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ON THE ASYMPTOTIC EFFICIENCY OF
MEDIAN UNBIASED ESTIMATES
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University of Cologne
1. Summary. It is shown that, for sequences of median unbiased estimates, the
asymptotic efficiency never exceeds Fisher’s bound. In other words: assumptions
on the convergence of the distributions of the estimates are superfluous in this case.

2. The main results. Let (X, /) be a measurable space and P9|.sz¢, 3€0, a
parametrized family of p-measures (= probability measures). This paper is ex-
clusively concerned with the case ® = R (the set of real iumbers). We shall assume
that Py| o/, 9€©, is dominated by some o-finite measure y|.«/. For each $€© let
h(-,9) be a density of P9|.9¢ with respect to ,u|.:a¢. By a sequence of estimates,
say (T,),cn» We mean a sequence of «/"-measurable maps 7,: X" — ©. For nota-
tional convenience we shall consider 7, as a map defined on X™ (with T,((x,), cn)
depending on x;, :**, x, only) and /" as g-algebra of subsets of X™ (namely of
cylinders with the base in X™). '

Up to recently, comparisons of efficiency were confined to asymptotically normal
sequences of estimates, where the asymptotic concentration of the estimate is
determined by the ‘“‘asymptotic variance.” One of the most important results in
this area is that of LeCam (1953, 1958), C. R. Rao (1963), Bahadur (1964) and
Schmetterer (1966) that (under suitable regularity conditions on the family of
densities) for every sequence of estimates which is asymptotically distributed
according to N(8, n”*a(9)), the relation a(9) = I(9)~* holds for Lebesgue-a.a.

9e®, where
2
1(9) = Ka_l"gahs_fx_’ig_)) Py(dx).

Written in a slightly different way, this means that for every sequence (7},), . of
estimates for which the sequence of distributions of n* (T,—9) converges weakly
to a normal distribution with mean zero, we have for Lebesgue-a.a. $€® and all
t',t">0

lim, . PN{x: 8 —t'nF < T(x) < 9+1"n"4} < @(t" I[(9)*) —®(— 1'I(9)}),

where O(¢) = [, (2n) " * exp [—$u?] du.

In a number of papers Wolfowitz stressed the arbitrariness of restricting the
comparison to asymptotically normal estimates. Under suitable regularity condi-
tions on the family of densities and under the assumption that the sequence of
distribution functions of n*(7,—9) converges uniformly in both arguments,
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Wolfowitz (1965) has shown that—with the possible exception of a countable
subset of O—

lim, PN {x:9—t"n 2+ w(@n " S T(x) £ 9+1t"n T+ W(H)n~ 1}
< O I9)H) — (= " 1(9)?).

The functions w and W are—with the possible exception of a set which is the count-
able union of nowhere dense sets—the infimum and supremum of the set of medians
of the limiting measure (which, in general, may depend on 9). Possible extensions
of this result for ® = R¥ were investigated by Kaufmann (1966). Schmetterer (1966)
improved this result, mainly by substituting the assumption of uniform convergence
by the (weaker) assumption of continuous convergence and by relaxing the regularity
conditions. ’

With the same justification with which Wolfowitz questioned the asymptotic
normality assumption for the sequence of estimates one could question his assump-
tion of weak uniform convergence: Why should a statistician confine himself
to estimates for which the sequence of distributions of n*(T,—9) converges at
all? A sequence of estimates (7},),.n for which (PyN{x:9—t'n"% < T,(x) <
3+1"n"*%}),.n does not converge would nevertheless be preferred to a sequence
of estimates, say (7,*),.n, for which (PN{x: 9—t'n"% < T,*(x) < 8+1t"n"%}),n
converges if forall 3e®,¢',¢"" > 0

liminf, g P {x:9—t'n"* < T(x) < 9+1"'n" %}
2 lim, PN {x:9—1'n"* < T,%(x) < §+1"'n"%}.
It therefore seems useful to look for other conditions which are justifiable from
the operational point of view. One such condition is median unbiasedness:
DEFINITION. The estimate T, is median unbiased for the parameter 9 if
PN{x:T(x)29} 2% and PMN{x:T(x)<9} =4 forall 9eO.

