i,j = 1,2, is the symmetric matrix withv;; = 0%, i < nandv;; = a0 %,
i <j, then V, is positive definite forn=1,2, .

PRroOF. It suffices to show that |V,| > 0,n =1, 2, --- ([4] Theorem 1.23, page 3).
The proof follows by induction. Choose ¢,% > 0 and we have

[Vi| = 0, > 0.

Assume 6,2, 032, -+, 62_; have been chosen as required. Subtracting row (n—1)
from row () in V,, we see that

(3.3) IVnI =(Unz_aa':—l)w;—ll—(“—1)03—1|Vn*—1

where V,*, = V,_, except in the (n—1) x (n—1) place, in which ac?_; appears
instead of o?_;. We have |V,_;| >0 by the inductive hypothesis. Choose
0,2 > (0—1)02-1|V,% 1|/|Va-1]) + 07— 1. The lemma is proved.

Let g(31, y2, ***» ¥») be the Gaussian density with mean zero and covariance
matrix ¥, as given by Lemma 3.1. We use the convention that g(¥,,, Vu,s ***» Vn,)
represents the marginal density of (Y,,, Y,,, **-, ¥,,). The following mixture is a
weak martingale probability that is not a martingale probability.

(3D [y ¥z Y =A)gY 1 Y25 s V) +FA=1/0)g(y1)g(2) - - 9(Vw)-

The sequence {f,(+)}i=, clearly constitutes a consistent family of probability
densities. Let Y == {¥,};2, be the coordinate random variables with the distribution
thus formed. For 1 Sm <n=2,3, -, using (3.1) we have

E(Y,| Y= Y) = ae. [ 2 Vuf Vs V) AVal§2 0 f Vs Vi) AV
= ((1/0)[2 Y ug Vs ¥a) AV + (L= 1/0)G(V)§ 2 0 YnG (V1) AY2)
(1) (ym) + (1= 1/)g(ym)) ™
= 102 Vg Yms Yu) AVal 9 (V)

= (1/o)ay, = Ym- ,
Hence Y is a weak martingale. A similar computation shows that Y is not a
martingale.

b
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ExAMPLE 3.2. Let P, and P, be two different probabilities with the same bivariate
distributions. If there is a martingale probability P, and a positive constant ¢ such
that )

(3.5) P=(l/c)cP3+P,—P;) 20,
then P is a weak martingale probability. To verify this, let {Y,};%, be the coordinate
random variables with joint distribution given by P. For 1 £ m < n, Aea(Y,,) we
have:
(3.6) IAYndP=IAYndP3+(1/C)5AYnd(P2—P1)

= jAYndP3 = IAYmdP3 = IAYmdP'

Let us investigate a specific instance of this procedure. Consider » = 3 balls
placed independently and at random into one of two urns. Let

Xi=X;;=1 if ball i and ball j arein the same urn;
= —1 otherwise.

n n

We take {Yk}gi) ; to be some ordering of the X;;. The sequence {Yk}§2=)l is then a

familiar example of a process which is pairwise independent but not mutually
independent. Let P, be its joint distribution.

Let P, be the product measure of (3) copies of the distribution of Y,. Then

P, and P, are two different probabilities with the same bivariate distributions.

Observe that the support of both P, and P, consists of sequences of +1 of length

(%), where both probabilities are now considered as defined on R 2).
The probability P; is taken to be a Markov Chain, constructed as follows:
P(Y,=1)=P(Y,=—-1)=14.
P{Yj+l =k|Yj=i}=i‘;
j=12,---3)-1; k=1, —1,2i+1,2i—1.
The probability P, is a martingale probability since, with respect to it:
E(Yj+1|Yl$'“$ Y])=E(Yl+l l YJ)= YJ a.c., .1= ]-,2’ "',(;)_1'

Furthermore, P, places strictly positive probability on the support of P,. Hence,
a ¢ > 0 exists such that P as defined in (3.5) is a weak martingale probability. It is
easy to verify that P is not a martingale probability.

