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AN INVERSION ALGORITHM FOR
ONE-DIMENSIONAL F-EXPANSIONS!

By ScorTt BATES GUTHERY

Michigan State University*

If fis a monotone function subject to certain restrictions and ¢ its
inverse, then one can associate with any x, a real number between zero and
one, a sequence {a, } of integers such that

x = flai+f(a+fas+flas+ .

If Tis the transformation { ¢(x)) where { ) stands for the fractional part,
it has been shown that there is a unique measure x invariant under 7 which
is absolutely continuous with respect to Lebesgue measure. Examples are
f(x) = x/10 which gives rise to the decimal expansion with invariant
measure Lebesgue measure, or f(x) = 1/x which gives rise to the continued
fraction, with measure dx/In2(1+x). This induces a measure P on the
sequences {a,} which is stationary ergodic and has other interesting
properties. However, a large class of pairs {f, u} gives rise to the pair
{{a,}, P}. The paper is concerned with the problem of how, given a
measure u to find, when possible, an f, which corresponds to a pair
{{a,}, P}, or given an {f, u} pair, to reduce it to a canonical form.
Interesting observations about the “memory” of the process arise from
the “canonical form”.

1. Introduction. This paper examines a variety of one-dimensional f~expansions
along with their invariant measures and associated stochastic processes. To intro-
duce the material, we present the following brief summary of relevant work in the

field.

1.1. Background. The classical f~expansion is the continued fraction. Beginning
with xe(0, 1) and f(x) = 1/x and letting [ ] denote the greatest integer function
and ¢ ) the fractional part, we use the expansion algorithm:

G =@ ne) =<
and fori = 1, if r(x) # 0, then
@i 1(x) = [f71r(x)] and i (x) = FTHED)).
Setting p,(x) = f(a;(x) +f(ax(x)+ - - +f(a,(x))

1
- 1
a;(x)+ ;{;(‘;C—)—_':
+
1
a,(x)
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we have x = p,(x) if r,(x) = 0 and otherwise x = lim,_, ., p,(x). Properties of this
expansion have been studied extensively and an excellent survey is provided by
Khinchin [6].
Let us set
0,1); = {x|r,(x) #0 forall n}

and note that since we have excluded only a countable number of elements of

(0. 1), we have
A0, 1)) =1

where A is Lebesgue measure. Any non-atomic probability measure on (0, 1)
induces, in the obvious way, a probability measure on (0, 1),. The underlying
o-field is assumed to be the Borel field 4 and almost everywhere (a.e.) statements

are made relative to A.
In 1951, Ryll-Nardzewski [10] considered the transformation 7'(x) = {1/x) on

(0, 1) and found that the measure w on (0, 1) defined by

do 1 1
di  log2(x+1)
was preserved by T and that T was ergodic with respect to w. By noting that for
a.e.xe(0,1)
T"(x) = r,(x),
where we let ro(x) = x, and hence
a4 1(%) = [1/T"(x)],

he was able to deduce many of the measure theoretic properties of the continued
fraction expansion through applications of the individual ergodic theorem.

Then, in 1957, Rényi [8] extended this result to the work of Everett [3] and
Bissinger [1] who had investigated the use of an arbitrary monotone function in
the expansion algorithm and conditions under which x = lim,_, ,, p,(x). Such func-
tions were said to be valid for f~expansions.

Citing the following conditions on f:

(AN f1) =1;

(A2) f(¢) is nonnegative, continuous, and strictly decreasing for 1 £¢ < N and
f(t) = Ofor t = N where N > 2is an integer or + c0;

(A3) |f(t)—f(1)| £ |ta—1s| for 11, <1, and
|ft)=f(t)| < |t—t)] if T—e<ti<t

where 7 is the solution of the equation 1 +f(r) = Tand 0 < ¢ < tis arbitrary;

(B1) f(0) = 0;
(B2) f(¢) is nonnegative, continuous, and strictly increasing for 0 < ¢t < N and
J(t) = 1fort = Nwhere N > 1isan integer or + c0;

(B3) |f(5;)—f(t,)| < |t2—1;|for0 < ¢, < t,;and
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(C) if H,(x,t) = d/dt fa;(x)+[(ax(x)+ - -+ +f(a,(x)+1))) then

sup0<,<1H,,(x,t)<C< + 00
infyc < Hy(x,8) =

where the constant C = 1 depends neither on x nor on #n; Rényi proved

THEOREM 1.1. If f satisfies conditions A or B then f is valid for f-expansions. If f
further satisfies condition C, then there exists a unique probability measure w on
(0, 1) such that:

(i) wisequivalent to A;

(ii)  is preserved by T(x) = {f~1(x)>;

(iii) T is ergodic with respect to w; and

(iv) C™' £ dw/di £ C.

This theorem defines an entire class of functions whose measure theoretic
f-expansion properties can be investigated using the individual ergodic theorem.
However, since it utilizes a non-constructive proof, it leaves open the problem of
finding the measure w for each function in the class. This problem has been solved
in only a very few cases and is the primary impetus behind the present work.

