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1. The association scheme. Raghavarao and Chandrasekhararao (1964) intro-
duced the cubic association scheme for partially balanced incomplete block designs
with three associate classes. There are v = s° varieties; each variety is represented
by a different set of three coordinates (z,, z,, z5), where z,, z,, z ; are integers and
1 <z,,2,,z3 < 5. Two varieties are ith associates if they have (3 —i) coordinates
the same. Thus (0,0, 0) has (0, 1,0) among its first associates and (0, 1, 1) among its
second associates.

In this paper we consider an extension of the cubic scheme for the case s = 4,
v = 64. The coordinates z,,z,,z; do not take the integer values 1,2,3,4 but,
instead, are elements of a Galois field of four elements: 0, 1, x and y(=1+Xx), with
addition modulo 2. We now introduce a fourth coordinate defined by z; +z,+
z3+z,=0mod?2, or equivalently z, = z, +z,+2;, thus dividing the sixty-four
points into four hyperplanes or flats. This leads to the following partially balanced
scheme with four associate classes. Two varieties are first associates if two of their
four coordinates are identical, e.g. (1,0, x,y) and (1,0, 1,0), and second associates
if their representations coincide at only one coordinate, such as (0,0,0,0) and
(0,1, x, ). The three fourth associates of (z,,z,,23,2,) are (z,+a, z,+a, z3+a,
z,+a), a=1,x,y. If two varieties are not first, second, or fourth associates, they
are third associates. We shall call this new scheme the folded cubic scheme. In the
remainder of the paper we shall omit the commas and parentheses in denoting
varieties, and write, for example, Olxy or 1010.

Since z;+z; = 0 for all z; in GF(22), it follows that the representations of the
varieties fall into three types:

(i) z, =z, = z; = z,: aaaa,
(ii) the z; occur in two pairs: aabb, abab, abba, a # b,
(iii) the z; are all different: abcd, a # b # ¢ # d.

Thus two varieties cannot have more than two coordinates equal, and n, = 18,
n,=24,n,=18,n,=3.

The fourth associates of aaaa are bbbb, cccc, dddd; for aabb the fourth associates
are bbaa, ccdd, ddcc; for abcd they are badc, cdab and dcba.
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The P matrices of the scheme are

6 8 2 1 "6 6 6 0]
8 8 80 6 8 6 3
= P=
Pi=1, 5 6 2| 2 6 6 6 0]
1 0 2 0] |0 3 0 0
‘28621 6 0 12 0]
p._|8880 P_02400
3716 8 2 1|’ 47112 0 6 0
2 0 1 0 |0 0 0 2

Let N be the incidence matrix of a design with this association scheme, and let
0,, i =1,2,3,4, be the distinct latent roots of NN’ other than the trivial root rk.
They are the same as the latent roots of the matrix IT* (Bose (1963); Bose and
Mesner (1959)), which is a square matrix of order four with elements

Pl = 10i+ Yu Ph =iy,
where 6;; is the Kronecker delta.
The latent roots are

0, =r—61,+81,—6A;+31,,

0, =r+6A,—6A3—41,,

0y =r—241+223— 44,

0, =r+24,—84,+21;+34,.
These may be written in matrix form as

0 =r1+Z*A,

where A’ = (44, 4,,45,4,). Then (John (1966)) the multiplicities o; of the latent
roots are given by

o= _(Z*/)" lll,

where n = (n,,n,,n;,n,).

The multiplicities in this case are «; = 6, o, = 12, a3 = 36, a4 = 9.

Viewed geometrically the representation of the varieties in the cubic scheme
associates each variety with a point in a finite Euclidean geometry, and the set of
points with z, = ¢ (¢ =0,1,x,y) lie on parallel hyperplanes. We may obtain a
similar association scheme by taking as our definition of z, any other set of parallel
hyperplanes z, = B, z,+B,z,+B3z; where B,,p,,B; are non-zero elements of
GF(2?). In the general case the first, second and third associates of each variety
are defined as before. The fourth associates of (zy,z,,23,24) are (z;+af; ",
z,+aB,” Y, z3+aBs ™, z,+a), a = 1,x,y. If any of the B; is zero we no longer have
a scheme of this type.
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2. The nonexistence of some designs. For any design the latent roots 8 must all
be nonnegative, since the matrix NN’ is positive semidefinite. Furthermore the

parameters must satisfy
1) r(k—1) =Y A;n; = 184, +242,+ 1823+ 34,,

so that either r or k—1 must be divisible by 3.