ExAMPLE 3.3. Let g(y,, ¥2, - **» V) be the density of a centered Gaussian martin-
gale (n = 3). Note that g(-), being positive and continuous everywhere, has a

strictly positive infimum on every compact set in its domain.
Let u(+) be a continuous odd function vanishing outside of [—1, 1] and such

that:
(3.7) j-l— lynu(yn) dyn # 0
(3.8) sup, [u()|" < inf{g(ys, -+, y); |¥s| S 1, i < n}.
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We now define a mixture of probabilities which has the same bivariate distributions
as g(yy, Y2, **°, ys) but a different n-fold distribution. The procedure used is
suggested by an example of E. Nelson ([3] Example 2, page 99).

(3'9) f(yl’ Va2, yn) = g(yh Va2, yn)+u(yl)u(y2)“'u(yn)'

Clearly, f(*) is a probability density. Take Y™ = {Y;}7_, to be the coordinate
random variables with this density. Observe that every sub-collection of random
variables except Y™ itself is a Gaussian martingale. Therefore, Y™ is a weak
martingale with the property that if one function is omitted, those remaining form
a martingale. To show that Y™ is not a martingale we compute:

E(Ynl Yi=yu Y=y Yooy = Yu1)
=a.e.jiowynf(yl’ Va2, yn) dyn/jfwf(yl’ y2’ T yn)‘dyn

= ([20yd(1s s V) Ayt u(y Du(y2) - u(Vue DfE 1 yu(ya) dy,)]
91> Yu-1)

= Vu-1901 ** Yam ) FuDu(y2) - u@pe )L 1904 Ay /g1, Yumv)

= Vn+1 +(u(y1) e u(yn-l)/g(yh e yn;l))jl—lynu(yn) dyn
# Yno1 on a set of positive probability because of (3.7).

Hence, Y™ is not a martingale.

The sequence Y™ can be extended to an infinite weak martingale by considering
a difference sequence {X;}i>,,,; of mutually independent, centered random
variables which are jointly independent of Y™. Taking Y., = Y,+Y im X,
Y = {Y;}{2, is a weak martingale which is not a martingale. If the X; are taken
to be normally distributed, Y is a non-Gaussian process all of whose bivariate
distributions are those of a Gaussian martingale.

ExAMPLE 3.4. A sequence {Y,=)%_;X,}ix, of integrable random variables
with E(X,) =0 and X, independent of each Y,, | Sm<n=2,3---, is a weak
martingale since E(X,,| Y,) = E(X,)=0 ae., m<n We can construct such a
sequence of random variables with the additional properties that {X,}; does not
consist of mutually independent random variables and {Y,}. , is not a martingale.
The construction is omitted.

4. Martingales and weak martingales on signed measure spaces. Let (Q, F, u)
be a totally finite signed measure space and Q = JuK a Hahn decomposition. For
A€eF, let u*(A) = w(AJ), u(4) = —u(AK) and |,u| =u* +u". Given a o-field
F,=0(Y,, Y3, ", Y,)F, p, is p restricted to F,. Note that |y,| is not necessarily
the same as |u| restricted to F,.

In considering the a.e. convergence of a sequence {Y,};2, of random variables,
the important measure is |um|, where F, =o(J;=,F,). To clarify this point,
consider the example with Q = (0, 1], F equal to the Borel sets and u equal to
Lebesgue measure on (0, 1] and negative Lebesgue measure on (4, 1]. Let X, equal
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one if k is odd and minus one if k is even. The sequence {Y, = Y %_ X}, diverges
everywhere. But, F,, is the trivial o-field and |,u,,o|(Q) = 0. Observe that

4.1) [aYyerdu={,Y,du for AeF,, n=1,2,-.

This example shows that the magnitude of sup, [|Y,| d|u| does not limit the average
number of upcrossings of bounded intervals by martingales on signed measure
spaces. Moreover, this observation implies that signed martingale measures cannot
be written as finite linear combinations of martingales probabilities. The obvious
extension of martingales to signed measure spaces indicated by (4.1) is too restric-
tive. It is only necessary that (4.1) hold for sets 4 € F, where |u,|(4) > 0.

DEFINITION 4.1. A set E€F,cF such that |u,|(E) = 0 but |u|(E) > 0 is called
o-nil.