Next, in 1960, Rokhlin [9] obtained an approximate rate of convergence for the
f-expansion of numbers using the functions and measure described by Rényi.
Defining ¢ =~ ! and

By(x) = {y|a(y) = a(x), i = 1(1)n}
he proved

THEOREM 1.2. Iff satisfies A and C or B and C and log|¢’| is Lebesgue integrable
on (0, 1), then

1

W) = —lim '2B2EB) _ ) 108 4B,()) =f log|g'(t)| da(t) ac.
n-w h n—>w n 0

The number A(T) s called the entropy of the transformation 7.

Finally, in 1966, Kinney and Pitcher [7] considered the discrete stochastic process
[a;, v, (0, 1), ] associated with an f-expansion formed by the coefficients (a;) of an
f-expansion and a measure v on (0, 1). Using this construct, they were able to
calculate the dimension of some sets defined in terms of f~expansions and connect
certain properties of the processes with properties of the f-expansions.

1.2. Terminology. Suppose we consider the following conditions on a functionf':

(A") f(1) = 1; f(¢) is nonnegative, continuous and non-increasing forl £t< N;
and f(¢) = Ofor # = N where N > 2is aninteger or + o0}

(B’) £(0) = 0; f(¢) is nonnegative, continuous, and non-decreasing for 0Zt=N;
andf(¢) = 1 fort = N where N > | is an integer or + 00.
If fsatisfies A’ let us define

£ = glb. {t]f() < x}
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and if f'satisfies B’ let us define
£ = g1 {t]f() 2 x}

for all xe (0, 1).

Now, if fsatisfies A’ or B’, w is a A-equivalent measure on (0, 1) and the trans-
formation T = {f~!) is an endomorphism on ((0, 1), %, ®); i.e., T is measurable
and o(T~'B) = w(B) for all Be #; then we shall call the pair (f, dw/dA) an expan-
sion pair. The measure @ will be said to be invariant with respect to or preserved
by f. If an expansion pair (f, /) is such that f'is valid for f~expansions, the pair is
called a valid expansion pair. Similarly, if 7" is an ergodic endomorphism the pair
is called an ergodic expansion pair. Using this terminology Rényi’s theorem states
that if f'satisfies A and C or B and C then there exists a'unique A-equivalent prob-
ability measure w such that C™! £ dw/d). £ C and (f, dw/d}) is a valid, ergodic
expansion pair.

2. The inversion algorithm. The inversion algorithm given below can produce
expansion pairs from a summation representation of the Radon-Nikodym deriva-
tive of a A-equivalent measure. Conditions are also given on the representation
which insure that the resultant expansion pairs are valid or ergodic.

2.1. Definitions and basic relations. Let g be an a.e. nonnegative Lebesgue
integrable function on [0, N) where N is an integer =2 or + 0. Set G(x) =
5 9(t)dt for xe[0, N) and assume lim,_,y G(x) = 1. Then G is an a.e. differentiable
non-decreasing function from [0, N) onto [0, 1).

Next set A(x) = Y ¥=d g(x+k) for xe(0, 1) and assume that A is positive over its
domain of definition. Since [§ h(r) dr = [} g(t)dt = 1, his a probability density which
determines a A-equivalent probability measure w on (0, 1).

Now set H(x) = [ h(t)dt for xe[0, 1] and note that H and H ™' are one-to-one
strictly increasing a.e. differentiable transformations on [0, 1]. Finally, define

fo(x) = H Y(G(x)) for xe[0,N) and
fo(x)=H '(1-G(x—1) for xe[l,N+1).

We see immediately that f}, is a continuous a.e. differentiable non-increasing
function on [1, N+1) such that fi(1) = 1 and limy_ . fp(x) = 0. Similarly, f,
is a continuous a.e. differentiable non-decreasing function on [0, N) such that
fu(0) =0 and limy_, 5 fy(x) = 1. Therefore, if we set fy(x) =0 for x = N+1 and
fu(x) = 1for x = N, f, and f;; satisfy A’ and B’ respectively.

In the following, let

() =fp (X,  eu(x)=fu" (%),
Tp(x) =<op(x)>,  Ty(x) = {@u(x))

and R(x) = H ™ '(1- H(x)).
Note that ¢y, @y, Tp, and Ty, are a.e. differentiable functions on [0, 1] and that
R is a strictly decreasing a.e. differentiable function on [0, 1]. Beforeproceeding to
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discuss the expansion properties of f; and f},, we present the following lemma
concerning elementary relations between them.