If k = 4, we have r = 6(A; +4;)+ 81, +,. Substituting for r, it is seen that all
four latent roots are nonnegative for all values of A satisfying (1). However, if
k=3t+1 and 1, = 1, =0, we have 6, = r(1—1¢), which is negative for ¢ > 1. It
follows that for k = 3t+1, ¢t > 1, there are no designs for which 4, and 4, are
simultaneously zero. There are also sets of parameters r, A satisfying (1) which can
be shown to correspond to nonexistent designs since 6,, 6 or 8, would be negative.
Examples are

() r=4, k=164, =0, A, =1, A3 =2, 4,=0; 6, = —8,
(i) r=5 k=104, =2 4,=0, ,=0, Ay, =3; 0, = —2,
(iii) r=6, k=16, 4, =1, A, =3, A, =0=14,; 0, = —16.

The condition b = v—Y " «;, where )" «; denotes the sum of the multiplicities of
all the zero latent roots may also be used to establish the nonexistence of designs.
The set of parameters r=35, k=10, A’ =(1,0,1,3) gives 0, =0, =0;=2,
6, = 18, and b = 32. However, Y 'a; = 0, and there is no such design since b< v.

For a symmetric design [NN'| = [N|? = r?6,%6,%6,%0,*. The only odd multi-
plicity is a,, so that a necessary condition for a symmetric design to exist with
positive latent roots is that 6, be a square; (1) also implies that r = 0 or 1 (mod 3),
and that 4, is even (or zero). Eliminating 4, by the use of (1)

04 = r2 - 16(2.1 +)~3)_32A~.2 = rz_ 16(11 +2A‘,2 +l3).

This eliminates for example designs with r = k = 16 unless 4, +24, +4; equals
7 or 12 or with r = k =9 unless 4, +24, +4; equals 2 or 5.

For the moment denote varieties by capital letters U, V, - - - and write (U, V) = ito
denote that U and ¥V are ith associates. Consider a block from a design with
A, = A3 =0, which contains varieties X, 4,S,7, such that (X, 4) =1, (X,S) =
(X,T) = 4. Then (4, S) = (4, T) = 1, but this is impossiblesince pj, = 1. If 34, > r
there must be at least one block which contains X and two or more of its fourth
associates; if k > 4, that block must also contain at least one first associate of X.
A similar argument holds if 4, = 4, = 0 and (X, 4) = 3. Hence if k > 4, 3, >r,
there are no designs with either A, = 1, = 0 or with 4, = 4; = 0. This rules out
designs with b =64,k =6,r=6,1,=0,4, =4and A, =lori; =1.

3. Some degenerate schemes. If A, = 1; we have 0, = 6; so that there are only
three distinct latent roots. Pooling the first and third associate classes we obtain a
new association scheme. Let treatments in the new scheme be first associates if
they were first or third associates before, second if they were second associates
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before and third associates if they were fourth associates before. The new P
matrices are

16 16 3 24 12 0 36 0 0
P,=(16 8 O0f, pP,={(12 8 3{, Py=10 24 0],
3 00 0 30 0 0 2
01 =r— 12AI+8)~2+3A3, 02 = r—2.3, 03 = r+4ﬂ.1 —812+3A3,
o, =6, o, =48, oy =9.

Except for the numbering of the associate classes this is a hierarchic L; scheme,
or an L;(4,4) scheme (Singh and Singh (1964) ). The 64 treatments are divided into
16 groups of mutual fourth associates. From each group take the treatment with
z, = 0 as the key member; arrange the key members in a square array with members
going into the ith row if z, =i and the ith column if z; = i. The array forms a
4 x 4 Latin square with z, corresponding to letters. Treatments in the same group
are third associates. Treatments in different groups are first associates if the key
members of their groups have z, or z; or z, equal; otherwise they are second
associates.

Pooling the first, second and third associates in the folded cubic gives a G.D.
two associate class scheme with sixteen groups of four treatments each.