The fact that a countable union of «-nil sets is a-nil justifies the following
definition.

DEFINITION 4.2. Let N, be the a.e. maximal o-nil set if N, is an «-nil set and
|u|(N,) = sup {|u|(E); E is o-nil}.

DEFINITION 4.3. A sequence {Y,},2, of | ,u|' integrable random variables is a (sub)
martingale if
4.2) fanYosr1du(2) = [4Y,du forall AeF,, n=1,2--

The following example of a martingale on a totally finite signed measure space

will help clarify the preceding definitions. Let Q = (0, 1] and F, be the o-field
generated by the partition

17 /1 2 R
: e N e S , ,
e A N W A B C e W
2” b 2" 9 2" b 2" i b 2” b M

Observe that (4.3) is the nth dyadic partition of (0, 1] with the middle two atoms
joined together. Let F = F, = (% F,).

i = Lebesgue Measure on (0, 3]

— Lebesgue Measure on (4, 1].
We have J=(0,%], K=(4,1] as a Hahn decomposition of (Q, F, u) and

nmlq 2"l
N" = < 2n ’ 2n
4.4) N,oN,, a.e. (Note that (4.4) does not hold in general.)

:| a.e. Therefore, in this case

A martingale {Y,},” may now be constructed as conditional expectations of
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Y(x) = x with respect to {F,}%,. Let

4.5) Y (x) = 2", D2 " du  if xe(zii, ~I—62+Tl], kg2 t=2,k=22""141
=0 if xeN,.

For any atom A e F,, we have:

(4.6) ,‘.AN,.’Yn+1 dp = IAYn dp.

But

4.7) _‘N,.Yn+1 dp = IN,.—N..+1Yn+1 dp = IN..-N..+ Xdp#0= anYrt .

Thus, (4.2) holds but (4.1) does not.
We are now able to prove a submartingale convergence theorem.

THEOREM 4.1. Let {Y,}>, be a submartingale on a totally finite signed measure
space (Q, F, ). Then, sup [|Y,|d|u| < 00 and F = o(U,F,) imply that {Y,}=,
converges a.e. [|/1|] to a finite limit.

ProoF. We may assume that |u|(Q) = 1. Let

4.8) 8,(@) = I(U}= N (@) = [T J(N/ )

50((0) = 1.
From (4.2) it follows that {Y,J,_,}7, is a submartingale with the property that
4.9 fuYs10,du=(,Y,6,_1du forall AeF,, n=1,2,--.

Since F = o(|J,%,F,), given any ¢ = 0 there is an integer j and a set 4 € F; such that
|,u|(A AJ) = &(A denotes symmetric difference and J is the positive set of a Hahn
decomposition of (Q, F, p)). Therefore,

(4.10) |(UR,N) < 2uj(4A)) < 2.

Re-index the martingale {Y,}:-; and write it as {¥,},%,. Since ¢ is arbitrary, it
suffices to show that {Y,8,_,};2, converges a.e. [|u|] to a finite limit.

Take q(w) = I(J)(w)—I(K)(w). Then from (4.9) we obtain:
(4.11) _[AYnH‘Sn‘IdINI = [uYus10,dp
gJ‘AYvnén—ldlu=J|A}’n§n—lqd|lu| fOl' all AGFm n=1, 29““
It is now easy to verify that {Y,6,-,E(q | F,)} is a submartingale on (Q, F, |u|),

where conditional expectations are with respect to |,u| That is, for any A€F,,
n=1,2,---, using (4.11):

IAYn+1 0,E(q I Foy1) dl#l = IAK:+ 1049 d|ﬂ|
; jAYnén—lqd|u| = _‘.AYnén—lE(q | Fn)d|/"|

Furthermore, sup, {|Y,5,-1E(q| F,)|d|u| < sup, [|Y,|d|u| < . By the standard
submartingale convergence theorem ([2] page 324), {Y,6,-1E(q | F,)}i=1 converges
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a.e. to a finite limit. The sequence {E(g | F)}2 , is a uniformly integrable martin-
gale which converges to ¢ a.e. since F = o(U;%,F,). Hence, {Y, 8, }5> , converges
a.e. to a finite limit. The proof of the theorem is complete. '

In view of the preceding, we give the following definition of weak martingales on
totally finite signed measure spaces.