LeMMA 2.1. The following relations hold.:

2.11. fy(x) = R(fp(x+1)) fp(x) = R(f(x—1))

2.1.2. ¢y(x) = p(R(x))—1  @p(x) = py(R(x))+1

2.1.3. Ty(x) = Tp(R(x)) Tp(x) = Ty(R(x))

2.14. fu'(x) = gx)/h(f(x) ae. fp'(x) = —g(x—1)/h(fp(x))a..
2.1.5. @y'(x) = pp' (R(x)R(x) a.e.  ¢p'(x) = ¢p'(RX)R'(x) a.e.
2.1.6. R(x) = R™(x)

2.1.7. R'(x) = —h(x)[h(R(x)) a.e.

ProoF. 2.1.1 and 2.1.6 follow directly from the definitions of fy, f5, and R. For
2.1.2 we have

u(x) = g.Lb. {1] fy() 2 x)
=glb.{t| R(fp(t+1)) 2 x}
= glLb.{t|fp(t+1) = R(x)}
= gLb. {1=1] /(1) 2 R()}
= g.Lb. {t]f() 2 RX)}—1
= ¢p(R(x))—1
and similarly for @p(x). 2.1.3 follows directly from 2.1.2 since
Ty(x) = {py(x)> = {@p(R(x))— 1)
= p(R(x))> = Tp(R(x))
and similarly for Tp(x). For 2.1.4 we use the differential form

= au (L)

to obtain
fo'() = dH(G(x) = g(x) / (‘%’ (H" l(G(x))>
= g(x)/h(fu(x)) a.e.

and
fi/(5) = dH (1= G(x= 1)) = —g(x—1D) | (%f:—(H-‘(l—G(x— 1))))

= —g(x—D/h(fp(x)) a.e.
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2.1.5 is simply an application of the chain rule to 2.1.2 with the proviso that the
equality holds only where both derivatives exist. Finally, 2.1.7 follows again
from the above mentioned differential form since R'(x) = dH '(1—H(x)) =
— h(x)/W(R(x)) a.e.

The validity of the inversion algorithm is shown by

THEOREM 2.2. (fy, h) and (fp, h) are expansion pairs.

ProOF. Since the inverse image of any interval is at most a countable union of
intervals under either transformation, each is measurable and it is sufficient to
prove that w(T ~*(0, )) = w((0, @)) for x € (0, 1). If we let f = f, then we have

o(Ty™(0,0) = Y X=q [7 @ h(0)dt = Y ¥Z5 H(f(k+0))— H(f(k))
= YN0 (5T g dt =[5 g(t)dr) = Yo fi ™ g(D)dt
= Y20 fsgt+k)ydt = [3Y 025 g(1+ k) dt
= [ h(t) dt = o((0,))

so that T, preserves w. The proof for f = f}, follows in exactly the same way.

2.2. Conditions for valid and ergodic expansion pairs. If we now consider the
following condition on the function g:

(D1) g(x) > 0a.e.and

(D2) g(t) < infoc,<; Y neq g(x+k)forallte(0, N); we have

THEOREM 2.3. If g satisfies conditions D then (fy, h) and (fp, h) are valid expansion
pairs.

Proor. Clearly f;, satisfies Al, fy satisfies B1, and D1 implies A2 and B2 respec-
tively. Since |f,/(x)| = g(x)/A(fu(x)) a.e. and |fp'(x)| = g(x—D/A(fp(x)) a.e. con-
dition D2 guarantees that |f,/(x)| <1 a.e. for xe(0, N) and |fp'(x)] < 1 a.e. for
xe(1, N+1). Therefore, by the mean value theorem, f}, satisfies A3 and fy satisfies
B3. Since f;, meets conditions A and f,; meets conditions B, by Theorem 1.1 both
are valid for f~expansions.

To show that the pair (fy, h) and (fp, #) are ergodic expansion pairs, we can
either show that f;; and f;, satisfy Rényi’s condition C or demonstrate directly that
T, and T, are ergodic endomorphisms. The first method is, in general, very
difficult but the following lemma can be of help in some special cases.

LeMMA 2.4. If afunction fon [0, N) satisfies
(i) 0 <& |f'(x)| S &, < 1forxel0, N)and
(ii) f' Lipschitz of order 1
then f satisfies condition C.
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Proor. If0 < t, < t, £ N, then from (i) we have that
If(lz)"f(tl)l Se -t
and from (ii) we have that
SUPy, <r<p, f (D) —infy, <<, /(1) < M(1,—11)

where M is a constant independent of ¢, and ¢,. Now,

SUPo<,<1f'(a; +f(az+- - +f(a,,+t)))_

info<, <1 f'(ay+f(az+- - +f(a,+1)))
_Supo<i<1fi(ay +f(ar+- - +f(a,+1)—info < <y f'(ar1 +f(az+ - +f(a,+1)))
- info< <1 f"(ay +f(az+ - +f(a,+1)))
<M |f(az+f(as+- - +f(a,+ D) —f(ar +f(as+ - +f(ay))]

&y
< Me, |f(as+f(ag++f(a,+ D) —f(as+f(as+ " +f(a,)|
b o
<. < M&'z”_l :
=ET
therefore,

