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THE HARTMAN-WINTNER LAW OF THE
ITERATED LOGARITHM FOR MARTINGALES'

By WiLLiam F. Stout
University of [llinois
According to the Hartman-Wintner law of the iterated logarithm [4], {Y,, i = 1}
independent identically distributed with EY, =0 and EY,%2 =1 implies that
limsup )., Y;/(2nlog, n)* = 1 almost surely (a.s.). We generalize this result to
stationary ergodic martingale difference sequences.

THEOREM. Let (Y;,i= 1) be a stationary ergodic stochastic sequence with
E[Y,|Y,, Y,, -+, Y,_]1=0as. forall i 22 and EY,* = 1. Then limsup Y7, ¥,/
(2nlog,n)* = 1a.s.

ProOOF. In order to prove the result, we assume a particular representation for
the stochastic sequence, namely that the sample space Q is the Cartesian product

{2 _» R; of copies of the real line, that the Y,’s are the coordinate variables of Q,
that & is the o-field of events generated by the Y;’s, and that P is the probability
induced on (2, #) by the finite dimensional distributions of the Y;’s. Letting &,
be the o-field generated by {Y,,, — o0 < m < n}, we note that E[Y; [ Fi-1]=0as.
for all integers i. Let K; be a sequence of positive constants to be specified later and
let b; = K(iflog, i)*. Let Y,/ =Y, I(|Y}| S b)+b,I(Y;>b;)—b;I(Y; < —b;) and
Z/=Y/—-E[Y/ [.9*',-_1]. Likewise let Y/ = Y,I(|Y,| SM)+MI(Y; > M)—
MI(Y;< —M) and Z;” = Y,."—E[Y,-”|.97,~_1] for M > 0. This modification of
the usual truncation procedure enables us to conclude that E[Y;? [.9" —1] 2
E(Z/)?|#:-11Z E[(Z")*| #-1]ass. when b; = M. (See Corollary 4 of [3] for
a proof of this) By the Birkoff ergodic theorem, Y7_, E[(Z/")*|#;-,l/
n—E(Zy')*as. and Y7, E[Y;?|#,_,]/n—>las. K; will be chosen such
that K;—0 and b; > 0. We then obtain 1=Ilimsup) -, E[Y;?|F,_,]n2
limsup 7., E[(Z/)*| #;-,)/n 2 limsup) ;- E[(Z;")* | #;_,)in = E(Z,")*. Since
E(Z,")* -1 as M — oo, it follows that
6)) Y- E[(Z))? | Fi—y]in > 1as. and hence that
)] Y1 E[(Z))|#:-1] > was.

According to [5], if (Z;,, #;i=1) is a martingale difference sequence with
5,2 =21 E[Z}?|#F_1]> was., u,=(2log,s,2)?, #,_, measurable random
variables L; —»0Oa.s., and |Z,-| < L;s;/u;as. for all i 21, then limsup) ., Z,/
(s,u,) = la.s.

Recalling (1) and (2), Z; satisfies the hypotheses of this theorem with L; =
2K, uiflog, i)¥/s; since |Z;'| < 2K (i/log, i)*a.s. Thus, using (1), limsup Y7, Z;/
(2nlog, n)* =limsup Y 7_, Z//(s,u,) = las.
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To complete the proof it suffices to show that
&) Y- E[Y|#,_]/(2nlog; n) >0 as. and that
“) Yoo | Y= ¥/ |/@nlog;n)* >0 as.

Noting that E[Y;|#,_,]= —E[Y,—Y/|#,_,], it suffices by the Kronecker
Lemma to establish ) 2,4 E|Y,— Y/ | /(2ilog, i)* < oo in order to prove (3) and (4).

To this end (following the approach of [2]) the sequence KX; is chosen to depend
on the distribution of Y, in a ratherinvolved manner. Letc; = i2P[i—1 < |Y0| <i],
noting that ) 2, ¢; < oo follows from EY,% < 0. Let m, =2 be an increasing
sequence of integers such that n,,, > 2" and ) 2, ¢; <27*for all k > 1. For each

i=ny

i 2 ny letting K, = (k)™* when n,_, < i <, it follows that
®) Zid;u, ¢/K; = Z;:;z k*Z}";:kl_l ¢ < ZI:O=2 kramk+l oo

Note that the above choice of K; is consistent with prior requirements that K; » 0
and b; —» o0. With b; = K,(i/log,i)* let N(m) be the largest integer n such that
[b,] = m where [-] is the greatest integer function, noting that b; —» co. Since K; |
and K;/K;s — 1, it follows that there exists an integer m, such that m > m, implies

{(4m?log, m/ sz)K2[4m2 log2 m/K»21/1082 (4m*log, m/ sz)}*
2 {(4m*log, m/K,>)KZ%;/log, m*}* > m.
Thus for m = m,
(6) N(m) < 4m?log, m/K,,>.
Yi216E IYi_ Yi,l/(ziIng i
= Z{'i 16E IY.I I(IYil > b)/(2ilog, i)*
S Y216 Lm=mpa(m+1P[m < | Y| £ m+1]/(2ilog, i)*
=Y m=tbi1 Lisis(m+ DP[m < |Yo| £ m+1]/Qilog, i)*.
By elementary integration and (6),
1T6(2ilog, i)™ < ¢(N(m)/log, N(m))*
< c((4m?log, m/K,,2)/log, (4m?log, m/K )t ~ 2c m/K,,.

Using (5) and combining, it follows that Y2, E|Y;— Y/|/(2ilog, i)* < oo, thus
completing the proof.
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