To obtain an example of a sequence of median unbiased estimates (7,,), . for
which the distributions of n*(T,—9) are not convergent, consider the family of
normal distributions N(9, 1), $e R, and let

m(n)
T(x)=—— )Y X;, neN.
m(n) ;=

n*(T,—9) is distributed according to N(O, (n/m(n))*). If we choose m(n) =
2Uee2n) (where [a] denotes the largest integer smaller or equal to a), then the
sequence (n/m(n)), neN, oscillates in the interval [1, 2). Therefore the sequence
N(0, (n/m(n))?), neN, does not converge.

The results of this paper are obtained under the following

Regularity conditions:

(i) For every 9,€© there exists an sf-measurable function M(-, S,) with
Py(M(-,90)*) < v and a number r(99) >0 such that |8 —9,|<r(9,) and



1502 J. PFANZAGL

|8 = 90| < r(9) imply

h(x, 9’
(x,5") 1\ < M(x,90) |9 =9"| forall xeX;
h( 9/1
0
(ii) 9> 9 h(x, 3) is continuous on © for y-a.a. xe X;

o 2
(iii) Ps((ﬁ‘) logh(-, 9)) ) > 0 forall 3€ 0.

We remark that condition (i) has been used earlier by Daniels ((1961) page 152
Formula 2.2) as one of a set of conditions assuring the aymptotic efficiency of
maximum likelihood estimates.

The regularity conditions used here refer to the first derivative of 3 — A(x, 3)
only, whereas the corresponding regularity conditions of Bahadur ((1964) pages
1545-6) assume that the second derivative is continuous and that

Ak ak
fﬁ&" h(x,NPy(dx) = GSth(x 9)Py(dx), k=1,2.
On the other hand: If the second derivative has the properties assumed by Bahadur,
our assumption (i) may be replaced by Bahadur’s assumption (iv) that for every
9, € O there exists an &/-measurable function B(-, .90) with Py (B(-, ) < co0 and
a number r(9,) > 0 such that

|9—9,| < r(3,) implies

o* |
a9 log h(x, .9)| < B(x,9,) forall xeX.

Hence, strictly speaking, the regularity conditions used here are incomparable with
the regularity conditions of Bahadur.

The conditions stated by Schmetterer ((1966) page 305, Theorem 2.1 and
page 308, Theorem 2.2) are weaker than our conditions. However, for his Lemma 2.2,
attributed to Daniels (1961), a correct proof is not available.

We remark that the regularity conditions (i), (ii), (iii) are not sufficient to
guarantee the asymptotic normality of the maximum likelihood estimates. For this
reason, they must not be compared with the conditions of Wolfowitz ((1965)
pages 252-3) which also include conditions for the asymptotic normality of
maximum likelihood estimates.

THEOREM 1. If @ R is an open set and if the regularity conditions (i), (ii), (iii)
are fulfilled, then we have for every sequence (T,), . n of median unbiased estimates:

(1) limsup, nPN{x:9—t'n " S T(x) < 9+1t"'n"%}
< QIO -~ 1)) forall t,¢">0 andall 9€O.
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PROOF. Let 3€® and ¢ > 0 be arbitrarily fixed. We have 3+m~*e® for all
sufficiently large n. Median unbiasedness implies P, ,,-12{x: T,(x) = 9+tn"*} =}
for all sufficiently large n. As § > ®(—5tI(9)?) for all § > 0, Lemma 1 (10) implies
for all § > 0 and all sufficiently large ne N :

(2) Py -2 {X:T(x) 2 9+1tn" %}

PN X.ZLI10gh(x,~,9+tn_%)—-2?=1logh(xi,9)+%t21(9)
S+m-V . tI(S)%

=(1 +5)t1(9)*} .

