THE HARTMAN-WINTNER LAW OF THE ITERATED LOGARITHM FOR MARTINGALES¹

BY WILLIAM F. STOUT

University of Illinois

According to the Hartman-Wintner law of the iterated logarithm [4], $\{Y_i, i \ge 1\}$ independent identically distributed with $EY_1 = 0$ and $EY_1^2 = 1$ implies that $\limsup \sum_{i=1}^n Y_i/(2n\log_2 n)^{\frac{1}{2}} = 1$ almost surely (a.s.). We generalize this result to stationary ergodic martingale difference sequences.

THEOREM. Let $(Y_i, i \ge 1)$ be a stationary ergodic stochastic sequence with $E[Y_i \mid Y_1, Y_2, \dots, Y_{i-1}] = 0$ a.s. for all $i \ge 2$ and $EY_1^2 = 1$. Then $\limsup \sum_{i=1}^n Y_i / (2n \log_2 n)^{\frac{1}{2}} = 1$ a.s.

(1)
$$\sum_{i=1}^{n} E[(Z_i')^2 \mid \mathscr{F}_{i-1}]/n \to 1 \text{ a.s.} \qquad \text{and hence that}$$

(2)
$$\sum_{i=1}^{n} E[(Z_i')^2 \mid \mathscr{F}_{i-1}] \to \infty \text{ a.s.}$$

According to [5], if $(Z_i, \mathscr{F}_i, i \ge 1)$ is a martingale difference sequence with $s_n^2 = \sum_{i=1}^n E[Z_i^2 \mid \mathscr{F}_{i-1}] \to \infty$ a.s., $u_n = (2\log_2 s_n^2)^{\frac{1}{2}}$, \mathscr{F}_{i-1} measurable random variables $L_i \to 0$ a.s., and $|Z_i| \le L_i s_i / u_i$ a.s. for all $i \ge 1$, then $\limsup \sum_{i=1}^n Z_i / (s_n u_n) = 1$ a.s.

Recalling (1) and (2), Z_i' satisfies the hypotheses of this theorem with $L_i = 2K_i u_i (i/\log_2 i)^{\frac{1}{2}}/s_i$ since $|Z_i'| \le 2K_i (i/\log_2 i)^{\frac{1}{2}}$ a.s. Thus, using (1), $\limsup \sum_{i=1}^n Z_i'/(2n\log_2 n)^{\frac{1}{2}} = \limsup \sum_{i=1}^n Z_i'/(s_n u_n) = 1$ a.s.

Received October 24, 1969; revised May 25, 1970.

¹ This research was partially supported by the National Science Foundation under Grant GP 14786.

To complete the proof it suffices to show that

(3)
$$\sum_{i=1}^{n} E[Y_i' \mid \mathscr{F}_{i-1}]/(2n \log_2 n)^{\frac{1}{2}} \to 0 \quad \text{a.s.} \quad \text{and that}$$

(4)
$$\sum_{i=1}^{n} |Y_i - Y_i'| / (2n \log_2 n)^{\frac{1}{2}} \to 0 \quad \text{a.s.}$$

Noting that $E[Y_i' | \mathscr{F}_{i-1}] = -E[Y_i - Y_i' | \mathscr{F}_{i-1}]$, it suffices by the Kronecker Lemma to establish $\sum_{i=16}^{\infty} E[Y_i - Y_i']/(2i\log_2 i)^{\frac{1}{2}} < \infty$ in order to prove (3) and (4).

