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ON THE FIRST TIME |S,|>cnt®

By MICHAEL WOODROOFE
University of Michigan
1. Introduction. Let X, X,, - - - be an infinite sequence of independent, identically

distributed (i.i.d.) random variables having a finite mean y and a finite, positive
variance o2 and consider the stopping time N defined by

(1.1) N =least n 21 for which |S,| > cn* or +oco if nosuch n exists,

where c is a positive constant and S, = X;+ -+ +X,, n = 1. Obviously, N < o0
w.p. one (by the Strong Law of Large Numbers and the Law of the Iterated
Logarithm), but if u = 0, then E(N) < oo if and only if ¢ < 2 ([1], [3]). Here we
will consider the case ¢? > ¢ and will investigate the rate at which E(N) diverges
to infinity as u — 0. Our results assert the existence of positive constants b,, b,, 7,,
and y, for which 0 <y, <y, <1 and

(1.2) by Iul_(“") SEN)sb, Iﬂl_(Hm

for all sufficiently small values of u. The constants b, and y, depend only on ¢? and
o2 and exist when ¢? > 202 the constants b, and y, depend also on the distribution
of (X;— p)/e and require higher moments. Explicit values are given for all constants,
and it is shown that y; may be made arbitrarily close to one by taking c sufficiently
large.

The left side of (1.2) is established in Section 2 and the right side in Section 3.
An application to testing the sign of a bias is given in Section 4.

2. The lower bound. Throughout this section and the next we will assume the X’s
to be i.i.d. with mean u and finite, positive variance a2. We begin with a variant
on Wald’s Lemma.

LEMMA 2.1. Let O <a < 1 and let B = 1—a; then
E(N7’S\®) < de|u|(1+20) ' E(N**) + a~ (a2 + p?)E(N®).

Proor. Without loss of generality, we may assume that E(N%) < oo, in which
case

2.1 n~f N>y S,2dP < ¢*n*P(N > n) -0
as n — 00. Now for any k = 2 we may write
(22)  [v<kN7PSy*dP = [y_,S,*dP
+3k [0 fnsn-1S,2dP—n"? [y, S,2dP].
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Mbreover, for 2 < n £ k, we have
(23) n_ﬂ ‘-N>n—lsn2 dPé(n_l)_ﬂIN>n—lsz-—ldP
+[2¢|uj(n—1)*n"t+(c*+p*)n"P]P(N 2 n)

since the event N >n—1 is independent of X, and implies |S,_,| < c(n—1)%.
Substituting (2.3) into (2.2), letting k — o0, and using (2.1), we now obtain

(2.4) 2¢ || Y2 A(n—1)"n"PP(N 2 n)+(a +u?) Yoy n PPN 2 n)

as an upper bound for E(N ~#Sy?). The lemma now follows on writing P(N = n) =
Y %, P(N =) and reversing the orders of summation in (2.4). (The cases a < %
and a > 4 should be considered separately in this step.)

We should perhaps remark that in the special case u = 0, Lemma 2.1 may be
used to prove that ac? = o2 implies E(N®) = oo, thus extending the results of [1].
Indeed, the finiteness of E(N®) would imply E(N ~#Sy?) > c2E(N®), which contra-
dicts Lemma 2.1 if 4 = 0 and ac? = o2

COROLLARY 2.1. If 0 < a £ 4, ac® > o2, and 2u® £ ac*—o?, then
(2.5 || E(N**#) = (1 + 20)(ac? — %) 8ac, u#0.

PROOF. Again we may assume that E(N*) < co. Then taking expectations in the
inequality ¢2N* < N ~#S,?, which is true by (1.1), we obtain

(2.6) CE(N®) < 4c|u|(14+20) " *E(N** ) + a~ (6 + p*) E(N).

The corollary now follows on subtracting o~ (¢ +u?)E(N®) from both sides of
(2.6) and observing that E(N%) = 1.

COROLLARY 2.2. Let ¢ > 262 and let o be any real number for which 0 < a < %
and ac* > 02, e.g. 4o = 1+20%c™ 2. Define b, and y, by

2.7 14y, =2(1+2a)"! and b, = b*/1*2
where b is the right side of (2.5). Then |u|'*"*E(N) 2 b, for 0 < p* < (ac*—0?)/2.
PRrOOF. Apply Jensen’s Inequality to the left side of (2.5).

COROLLARY 2.3. Given 0 < & < 1, there exist constants c(¢) and b(g) for which
|u|>"E(N) 2 b(e) > 0 for 0 < |u| £ 1 if ¢ = c(e).

PROOF. Let «, be the solution of 2/(1+2¢) = 2—¢ and let ¢(¢) be the solution of
aoc? —o? = 2. Taking a = a, in Corollary 2.2 then yields Corollary 2.3.

3. The upper bound.

LemMA 3.1. Let ¢’ = 2(2%)c and let B, = 2®(c’[a)— 1 where @ denotes the standard
normal distribution function. If B > B, then there is a constant M = M, for which

3.1 P(N >2" s Mpr+!
forn=0,1,2,---.
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PRrOOF. Let T, = S, and for k = 1 let T} = S« — S5«-1; then
P(N>2) £ [Ti=o P(Ti| = M)

for n = 0. Now given ¢ > 0, there is an integer m = m(e) for which |P(T},—p2*~* <
x0(2})* ") —d(x)| < ¢/2 for all x if k = m. Taking ¢ = f— B, and using the fact that
D(x+y)—P(—x+y) £20(x)—1 for all x=0 and all y, we therefore obtain
P(|T| £ ¢'(2})*"!) < B for k = m. The lemma follows immediately with M = ™.