Applying the fundamental lemma of Neyman and Pearson (Lehmann (1959)
page 65, Theorem 1 (ii)) for

Po=[li=1h(x,9),  py=]Ii=1h(x;, 9+1n7Y),
p=1 (x:[Ef = ; log h(xi, 8+tn=1/2) =% log h(xi, 8)+3121(9)1/t1(9) V22 (1 +8)t1(8)1/2}
and 0" = L Taoz 94 m- 112y
we obtain inequality (2) with Py ,,- 1,2 replaced by Py.
Using Lemma 1 (9) we obtain
liminf, . PN {x: T,(x) = 3+1tn"*} = O(—(1 +8)tI($)?).
As the relation holds for all § > 0,
liminf, .y PN {x: T(x) = §+1tn" 1} = ®(—tI(9)?).

The other inequality follows similarly.

Roughly speaking, Theorem 1 gives an upper bound for the asymptotic con-
centration of sequences of median unbiased estimates. Under suitable regularity
conditions, this maximal asymptotic concentration is achieved by the sequence of
maximum likelihood estimates. As maximum likelihood estimates are not median
unbiased in general the question arises under what condition median unbiased
estimates with maximal asymptotic concentration exist. In Pfanzagl (1971) condi-
tions will be given under which a sequence of estimates can be adjusted in such a
way that (i) each estimate of the sequence becomes median unbiased, (ii) the
asymptotic behavior of the sequence remains unchanged. The results obtained in
that paper imply in particular that median unbiased estimates with maximal
asymptotic concentration exist for all exponential families fulfilling certain regularity
conditions. In view of the fact that families with monotone likelihood ratios admit
median unbiased estimates with strong optimum properties (see Lehmann (1959)
page 83 and Pfanzagl (1970)), this is what one would expect intuitively.

If the distributions are symmetric, the maximum likelihood estimates are median
unbiased without any adjustment: Let X =R, o/ =%, ® =R and h(x, ) =
f(x—9) with f(—x) = f(x) for all xeR. Under appropriate regularity conditions
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on f, the maximum likelihood estimate is uniquely determined and asymptotically
distributed according to N(9, n~* I(9)~*). The symmetry of fimplies that the maxi-
mum likelihood estimate 3, is symmetrically distributed about 8 (which follows
easily from [[iz,h(28—x;,29—38,) =]]i-1 h(x;, 8,)) and therefore median un-
biased.

Theorem 1 can be given in an equivalent formulation in terms of loss functions:
For every 3€ @, let Ly: R — R be a measurable function which assumes its minimal
value at 0 and is nondecreasing as the argument moves away from 0 in either
direction:

(3) t,<t; <0<t/ <ty implies Ly(t;) 2 Ly(ty) = Ly(0) = Lyg(t,") = Ly(t2").

COROLLARY 1. If © c R is an open set and if the regularity conditions (i), (ii), (iii)
are fulfilled, then we have for every sequence (T,),.n of median unbiased estimates
and any loss function with the property (3) stated above:

(C)) liminf, ¢ y | Lo(n*(T,(x) — 9))Py"(dx)

19\ 2
= | Ly(u) e exp[—3u’I(9)] du for all $€0.
PROOF. For Ly(t) = 1, —yui, y(t), Theorem 1 implies
liminf, . | Lg (n*(T,(x) — 9)P5"(dx)
= liminf, .y (1 =PN {x:—t" < n¥(T(x)—9) < 1"}
> 1= [ )+ exp [~ ] du
I3\*
= fLs(u) <§—)) exp [ —4u*I($)] du.
n
As any loss function with the property (3) can be pointwise approximated by an
increasing sequence of elementary functions Ly of the type
Ao+ Y =1 8i L=, /)0t o)

witha; > 0fori =1, ---, k, the assertion follows easily.