SuPo<i<1 Hy(X,1) _ SUPo<;<1(d/dt)f(ay(x) +f(azx(x)+ " +f(as(x)+ 1)
info<i<1 Ho(x,1)  info< <1 (d/d1)f(ar(x)+1(a2(x)+ - +£(a,() +1)

< 77 SWPo<r<1 (@) +£(a;+ 1)+~ +f(a,(x) +1)))
j=11nfo 1 f(a;(x) +f (a4 1(X) ++ +(a,(x) + 1))

n ji—-1
< I_[<1+M82 )
j=1

&

=

since, by Theorem 8.6.1 of Hille [4], theinfinite product convergesif Y 7, Me,’ ' /e,
converges, which it obviously does. '

By noting that f;,'(x) = g(x) a.e. and f(x) = —g(x—1) a.e. when  is Lebesgue
measure, we see that the conditions of this lemma are reduced to conditions on the
function g.

2.3. Rokhlin’s formula. We conclude this section with

THEOREM 2.5. If f}, and fy satisfy A and C and B and C respectively, then h(Ty) =
h(Tp).
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PROOF.
h(Ty) = [§log|py'(x)| h(x) dx = [3log |@p' (R(X)R'(x)] h(x) dx
= [$1og |pp'(X)R'(R(x))| h(R(x))R'(x) dx
= [$log|ep' (x)| h(x) dx + [§log |R'R(x)| h(x) dx

_ Lo |[h(R()
= h(T,,)+Jvo log nG)

= h(Tp) + [ log |h(R(x))| h(x) dx — [§log |h(x)| h(x) dx
= h(Tp)+[9 log |h(x)|h(R(x))R'(x) dx — _fo log |h(x)| h(x) dx
= h(Tp).

3. Examples. In this section we present examples of the use of the inversion
algorithm which include some known expansion pairs along with some new ones.

h(x)dx

3.1. Lebesgue measure. Perhaps the easiest and most interesting measure to
invert is Lebesgue measure which has density function A(x) = 1. We shall use the
notation i=j(k)! to denote i=j,j+k,j+2k, -, j+mk, where j+mk=
| < j+(m+1)k. Suppose, for example, we have nonnegative constants p,, k =
0(1)N—1, such that Y A=) p, =1 and we set g(x) = p, for k < x < k+1. Then,
since H(x) = H ™ !(x) = x, we have

fo®) = G(x) = f59(0)dt-= Y k25! pe+<xDpry and
fox)=1-G6G(x-1) =1 —Zixlo 2 D <x>P[x]— 1

A well-known special case of this expansion is obtained by setting p, = 1/M for
k =0(1)M—1to get

[x] xy  x
So(x =t M =M and
f(x)_l_[_x_]__l_F@ 1._x___1_
P M M’

These are called the M-adic expansions since they yield the expansion of numbers
base M.

Suppose now we insist that 0 < ¢, < p, < &, < 1. Since fy'(x) = g(x) a.e. and
fo'(x) = —g(x—1) a.e., it is easily seen that g satisfies condition D and f satisfies
condition C by Lemma 2.1. Therefore, f;, and fy satisfy conditions A and B and A
and C respectively. Letting S, = D z—,p; and S_; = 0, we can compute the entropy
of T, and T, by Rokhlin’s formula as follows:

WTp) = h(Ty) = Ié log I(Pv_l(x)l dx = zﬁt si_,log(1/p,)dx
= ZN: _IOg pn)(s _Sn— 1)
= - N =0 pnIOan
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3.2. Generalizations of the continued fraction. Another interesting family of
f-expansions is provided by a special case of a summation theorem involving the psi
function. Suppose b;, i = 1(1)n, are distinct constants not less than 1 and

p(x+n)

Ux)= DX
) = T etnth)

where m = 2 and p(x) is a polynomial of degree m —2 or less. By the partial fraction
theorem, we may write U,(x) as

m a;
U= &
where Y a; = 0. Then by a theorem cited by Davis [2], page 39, (19) we have
neo Un(x) = =) L1 a¥(x+b)
where ¥ is the psi function defined by W(x) = (d/dx) InI'(x) for x > 0. We now set

9(x) = Up (<) = HTI:%T)

and assume the U,(x) have been normalized so that
[gdt =Y 200U )dt = =T, a6 W(t+Dby)dt
==Y, a(InT(1+b)—InT (b))
=-=Y" a;lnb;=1.
Since
h(x) =30 g(x+n) =} 000 Uy(x) = =}ty a;,'¥(x+b)
we have
H(x) = [§h()dt = =Y 7, a, (5 P(t+b) dt
— Y1 a;In(D(x + b)/T(by).