COROLLARY 3.1. If B > Bo, « > 0, and B2* < 1, then E(N*) < M(1—- 29" = M,
say.

PRrOOF.

E(N) =1+Y2 oYt ms 1 K*P(N = k)
S1+Y 2 022" DP(N > 2" S M.

The constant M appearing in (3.1) depends not only on § but also on the rate at
which the distribution of (S, —nu)/on? approaches normality, and therefore on the
distribution function F of (X;—p)/o. It follows easily from the Berry-Esseen
Theorem, however, that if F satisfies (3.2) below, then M may be chosen to depend
only on d.

LEMMA 3.2. Let Y = sup,s ;(n™") (X,—p)*/c*; if for some 6 > 1
(3.2) E[|X;—p|*c™*] < d < o,
then E(Y) £ 1+d0(1-6)"% = d,, say.

PROOF.

E(Y)=[@P(Y > y)dy <1+d0(1-0)"' [Py °dy = d,.

COROLLARY 3.2. Let N, = min (k, N); then for eachk = 1, we have E[(Xy, — p)*] £

PROOF. Write (Xy,—p)* < 62N, *Y* and apply the Scharz Inequality.

THEOREM 3.1. Let B> B,, o > 0, and p4* < 1. If (3.2) is satisfied, then there is a
constant M, depending only on ¢, d, a, B, 0, and o* for which E(N?) < M,|u|~*/***
Sor|u| 1.

PRrOOF. Let N, = min(k, N); then by (1.1) we have |SNk_ 1| < cN,* which implies

|4| N < eNE+|Sy, — uNi| +| Xy, — 1+ |-
Applying the Minkowski Inequality, Theorem 1 of [1], and Corollary 3.2, we there-
fore have
(3.3) |ﬂ| E(Nkz)% =d, E(Nk)%

where d, = c+0(1+d;)+1. Now by Corollary 3.1 and the remark which follows
it, we have E(N,**) < E(N?**) £ M, where M, depends only on a, f, and d.
Therefore,

(3.4) E(Ny) S E(NZDEQV ) < MPEN ).
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Cbmbining (3.3) and (3.4) now yields u?E(N,2)*1*® < d,2M,* from which
the theorem follows, with M, = (d,*M,)!/1**, on letting k — co.

COROLLARY 3.3. Let B =(1+8,)/2 and let a be the solution of p4* = (1+ B)/2.
Define b, and v, by b, = M,* and 1+, = 2/(1+); then

E(N) < by [u =4+ for |4 1.
ProoF. This follows trivially from Theorem 3.1 and the Scharz Inequality.

4. Testing the sign of a bias. Let X,, X,, --- be i.i.d. N(0, 1) where 0 is an un-
known parameter whose sign we wish to determine. We adopt what might be called
a quasi-Bayesian approach to the problem. Specifically, we assume a prior density
A for 6, with posteriors denoted by 4, = A(-1X,, ‘-, X,) and continue sampling
until

(4.1) PO<O|X,, ", X,)= [, 1,(0)d6

is either < o« or = 1 —a where « is the admissible probability of error, e.g. a = 0.01
or 0.05; we then stop and decide that 6 is negative if (4.1) is = 1—a. A Bayesian
might object to our procedure on the grounds that we have not found the Bayes’
solution with respect to some loss structure, while a non-Bayesian would probably
object to the use of a prior distribution. Nevertheless, the procedure seemed simple
and intuitive, at least to us, and we decided to investigate its properties.

Taking A to be normal with mean u and variance 1/h, h > 0, we find that 4, is
again normal with mean p, = (uh+S,)/(h+n) and variance 1/(h+n). It follows
easily that our procedure calls for taking

4.2) N* =least n =21 for which |uh+S,| 2 c(h+n)*

observations where c is the solution of ®(—c) = a, and it is tacitly assumed that
|uh| < ch®. (4.2) of course, resembles (1.1) quite closely and, in fact, reduces to
(1.1) if we formally set # = 0. Moreover, the development of Section 2 applies to
N* as well as N (with only trivial modifications) to yield

4.3) Eo(N) = (c*—2)/(4c|6)), 0 < |0 < (c*-2)/4,

where E, denotes conditional expectation given 6. (See Corollary 2.1 with o = 1.)
Thus, if ¢2 > 2, and, in particular, for a« < 0.05, we have

E(N*) = [ E(N*)A(6)d6 = + o,

so that, from a Bayesian point of view, our procedure takes too many observations.
This is, of course, a reflection of the fact that we have not assumed a loss structure
which incorporates a cost of sampling. On the other hand, our procedure is com-
putationally quite simple, whereas the Bayes (dynamic programming) solution is
not, and moreover, the expected sample size of our procedure compares favorably
with that of other procedures. Indeed, writing N = N(c) and N* = N*(c) in (1.1)
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and (4.2) respectively, we have N*(c) < N(d) where d = ch*+ h|y. It follows from
Theorem 3.1 that

limo_,o 02E0(N*) = 0.

This compares favorably with the expected sample size for the procedure proposed
by Darling and Robbins ([2]) which is 0(6~*loglog |6] ~*) as 8 »0. Of course, the
Darling-Robbins procedure has some properties which ours does not, in particular,
P, (correct decision) = 1 —a for all 6 # 0.
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