Without median unbiasedness for all sample sizes, a similar conclusion can be
obtained if the sequence of distributions of n*(T,—9) converges to a limiting
distribution with median 0:

THEOREM 2. Assume that ® c R is an open set and that the regularity conditions (i),
(ii), (iii), are fulfilled. Assume, furthermore, that the sequence of p-measures induced
by PN and the sequence n*(T,—9) converges weakly to some p-measure, say Qg,
with median 0.

Thenforallt',t"” > 0and Lebesgue-a.a. 3€ ®:

©) Qo[ -1, 1] £ O(t"I(9)H) — B(~ ' I(9)*)
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and therefore
(6) limsup, .y PV {x:9—t'n ¥ < T(x) £ 9+1"n"%}
S O 1(9)H) — (- I(9)?).

Proor. (i) First we shall show that the assumptions of Lemma 3 are fulfilled:
Let y < 0 be arbitrary. Let z€ [y, 0] be such that Q4{z} = 0. Then

liminf, .y Py {x: n¥(T,(x)—9) 2 y}
g limneNPSN {XZ n%('I;'(X)—S) g Z} = QS[Z9 OO) g Qs[09 CO) g %
The other inequality follows similarly.

(ii) Now we shall show that the assertion follows from the assertion of Lemma 3.
Let Ng= {reR: Q4{r} = 0}. Let t > 0 be given. Using Lemma 3 (with ¢ = 5) we
obtain for Lebesgue-a.a. 3 ® and all se (£, o) Ny:

Quls, 00) = lim,, ¢ Py {x: n¥(T,(x) — 9) Z s} 2 B(—sI(9)*).
As @ is continuous and Ny is dense in R, this implies Qg(#, c0) = ®(—t1(9)*).
Furthermore,
liminf, .y PN {x: n¥(T,(x)—9) > t}
2 liminf, .y PN {x: n¥(T,(x) = 9) Z s} = Qy[s, c0).
As Nyisdense in R, thisimplies
liminf, .y PN {x: n}(T,(x)—9) > t} = Qy(t, 0).

The other inequality follows similarly.

Theorem 2 generalizes a result of LeCam (1953) from normal to arbitrary
limiting p-measures. It is furthermore closely related to the theorem of Wolfowitz
cited above. It is more special than the theorem of Wolfowitz because the limiting
p-measure is assumed to have median 0. This assumption is, however, most natural.
If it were not fulfilled, then there would exist 9 € ® such that

limsup, .y PV {x: T(x) 2 9} <4 or limsup,. PN {x:T,(x) < 9} < 4.

Beyond this difference, the assumption of uniform (Wolfowitz (1965)) or continuous
(Schmetterer (1966)) convergence of distribution functions is eliminated. The price
paid for this is the occurrence of an exceptional 9-set of Lebesgue-measure 0 on
which the sequence of estimates may be ‘“‘super-efficient”. That the set of super-
efficiency may, in fact, be uncountable, can be seen from the example given by
LeCam ((1953) page 291).

COROLLARY 2. Assume that © = R is an open set and that the regularity conditions
(i), (ii), (iii), are fulfilled. Assume, furthermore, that the sequence of p-measures
induced by PN and n*(T,—9) converges weakly to some p-measure, say Qg, with
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median 0. Then for any loss function Ly with property (3) and Lebesgue-a.a. 3€®:

+
™ j Ly(w)Qs(du) 2 fL&u)(%?) exp[ —4u1(9)] du
and
. _ N 19\ 2
(8) liminf, .y [ Ly(n*(T,(x) = 9))Py"(dx) Z | Lg(u) 57?) exp[—3u*1(9)] du.

Proor. (7) and (8) follow similarly as in Corollary 1.
3. A few lemmas.