Now assume m is even, b; = b;_,+1 for i = 2(2)m, and that p(x+n) has been
chosen so that ¢; = —a;_, for i = 2(2)m. Then setting k = m/2 and ¢; = a,;-, and
d;=b,;_, fori = 1(1)k, we have

k [(x+d;) [(d;+1)
H(x)= — i1 -
W=-2a n< I(d) I‘(x+di+1))

i=1

= icln d
AT \x+dy)

Ifk=1,b=b,,and B=In(1+b"1) then
H™Y(x) = bexp(Bx—1),

]
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and since
g(x) = [B(x+b)(x+b+1)]"",

we have

_ -1 x+b
G(x)=1+B ln(x+b+1>'

Therefore, the two functions

Julx) = BTG = =
and X
b
fox) = H™H(1=Gx=1) = ——

form expansion pairs with the density function

1
" B(x+b)’

h(x)

Note that when b = 1 f;, yields the continued fraction expansion.
Ifk=2,¢, = —c,,and B = In(b5(b, +1)/(b,(b5+ 1)) then

by by(1—e®)

H'(x)=—2———"
(%) b b,
and since
g(x)= (b3_b1)(2x+b3+b1+l)
B(x+b)(x+by+1)(x+b3)(x+bs+1)
1 1 1 1 + 1
" B\x+b, x+b,+1 x+b;y x+by+1
we have

(x+b1)(x+b3+1)>

_ | = -1
G(x)—J' g(x)dt=1+B ln<(x+b3)(x+b1+1)

0
Therefore the two functions

bl b3(b3—b1)+b1(x+b3)(x+b1 + l)—ba(x+b1)(x+b3+1)
(by=b3)+by(x+b)x+b3+1)—bs(x+b3)(x+b;+1)

Ju(x) =

and
by b3(by—bs)
b(x+by—1)(x+b;)—bs(x+b;—1)(x+b3)

Jo(x) =
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form expansion pairs with the density function

bs—b,

") = B b+ by)’

Finally, consider the case k = 2, ¢, = ¢,,and B = In((b, + 1)(b3+1)/(b,b5)). Here
we have
[(b,— b3)2 +4b, b; eHx]%_(bl +b3)
2

H Y(x) =

and since

) 1 1 + 1 1
X)=— - -
g B\x+b, x+b,+1 x+b; x+by+1

we have

(x+b)(x+b3) ]

Gx)=1+B"11
(x) =1+ n[(x+b,+1)(x+b3+1)

Therefore the two functions

So(x) = 3[(by = b3)* +4(by + 1)(bs + D(x+b)(x+b3)(x+ by + 17 (x+bs + 1) T
—4(b; +b3)

and

fo(x) = 4[(by = b3)*+4b, bs(x+b,)(x+b3)(x+by+ 1) (x+by+1)7 ']
—3(b,+b3)

form expansion pairs with the density function

_Lf by+2x+b;
h(x) = E((x+b1)(x+b3)>'

3.3. Miscellaneous examples. Using the inversion algorithm, available expansion
pairs are at least as numerous as the entries in various series summation tables such

as Jolly [5] or Davis [2].
For example, consider the use of the familiar exponential series

ae™ a & (ax)

)

éa—‘l N ea_1k=0 k'

fora > 0.
Here we let

_ @)™ a
gx) = [x]! e*—1
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and, therefore,

dt

X (11
G(x)=eaa f(a<t>)

o [

1 <["] a +(a<x>)["+”>

TEo I\ S kT [x+1]!

where we ignore the summation term if 0 £ x < 1. Next, since we are setting

a eax

-1

X ax_l
=1 edt =" .
e—1)o e —1

Inverting H, we find H ™ 1(x) = 1/a log((e*—1)x+1). Therefore, we have

h(x) =

we have

H(x)

[x] [x+1]
o9 = 176 = H1og 3 1+ G )

and, similarly,

1 (x=11 4k a(a(x))[x]
2\ -1 — — — a__
fo(x)=H '(1-G(x 1))—alog<e 2z i [x]' )
Another family of expansion pairs, which extends the above Lebesgue family, is
provided by picking o;, i = 0(1)n, such that 0 = %y < o; <+ <o,y <o, =1and
setting

h(x)=p; o £ x<a i=1(1)n

such that Y7_, fi(e;—a;—) = 1. Then, if p; > 0 for i = 0(1)N—1and Y =o' p; =1,
we set g(x) = pB; for «;_; < (x) < ;. This family inverts easily and yields
monotone ‘“broken line’’ functions.

4. Associated processes with finite memory. In this section we present a sufficient
condition for the use of the inversion to construct an expansion pair whose associated
stochastic process has the same finite dimensional distribution as a given stationary
Markov process of finite multiplicity. In a special case this construction is also
shown to be unique.

That there is no loss of generality in assuming the given process is stationary is
shown by
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THEOREM 4.1. If (f, dw/dA) is an expansion pair, then its associated stochastic
process, [a;, 0, (0, 1)), is stationary.

ProoF. Itis well known that if T'is an endomorphism and X is a random variable
then X and X o 7" have the same distribution for i > 0. Therefore, letting 7= {f ')
and X = [f~!] we see that the q; are identically distributed.