To this end (following the approach of [2]) the sequence K_i is chosen to depend on the distribution of Y_0 in a rather involved manner. Let $c_i = i^2 P[i-1 < \left| Y_0 \right| \le i]$, noting that $\sum_{i=1}^{\infty} c_i < \infty$ follows from $EY_0^2 < \infty$. Let $n_k \ge 2$ be an increasing sequence of integers such that $n_{k+1} > 2^{n_k}$ and $\sum_{i=n_k}^{\infty} c_i < 2^{-k}$ for all $k \ge 1$. For each $i \ge n_1$ letting $K_i = (k)^{-\frac{1}{2}}$ when $n_{k-1} \le i < n_k$ it follows that

(5)
$$\sum_{i=n_1}^{\infty} c_i / K_i = \sum_{k=2}^{\infty} k^{\frac{1}{2}} \sum_{i=n_{k-1}}^{n_k-1} c_i \le \sum_{k=2}^{\infty} k^{\frac{1}{2}} 2^{-k+1} < \infty.$$

Note that the above choice of K_i is consistent with prior requirements that $K_i \to 0$ and $b_i \to \infty$. With $b_i = K_i (i/\log_2 i)^{\frac{1}{2}}$ let N(m) be the largest integer n such that $[b_n] \le m$ where $[\cdot]$ is the greatest integer function, noting that $b_i \to \infty$. Since $K_i \downarrow$ and $K_i/K_{i^3} \to 1$, it follows that there exists an integer m_0 such that $m \ge m_0$ implies

$$\begin{aligned}
&\{(4m^2\log_2 m/K_m^2)K^2_{\lfloor 4m^2\log_2 m/K_m^2\rfloor}/\log_2(4m^2\log_2 m/K_m^2)\}^{\frac{1}{2}} \\
&\geq \{(4m^2\log_2 m/K_m^2)K_m^2/\log_2 m^3\}^{\frac{1}{2}} > m.
\end{aligned}$$

Thus for $m \ge m_0$

(6)
$$N(m) \leq 4m^2 \log_2 m/K_m^2.$$

$$\sum_{i=16}^{\infty} E |Y_i - Y_i'|/(2_i \log_2 i)^{\frac{1}{2}}$$

$$\leq \sum_{i=16}^{\infty} E |Y_i| I(|Y_i| > b_i)/(2i \log_2 i)^{\frac{1}{2}}$$

$$\leq \sum_{i=16}^{\infty} \sum_{m=[bi]}^{\infty} (m+1) P[m < |Y_0| \leq m+1]/(2i \log_2 i)^{\frac{1}{2}}$$

$$= \sum_{m=[bi]}^{\infty} \sum_{i=16}^{N(m)} (m+1) P[m < |Y_0| \leq m+1]/(2i \log_2 i)^{\frac{1}{2}}.$$

By elementary integration and (6),

$$\sum_{i=16}^{N(m)} (2i \log_2 i)^{-\frac{1}{2}} < c(N(m)/\log_2 N(m))^{\frac{1}{2}}$$

$$\leq c((4m^2 \log_2 m/K_m^2)/\log_2 (4m^2 \log_2 m/K_m))^{\frac{1}{2}} \approx 2c \, m/K_m.$$

Using (5) and combining, it follows that $\sum_{i=16}^{\infty} E|Y_i - Y_i'|/(2i\log_2 i)^{\frac{1}{2}} < \infty$, thus completing the proof.

Acknowledgment. The author would like to thank the referee for suggesting the use of a result in [3] in the above proof.

REFERENCES

- [1] BILLINGSLEY, PATRICK (1961). The Lindeberg-Lévy theorem for martingales. *Proc. Amer. Math. Soc.* 12 788-792.
- [2] Chow Y. S. Unpublished lecture notes on the Hartman-Wintner law of the iterated logarithm.

- [3] Chow, Y. S. and Studden, W. J. (1969). Monotonicity of the variance under truncation and variations of Jensen's inequality. *Ann. Math. Statist.* 40 1106-1108.
- [4] HARTMAN, P. and WINTNER, A. (1941). On the law of the iterated logarithm. Amer. J. Math. 63 169-176.
- [5] STOUT, W. F. (1970). A martingale analogue of Kolmogorov's law of the iterated logarithm. Z. Wahrscheinlickeitstheorie und Verw. Gebiete. 15 279-290.