LeEMMA 1. Assume that regularity conditions (1), (ii), (iii) are fulfilled. Then for all
t>0andallceR

n_ . —H) ¥ . 142
(9) lim, yPg" x; =1 108 O+ in ™) = ) iz loghlxy, O +31O) _ =®(c)
tI(8)*
" . “H_ymn ;
(10) 1imneNPsN+m-y,{x:Z“‘logh(x”SJ,rm )II(E)‘; 10 M, %) +M(9)<c}

= O(c—tI(9)).
PrOOF. Forall 8, § with |9—9,| < (90) and |9 = 9o| < r(8,) we have

[x, )= h(x, )
| (9= h(x, 9

< M(x,9).

For notational convenience let I(x, ) = (0/09) log h(x, 9). As

h(x,9)—h(x,9)
I(x,9) = lim 0P )~ 1% 5)
gog (3 =h(x,9)
this implies |I(x, 9)| £ M(x, 9y) for |[9—3,| < r(9y) and [I(x, 9o)Ps,(dx) = 0. By
the Mean Value Theorem, we have logh(x, 3)—logh(x, 9,) = I(x, ¥)(I—9)
with |9'—=9o| < [9—9o|. Hence |logh(x, 9)—logh(x, 9o)| < M(x, 9,)|9—39,| for
|9—96| < r(8), whence

(1 fim J‘ <log h(x, ) —log h(x, 9,
'9 - 90

2
) Pso‘(dx) = f(l(x,So))zPso(dx).

8390,
Furthermore,
jl(x, 30)Pg,(dx) _ jl(x, 9)Py(dx)— j I(x,3)Py,(dx)

\9 - \90 \9 - \90

_ [h(x,9)=h(x, )
) 9=90h(x,90)

I(x, 9)Pg,(dx).
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h(x,9) = h(x, 9)
(9= 90)h(x, 3)

for |.9 —90| < r(8o) and limy_,, I(x, 9) = I(x, 9,) for p-a.a. x€ X, this implies

o 1105 9Py (dx) _

8389 ‘9_‘90

I(x, 3)! < M*(x,9)

—f(l(x, 9,))%P 50(dX).

Hence for every & > 0 there exists 5(¢) such that |9 —9,| < &(¢) implies
U I(x, )Py (dx)+ (93— 90)1('90)| =< |9 — '90|3-
As [5,l(x, 9)dY = logh(x, 9)—logh(x, 9,) for p-a.a. x eX, this implies
” (log h(x, 3) —log h(x,3)) P (dx) +1(8— 90)21(90)| < 1(8-9y)%,

whence

02 fim 10080 )08 ACx, BoDPog(an) _
990 (8—=90)"

This implies

(13) fim [ (log h(x, 8)—log h(x, 80))Pyy(dx) _ 0

839 3_‘90

Let f,(x) = logh(x; 9 +tn"¥)—logh(x;, 3,). From (12), (13) and (11) we
obtain, respectively:

lim, Y 7= 1 [fu(OP5,(dX) = —3121(3),
lim, .y Z’i’=1 (j Ju(X)P .?o(dx))z =0,
lim, ¢ Y 7= 1 [FR(OP5(dx) = 121(9).
Hence
limy, e Y 7= 1 J (£u(X) = [ 1)) P5(dY))* Pi(dx) = 1*1(3).
By assumption, tn~* < r(9,) implies

Xis Vo - is Y0
|log h(x;, 9 +tn ™ ¥)—log h(x;, 3o)|
[(Sotn)—8,|

ni‘
r lfni(x)l = < M(x;,90).

Elementary computations show that this implies Lindeberg’s condition (see
Billingsley, page 42, Theorem 7.2). Hence (9) follows.
Relation (10) may be proved as follows:

Let

iy logh(x;, $+tn™ )= Y1 log h(x;, ) +41°1(9)
t1(9)* .