4.1. Inversion using a Markov process. Suppose [x;, P, Q] is a stationary Markov
process of finite multiplicity t and state space S = {0,1,---, N—1} such that
Plx; =i}, j = 1(1)7] > O for all(i;," -, ;)€ S*. Forany M = 1 and (iy," "+, i) esSM
let us define

IM(il,"',iM)=Zy=lijNM—j and
F(il,""iM) = Zp[xn =jpn= l(l)M]

where the latter summation extends over all (jy, ** -, ja) for which I, (jy, -+, jy) £
I,(iy, =+, iyy). That is, for each M the function Fis a cumulative distribution func-
tion on the lexicographically ordered M-tuples of states. For notational convenience
let us further define the following “boundary conditions” on F:

F(il,"',iM_l,—'1)=F‘(il,"',iM_1—1) and F(—1)=0.

Now suppose o is a A-equivalent measure on (0, 1) and let 4 = dw/dA and
H(x) = [ h(t)dt as usual. For each (i;, -+, i) € S", let J(iy, * -, ;) be the indicator
function of the interval [H ~*(F(i, - -, i,.— 1)), H " *(F(iy, * -+, i;))] and define

9(x) = YsP[xy = [x]|xj41 = ijJ = WDy, i)LEDIACED).
Since, for all xe(0, 1), we have
ZIIctol g(x+k) = 112’=~01 ZS'P[xl = klxj+1 =1i;,j= 1(1)T]J(i1,' L 1)(0)h(X)
= ZII:I;OI Plx, = klxj+1 = ij*sj = 1(1)t]h(x)
for J@i,* -+, i, )x)=1
= h(x),
g may be used in the inversion algorithm for 4. Let us set f(x) = H ~}(G(x)) and
denote the stochastic process associated with (f, 4) by [a;, @, (0, 1);]. Using this
notation, we have
THEOREM 4.2. If F, H, and f as defined above satisfy
H(f( +f(y+ - +fG))) = F(iy, -+, i,—1)

for all (iy, -+, i,)€S", then [x;, P, Q] and [a;, , (0, 1);] have the same finite dimen-
sional distributions.
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Proor. First, we have

ii+ flia+- +flic+1+1
= JRp it YR di

= H(f(iy +f(ia " +f (s 1 + DN = H Gy G2+ + (e D)
= Giy +f(iz+ +f (s 1 + D)= Gl +f (i + +f (04 1))

it flate et flierr 1
= [hifB iy Vg0 at

= P[x; = iy |x; = ipj = 20)e+ 1] fFETIHG D ) di
= P[x; =iy |x; =i;,j =2(1)r+1]
C(H(fGp+ +f (et F D) =H G+ +f (1))
= P[x, = iy|x;=i;j =2t +1]P[x; = ij41,) = 1(1)7]
= P[x; =i;,j = 1(r+1].
Then, using induction, we assume n=7T+2 and ola; =i;,j=1(1n-1]=
Plx; =i;,j=1(1)n—1]forall (i, - -, i,_;)eS" ! and show that
ofa; = 1) = 1] = SR HO
= H(f(iy +f(a+ - +f G+ D) = H(f(Gy + (o + -+ (1))

= G(i; +f(iy+ +f(y+ DN — Gl +S(iz+ +f (1))

i+ fliade o+ fin+1
= [hHfer i e at

= P[x, = iy | x; = ij;j = 2t +1]P[x; = ijj = 2()n]
= P[xj = ij,j = l(l)n:l.

4.2. The uniqueness of the construction for Lebesgue measure. In the above con-
struction, one sees that the function g is just a “wrinkled” version of the density
function 4 over each interval [k, k+1). Furthermore, if the resultant process is to
have a finite memory, the wrinkles must occur at exactly those points in the condi-
tion of Theorem 4.2. It has been conjectured that this fixed wrinkling is also
necessary for the resultant process to have a finite memory. That is, if an associated
stochastic process has finite memory, then the derivative of the function with which
the process is associated is a fixed wrinkling of the density function of the process.
That this is indeed the case when A(x) = 1 is shown by

THEOREM 4.3. If [a;, A, (0, 1);] is a stochastic process of multiplicity t associated
with a valid expansion pair (f, 1), then there exists a real-valued function C on N
such that

f'(x)=C(iy, " iery)

fora.e. xin[iy +f (i, +f(is+ + +fler Dy iy +f G +f 3+ +f (s 1+ 1))
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ProoF. Forn = 1and (i, -, i,) €S", let us set
M(iy, i) = P[x, = iy| x; = i;,j = 1()n—1]

_ SG A Gt +f G D) =G +f (o + -+ (1))
JGy+fGa+ 4 S Gue s + DN =f G S+ +f (- 1))

and
Do 1y LGS a4 ot D) =S 41 ()
P fliyHf (st S+ D) =f G+ s+ + ()
Noting that
D(iryo iy = Mo