DEFINITION 4.4. A sequence of || integrable random variables {Y, },® is a weak
martingale if

(4.12) fag Yodp =4V, dp forall Aeo(Y,), n>m=1,2,:-,

where N, is the maximal nil set in o(Y,) (see Definition 4.2).

To construct an example of an L2-bounded a.e. divergent weak martingale on a
totally finite signed measure space, we first show that there is a centered Gaussian
process {Y,}s>, such that E(Y,|Y,)=31Y,ae.n>m21.

LemMmA 4.1. Let V, = (v)i,j=1,2, ", n be the symmetric n X n matrix with
all diagonal elements equal to one and all other elements equal to 4. Then, V, is
positive definite, n=1,2, -,

PROOF. As pointed outin Lemma 3.1, it suffices to show that |V,| > 0,n = 1,2,---.
.
11
Subtracting row (n—1) from row (n), for n = 3 we obtain:

|Val = 4| Vaur [ +3( V=1t [ =] Va2 ])
= I Va-1 |—21f| Vn—2|'
Solution of this second-degree difference equation with boundary conditions
|Vs| = and |V,| = 5/16 yields:
| V| = (+ D) >0, nz3.

=3
=3

=1 |n]|=

The lemma is proved.

The L?-bounded a.e. divergent weak martingale is constructed by mixing two
measures. Let g(yy, ¥,, -+, ¥,) be the density of the centered Gaussian process with
covariance matrix V,, as given by Lemma 4.1. We take g(y) to be the standard
normal density, which is the marginal of g(y,, -, y,). If P, is the probability
generated by {g(y1, Vs, """ yw)}ix: and P, is the probability generated by

{9009(72) - 9w }a=1, then
(4.13) p=2P,—P,
is a signed weak martingale measure on the coordinate random variables
Y ={Y,};>;. Using Lemma 4.1 and (3.1), we have
(4.14) jAK: dp = ZIAYndPI __‘.AYndP2
= 220§ aVu0 > Vo) AV AYn— [ 20 Vu9(V) AYf 49 ) Y
= 2[u3Vmd(Ym) AV = [a¥mdpt, A€ a(Y,,).
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Note that because of the stationarity of P, and P,, (4.14) holds as long as m # n.
Thus, Y is a weak martingale in both orders. (This can only happen on probability
spaces if Y,, = Y, a.e., m # n ([2] page 314).)

The sequence Y is L2(|u|)-bounded since:

JY2d|u| £ 2Y2dP, +[Y,2dP, = 3, n=1,2-.

However, P, and P, are both measures whose paths diverge. Under P,, the odd
numbered differences (X, X3, --*) consist of mutually independent, standard
normal random variables.

[X,2dPy = (Y2 + Y —2Y,Y, )dP, = 1+1-2() = L.
IX2k+1X2j+1dP1 = I(Y2k+1_Y2k)(Y2j+1_‘Yj)dP1 =0, Jj#k.

The same is true of the even numbered ones. Under P,, the difference sequence
{Xi}2>, consists of mutually independent, normal random variables with mean
zero and variance two. By symmetry and the Borel-Cantelli Lemma we obtain:

{limsup Y, = oo, liminf ¥, = —o0} = Q a.e. [2P, +P,].
{limsup Y, = oo, liminf ¥, = —co} = Qa.e. [|u]].

We have therefore constructed an Lz(lul)-bounded weak martingale on a totally
finite signed measure space whose paths oscillate between + oo and — co0. As
shown by Theorem 4.1, martingales behave quite differently. Clearly, Y does not
converge in u measure. Therefore, there is no martingale with the same bivariate
distributions as Y. We conjecture that this cannot happen on probability spaces.
We do not know whether or not L>-bounded weak martingales converge a.e. on
probability spaces.

Additional examples of weak martingales on totally finite signed measure spaces
may be constructed by taking the difference of two different probabilities with the
same bivariate distributions. Two such pairs of probabilities were constructed in
Example 3.2 and Example 3.3. *
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