Yu(x, 1) =
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Then
j(Wn(x,I)<c}P9N+tn"‘/z(dx)
" h(x;, 3+tn"%)
- f{w“(x, N<cli=1 ‘ h(x;,9)
= Jwux <) eXp [L0= 1 log h(x;, 9+ tn™4) = Y7_ log h(x,, 9)]P,™(dx)
= exp [ =312 1(9)] [, (x, <1 €XP [} (x, )] PN(dx).
By (9) this implies

P(dx)

limy, ¢y J ggncx, )<c) Py in- 12(dxX)
=exp[—321(9)]2n) " * [ , exp[v- tI($)*] exp [—4v*]dv
= O(c—1I(9)?).

LEMMA 2. If F,: R— R, neN, is a sequence of B-measurable Sfunctions such that
liminf, .y F,(x) 2 0for all xe R, then for every sequence (Xnen = 0:

limsup, .y F,(x+x,) 20 for Lebesgue-a.a. xeR.

PROOF. Let F,* = inf(F,, 0). We have lim, .y F,*(x) = O for all xe X. According
to Lemma 4 of Bahadur ((1964) page 1549) (see also Schmetterer ((1966) pages 303-
304)) there exists a subsequence Noc=N such that lim, ¢, F¥(x+x,) =0 for
every sequence (x,), .y — 0 and Lebesgue-a.a. xeR.

As F(x+x,) 2 F,*(x+x,) forall xe R, ne N we obtain

limsup, . Fy(x+x,) 2 limsup, .y F,*(x+x,) = lim, No Fu (X +x,) = 0.
LEMMA 3. Assume that ® R is an open set and that regularity conditions (i), (ii),

(iii) are fulfilled. Assume furthermore that

liminf, .y PN {X: ¥ (T(x) -9 = y} 2 4 Jorall y<0

liminf, .y P {x: n¥(T(x)-9) < y} 2 4 forall y>0.
Then forallt',t"” > 0 and Lebesgue-a.a. 9 € ®

limsup, . Py*{x: n¥(T,(x)~9) 2 1"} 2 1-®(1"1(9)%)

limsup, oy P {x: n¥(T(x)— 8) £ —1'} 2 ®(—1'1(9)%).

PROOF. Let F,(y, 9) = Py"{x: n*(T,(x)—9) = y}. By assumption:
]lm infneN Fn(y’ ‘9) g 7":
By Lemma 2, applied for F,—} instead of F,, for each pair s > 0, y < 0 there exists
a Lebesgue-null set M, ;€% such that limsup, F(y,9+sn"%) =1 for JeM,,

Let My =U{M;,:5€(0, 0)nQ, ye(—o0,0)nQ}, where @ is the set of all
rationals. We have A(M,) = 0. Let 9¢ M,, seQ and y <0 be given and choose



ON THE ASYMPTOTIC EFFICIENCY OF MEDIAN UNBIASED ESTIMATES 1509

yo€(y, 0)nQ. Asy = F(y, $+sn~?) is nonincreasing, we obtain
limsup, .y Fo(y, 84sn~%) = limsup, .y F,(yo, 3+sn7%) = 4.

Hence, given 9¢ M, and s Q,

(14) limsup, .y Fu(y, % +sn" ) =1

holds for all y < 0, not only for ye(— o0, 0)nQ.

We have

Py -2 {(x:n¥ (T (x) = 9) 2 1} = Py 512 {x: 0 (T, (x) = (94517 %)) 2 t—s}
=F,(t—s,94sn"%)."

Let ¢ > 0 be given. Using (14) we obtain for 3¢ M, and se(z, 0)nQ:
lim sup, ¢ y Py gp- 2 (X: ¥ (T(X) = 9) = 1} 2 4.
Similarly as in the proof of Theorem 1 we conclude from this that
lim Sup, ¢ Po{x: n3(T,(0) = 8) 2 1} = O(—sI(9)?)
As se(t, 0)nQ was arbitrary, continuity of ® implies
limsup, . Py {x: n*(T,(x)—8) = t} = O(—11(9)%).

This is one of the inequalities constituting the assertion. The other one is proved
by the dual argument.

Acknowledgment. The author wishes to thank Mr. G. Laube and the referee for
valuable suggestions.
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