M(iZ’ Tt ln)
we have by recursion that
" M(iy, 00, i0)
D(iy, "+, i) = D(y) [[ 7% .
! " leM(129“"’j)
Further, since [a;, 4, (0, 1)]is stationary of multiplicity 7, we know that
M(iy, i) = M(iy—esip=gr 1575 )
Now, since f1is valid for f~expansion, we have a.e.
f'(x)=lim,,, D([X], a;(x3), "+, a,({x?)),
sosetting i; = [x]and i; = a;_,({x))forj=2,3,--, wehave
. ] n ]\/I(il,"',i')
f'(x) = lim D(i,) [ ——>2L..
f( n— o0 ( ! jl;ll:lw(IZQ'..ilj)
But forj = t+2, we have
M(iy, -, ij) = M(i,, """ 3ij) = M(ij—v ij-t+19' ) ij),
soa.e.,

1) = D) T] oo 21

: 2= C(iy, "5 deer)
j=2M(12,"',lj) ’ T

5. Associated processes with infinite memory. In this final section we use the
specialization of the inversion algorithm introduced in Chapter IV to construct a
sequence of expansion pairs with Lebesgue measure which converges to a pair
(f, 1) whose associated stochastic process has the same finite dimensional distribu-
tions as a given stationary process.

5.1. Approximating an arbitrary stationary process. Let [x;, P, Q] be an arbitrary
stationary stochastic process with finite state space S = {0, 1, -+, N—1} such that
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P[x; = i;,j = 1(1)n] > O for all (i, -, i,)eS" and n = 1. We shall call such pro-
cesses finite positive.
Fort =1, 2, - -, define the sequence of measures P, on Q by setting

P[x;=1i,j=1n] = P[x;=1i;j=11)n] for n<r<
and
= P[xj =ijj= 1(D)7] H:=1+1P[xk = iklxj =ipj= k—(1)k—1]

for n > 7. From this definition, it is easily seen that for each t [x;, P, Q] is a
stationary Markov process of multiplicity at most . Furthermore, this sequence
" of processes is consistent in the sense that

P [x;=ijj=1)n] =Py [x; = i;j = L(1)n]

foralln < 7. Let F, be defined for each of these processes asin 4.1.
If we use this sequence of Markov processes in the construction of Section 4.1
and take A4(x) = 1 we have

THEOREM 5.1. The stochastic process associated with (f, 1), [a, ,, 4, (0, 1); ], has
the same finite dimensional distributions as [x;, P., Q).

Proor. Using Theorem 4.2 and letting f = f,, we need only show that
H(f(iy+f Gyt +f(0)) = F(iy, i, —1)
forall (i, - -+, i) € S". But since H(x) = x, this reduces to
JA+fly++f()) = F(iy, " ,i.—1)
and since f(x) = G(x), we have
JG+f G+ +13D))
= [+ St 1GN g (1) gt
= fg St ONS  Plxy = [x]|Xj41 = kjj = 1(1)]I(ky, K )CXD)
=Y Plx, =1]
+jf<"z+'"+f<"=”zs,1v[x1 =iy | %1 = kjj = 1T}k, k)(X)
Z“ o P[x; =
+Z,,_l(,<,,...,,“_‘)<,,_‘(,-,,...,,.,)P[x1 =iy | Xj4y = kjj = 1(1)1]
=F (i, " ,i,—1).
Clearly if [x;, P, Q] satisfies
E: 0< Plxpiy =iy |x;=ipj=1Dn]Se<1
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for all (i;," ", i,4+1)€S""! and n = 1 then [x;, P,, Q] satisfies E and (f,, 1) is a valid
expansion pair for all 7. Suppose, on the other hand, that [x;, P, Q] satisfies
F: if M, = Supsn+1 P[X,1q = ipey | x; = i) = 1(D)n]
and  m, =infgue1 P[x,sy = ipeq | x; = i) = 1(n]
then there exists a constant Fsuch that M,/m, < F'/"foralln = 1.

THEOREM 5.2. If [x;, P, Q] satisfies condition F, then [x;, P, Q] satisfies F and
(f> 1) is an ergodic expansion pair for all .

Proor. For fixed 7 and n, we have
M., = supgn+: P [Xpi1 = ips1 Ixj =i;j =‘1(1)"]
P [x;=1i;j=11)n+1]
s+t P[x;=1i;,j=11)n]
= SUPgn+1 P[Xps1 = lyss Ixj =i;j=n+1-k()n]

where
k=n n<st

=T n>r.

Therefore, if n < 7, then M, , = M, and if n > 1, M, , = M_. A similar argument
shows the same to be true for m, , so that, in either case, we have M, ,/m, , < F*/".
Hence [x;, P,, Q] satisfies condition F.
Now, fora.e. xin (0, 1) and » = 1, we have
Supo < <1 (d/d) f(ay(x) +/(ax(x)+ " +f(a(x)+ 1))
info <, <1 (d/dt) f(a;(x) +f(az(x)+ - +f(a,(x) +1)))
_suPo<i<1 [ [i= 1 /(@i(®) +/ (@14 1 () +- +/(a,(x) + 1))
info ;<1 [ = 1f "(aX) +£ (@4 1(x) + - +f(an(x) +1)))
< [y MPosres] @O+ @ () + -+ F@(0)+0)
= iiinfo< <1 f1(@(x) + (@i 1)+ +(a(x) + 1))

n
Men\ < p.
M., —

Hence f, satisfies condition C which implies (f,, 1) is an ergodic expansion pair.