If A, = A, = A4, then 0, = 0,, 0; = 0,. Thus pooling the first, second and fourth
associates converts the folded cubic scheme into a partially balanced scheme with
two associate classes. In this new scheme let two varieties be first associates if they
are first, second or fourth associates in the folded cubic scheme and second
associates otherwise. The two-class scheme has P matrices

32 12 30 15
Py ‘(12 6)’ Pz_(lS 2)’
0, =r+54,—64,,a, =18, 0, =r—12,,a, = 45.
This scheme has the same parameters as the negative Latin square scheme with
i= -5, n = —8 (Mesner (1967)).
If A, = A4, A, = A3, then 0, = 0;, 0, = 6, and the folded cubic scheme degenerates
to a two class scheme. Letting two varieties be first associates in the new scheme if

they are first or fourth associates in the original scheme and second associates
otherwise we obtain the P matrices

8 12 6 15
P = = .
! <12 30)’ Pz (15 26)’

01 = r—3ﬂ.1 +2).2, “l = 42, 02 = r+511—6].2, az = 21.
It will be shown below that this is an L,(8) association scheme.

4. Some designs with the folded cubic scheme. Associated with any partially
balanced scheme are two basic sets of elementary symmetric designs which we
denote by ES(i) and E’S(i). In the design ES(i), i = 1, 2, 3,4, the jth block consists
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of all those varieties which are ith associates of the jth variety. Then r = k = n, and
A = pj; for t = 1,2,3,4. In the design E’S(i) the jth block contains the jth treatment
together with all its ith associates; for this design r =k = n;+1, 4, = p};+2, and
Ay = Pl (¢ # ).

For the folded cubic scheme it is readily seen that

ES(1) and ES(2) each have r=k =18, A, = A, =4, =6, 43 =2, and are two
associate class designs. E'S(3) is also a two associate class design with r = k = 19,
A=A =2,=6, 13=4. ES(2) is a singular GD design with r =k = 24,
Ay =2, =23=28 and A, =24. ES(4) and E’S(4) are disconnected GD designs.
E'S2) hasr=k =25, A, =13 =8, 4, =10, A, = 24 and is a three associate class
design. .

The only symmetric design in these two series with four associate classes is
E’S(1). For this design r=k=19, 1, =8, 4;=2 and A, =4, = 6. Although
Ay = A4, the latent roots are distinct, 0’ =(25,49,1,9). We may also consider
designs of this type using several associate classes, letting ES(iy, i,), i, # i,, denote
the design in which the jth block consists of all varieties which are either #,th or
i,th associates of the jth variety. E’'S(i,, i,) denotes the corresponding design with the
Jjth variety included in the jth block. The incidence matrix N of ES(i,, i,) is the sum,
B;, +B,,, of the corresponding association matrices. The ith association matrix
B;, (Bose and Mesner), is a symmetric v X v matrix. The element in the sth row
and ¢th column is unity if the sth and ¢th varieties are ith associates. Otherwise it is
zero. If we regard each variety as a Oth associate of itself we have B, = 1. The
incidence matrix of E'S(i;, i,) is Bo+B;, +B,,.

There are only two of these designs that have four associate classes, ES(3, 4) and
its complement E’S(1,2). The others all correspond to degenerate schemes. For
ES(3,4) we have r =k =21, A’ = (10, 6,4,8), 6’ = (9,49, 1, 25).

5. Cyclic designs. We consider designs with b = 64s obtained by cycling from a
set of s initial blocks of size k. We define the difference between two varieties
v=(a,b,c,d), v, =(p,q,r,t) as [v,—v,] = [a—p, b—q, c—r, d—1], and note that
[v; —v,] = [v,—v,]. Each block contains k(k—1) differences [v;—v;].

LEMMA. If the set of sk(k—1) differences from the initial blocks contains

(i) each difference of the type [a,a,b,b), [a,b,a,b], [a,b,b,al, where either
a=0orb=0, exactly A, times, i

(ii) each difference [a, b, c,d] where a,b, c,d are all different, exactly 1, times,

(iii) each difference [a,a,b,b), [a,b,a,b], [a,b,b,a), where a # 0, b # 0, exactly
A3 times,

(iv) each difference [a, a, a,a) where a # 0, exactly 1, times, then the design is a
partially balanced design with parameters b = 64s, k = k, r = 4s, A,, 25, A3, A4.