7N

5.2. A representation theorem. Suppose, once again, that [x;, P, Q] is an arbitrary
stationary finite positive process with state space S. Let

B(iy, s igyr) = [I1+F(ig, 5 ige 1 — 14 +F(iy e )]
where Fis defined relative to [x;, P, Q] asin Section 4.1. Set

Bn = {B(il"",in+1)|(i1a”'ain+1)esn+1}
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and let %, be the field generated by B,. Then ([0, N), 8,),n =1, 2, -, is a sequence
of measurable spaces such that 8, <=4, forn = 1.

Now, for each n, let ([0, N)", #") denote the Cartesian product [ [}, ([0, N), 4,)
and let ([0, N)®, %) be the Cartesian product of all of the ([0, N), 4,). Define the
probability measure P, on ([0, N)", #") by setting

Py(B) = P[x;=iyyyj =2Dn+1]/Ni; ;=i ;=" =ij;j=11)n+1,

=0 otherwise,

for all B=B(i; y,11,2) X ***%X Bliysy,15 "5 Inp1,ne1) in [[f=; 8, and extending
P, to #" in the natural way. It is easily seen that P,, P,, - - is a consistent sequence
of measures so, by the Kolmogorov consistency theorem, there exists a unique
probability measure P* on ([0, N)*, #) such that P,(By= P*(B x [[2,[0, N))
for all Be 4,.

Now let # = \/;%- %, and define the probability measure P on ([0, N), %) by setting

f’(ﬂ;’l: 1 B(ink. 1 0me 20" I e+ D))= P*(l_[2=1 B(ink, todm, 27 ink,nk+ 1)

x T121 [0.N))
foranyn=1;m 21, k=1,2,-++,n;and B(,, 1, ", Iy n.+1) € By, and extending
P to 2 in the natural way. Note that

P(B(iy, ", iy+ 1)) = P[x; = i;,j = 2A)n+1]/N

forall B(i,, "+, 4,,,)€B,andn = 1.

Next, suppose f,', 7=1,2,---, is the sequence of a.e. derivatives of the f,
defined relative to [x;, P, Q] as in 5.1. We see immediately that £’ is measurable
with respect to ([0, N), #.) and we have already remarked that 4, c%,<---
C'%tc‘%r+lC CQ

THEOREM 5.3. The sequence (f,', B,),t = 1,2, -, is a martingale.
Proor. First, we have )
E(f)) =Y se+1 P[xy =iy |x; = i},j = 2()r+ 1]P[x; = i;,j = 2(D)r+1]/N
=Yg P[x;=u;,j=1(1)t+1]/N = |/N

so that the expectation of each f;’ is certainly finite. Secondly, for xe B(iy, ***, i;41)
E(fi+1 |B)(x)

= (P[x;=1i;j=2(1)t+ 1])_125;01 Plx, =i, lxj =1i,j=2Dt+1,x.4, = k]

' X Plx;=1i;,j=2(1)t+1,x,4, = k]

= (P[x;=1i;,j=2)r+1])" Y420 Plx; =i;j = 1Dt +1, X4, = k]

= P[x; =i;,j=1(1)r+1]/P[x; = i;j =2(1)r+1]

=P[x; =iy |x;=i,j=2()r+1]

=f/(x)

and since B, is a partition of [0, N), the proof is complete.
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Therefore, by the martingale convergence theorem, there is a function g such
that f,' » g a.e. Further, since 0 < f,' < 1, by the bounded convergence theorem

we havef, > [ga.e. Let us definef = | g.
We see immediately thatif welet T= {f~!>and T, = (f,”!> we have

AT H([0,00)) = YaZo [y @ dt = YiZo I mes o, 135" dt
= lim,. , AT,”'([0,0))) =«

since each (f,, 1) is an expansion pair. Therefore, (f, 1) is an expansion pair.
Further, if [a;, 4, (0, 1),]is the stochastic process associated with (£, 1), then

2 - iyt f(i2+- -+ f@ip+1
ALa; =1;,j = 1(n] = [fGEHET ATV dt
N (i1 fe(iat o+ fo(int 1
- llmt"oo ;12::‘*51:5;;"‘ N ‘+:’f“t8n))) )))dt

since

fc(' +fr'+"'+ t’n+‘ ) —_— PR -
et iy dt = Plx; = ij,j = 1(1)n]

all T = n. Therefore [a;, 4, (0, 1),] has the same finite dimensional distributions as
[x,, P, Q]. Asaresult, we have proven

THEOREM 5.4. If (f, h) is an expansion pair whose associated stochastic process is
finite positive, then there exists an expansion pair (f*, 1) whose associated stochastic
process has the same finite dimensional distributions.
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