The proof of the lemma is essentially the same as the proof of the first funda-
mental theorem of the method of differences for balanced incomplete blocks, (Bose
(1938)) and will not be given.
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Design 4.1. Consider the set of six initial blocks

(i) 0000, 0011, 00xx, 00yy;
(ii) 0000, 0101, 0x0x, OyOy;
(iii) 0000, 0110, Oxx0, Oyy0;
(iv) 0000, 1001, x00x, y00y;
(v) 0000, 1010, x0x0, y0y0;
(vi) 0000, 1100, xx00, yy00.

The complete design has b = 384, A, =4, 4, = 1; = A, = 0. However each block

appears four times. For example (i) also appears as 0011, 0000, 00yy, 00xx;

00xx, 00yy, 0000, 0011 and 00yy, 00xx, 0011, 0000. Taking each block only once

gives design 4.1 with b=96, k=4,r=6,1, =1, A,=A;=4,=0, E=0.727.
Design 4.2. We take a set of eight initial blocks.

(i) 0000, O1xy, Oxyl, Oylx;
(ii) 0000, Oyx1, Ox1y, Olyx;
(iii) 0000, 10xy, x0y1, yOlx;
(iv) 0000, yOx1, x01y, 10yx;
(v) 0000, 1x0y, xy01, y10x;
(vi) 0000, yx01, x10y, 1y0x;
(vii) 0000, 1xy0, xy10, y1x0;
(viii) 0000, yx10, x1y0, 1yx0.

Again each block appears four times. Taking each block only once gives b = 128,
k=4,r=8,2,=1,4, =A;,=41,=0, E=0.741.
Design 4.3. There are six initial blocks

(i) 0000, 11xx, xxyy, yy11;
(i) 0000, 1x1x, xyxy, ylyl;
(>iii) 0000, 1xx1, xyyx, ylly;
(iv) 0000, x11x, yxxy, 1yyl;
(v) 0000, x1x1, yxyx, 1yly;
(vi) 0000, xx11, yyxx, 11yy.

Ignoring repeated blocks we have b =96, A, =1,4, =41, =1,=0, E=0.737.

Design 4.4. An unconnected design for b=16, 4,=1, 4, =1,=2;=0 is
obtained by taking the sixteen sets of mutual fourth associates, or equivalently by
using the initial block 0000, 1111, xxxx, yyyy.

These four designs combine to give a balanced incomplete design for v = 64,
b=336,k=4,r=21,1=1, E=0.762.

Design 6.1. The two initial blocks

(i) 0000, 1111, Olxy, xy01, x01y, 1yx0;
(ii) 0000, 1111, Ol1yx, xy10, xOy1, 1yOx

give a design with b =128, k=6,r=12,1,=2, 3, =4,1, =1, =0, E=0.812.
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Design 6.2. There are three intial blocks 0000, zzzz, 00zz, zz00, z0z0, 0z0z,
z=1,x,y. Each block is duplicated. Eliminating duplicates gives b = 96, k = 6,
r=9,A,=2,1,=3,4,=2;=0, E=0.815.

Design 8.1. We take three initial blocks

(i) 0000, 1111, 1100, 0011, 1010, 0101, 1001, 0110;
(i) 0000, xxxx, xx00, 00xx, x0x0, 0x0x, x00x, Oxx0;
(iii) 0000, yyyy, yy00, 00yy, y0y0, 0y0y, y00y, 0yy0.

Each block is repeated eight times. Taking each block once gives a design with
b=24,k=8,r=3,A, =1,=1,4, =21; =0, E =0.857, which is isomorphic to a
triple lattice L;(8) design. To obtain the correspondence between the schemes when
this is regarded as a two class design, write the elements of blocks (i), (ii) and (iii),
in the order given, in the first row, the first column and along the main diagonal of
an 8 x 8 square. Complete the second row by adding [x, x, x, x] to each entry in
the first row; complete the third row by adding [x, x,0,0] and so on. Assign the
letter A to the entries along the main diagonal. Two of the blocks containing xxxx
are the second row and the first column; assign to the members of the third block
which contains xxxx the letter B; assign to the members of the third block which
contains xx00 the letter C, and so on. Two varieties are now first (or fourth)
associates if they share a common row, column or letter in the Latin square. Our
design is then obtained from the L,(8) scheme by taking the three replicates
“rows,” “columns,” and “letters.” A design withb =48,1,=1;=1,1;, =1,=0,
E = 0.882 is obtained by deleting design 8.1 from the orthogonal series balanced
design for the 64 varieties.

Design 8.2. There are three initial blocks 0000, aaaa, bbcc, ccbb, bebe, cbeb,
beeb, cbbe, where a takes in turn the values 1, x,y and a, b, ¢ are different from 0
and each other in any block. Each block is duplicated; taking each block once
givesb=96,k=8,r=12,A,=1;=2,A,=4,1,=0, E=0.877.

Design 8.3. There are 9 initial blocks with a, b, ¢ different from 0 and each other
in any block: 0000, aaaa, 00aa, aa00, becbe, cbeb, beeb, cbbe;, 0000, aaaa, 0a0a, a0al,
bbcce, ccbb, beeb, cbbe; 0000, aaaa, 0aa0, a00a, bbcec, ccbb, bebe, cbeb. Each block is
repeated eight times; omitting repeats gives a design with b=72, k=8, r =9,
A=14,=01;=2,1,=3, E=0.875.

6. The scheme for v = 27. For s = 3, v = 27, the varieties in the cubic scheme
may be written as (z,,z,,z;) where z; =0,1,2; we add a fourth coordinate z,,
where z, +z,+2z3+2z, =0 (mod3). It will be more convenient to define two
varieties to be first, second or third associates if they have zero, two or one co-
ordinates in common respectively. In this case the scheme is a PBIB scheme with
three associate classes. (The fourth associate class from the previous case is absorbed
in the second class, since adding 1 to zy,z,,z; or adding 2 to z,,z,,z; leaves z,
unchanged with arithmetic mod 3.) Thenn, = 6,n, = 12, n; = 8, and the P matrices
are identical with those of the cubic scheme with s = 3. To see that the schemes are
equivalent, associate variety (z;,2,,23,2,) in the folded scheme with the variety
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(»1,¥2,y3) in the cubic scheme, where y, = z;4+z, (mod3), i=1,2,3. It is then
easily verified that the jth associates of any treatment are the same in the two
schemes. For example, the first associates of 0000 in the folded scheme are
(t,1,21,21), (¢,2t,1,2t) and (21, 1,1,2t), t = 0, 1. Their images in the cubic scheme are
(0,0,1), (0,¢,0), (¢,0,0) which are first associates of (0,0, 0).

7. The case s = 5. When s =5 the coordinates z; take the values 0, 1, 2, 3 and 4 with
arithmeticmodulo 5. We againadd a fourth coordinate z, suchthatz, +z,+z3+2z, =
Omod 5. The previous definition of associate classes no longer leads to a partially
balanced scheme. Among the third associates of 1234 are 0000 and 2120; 1234 has
only two first associates in common with 0000, namely 1004 and 0230, but it has
four first associates in common with 2120, namely 1130, 1220, 2134 and 2224. We
can however modify our definitions slightly to obtain a partially balanced scheme
with five classes.

As before two varieties are said to be first associates if they have two identical
coordinates and second associates if they have a single coordinate in common.
The varieties which contain no zero coordinates fall into three types which we shall
call (iii), (iv) and (v). They are distinguished as follows:

(iii) the coordinates fall into two pairs aabb, abab, abba, where a+b = 0 (mod 5),
(iv) three coordinates are the same aaab, aaba, abaa, baaa with b = 2a (mod 5),
(v) all four coordinates are different.

We define two varieties (21,212,213, 214) and (221,252, 223, Z24) to be third, fourth
or fifth associates if their difference [z, —221, 21, =222, 23— 223, Z14— 224] is Of
type (iii), (iv) or (v) respectively. With this definition 1234 is a fifth associate of 0000
and a third associate of 2120. It can be shown that this definition of the associate
classes gives a partially balanced scheme with n, = 24, n, =48, n; =12, n, = 16
and ns; = 24. The first two P matrices of the scheme are

7 12 2 0 2 6 91 4 4
12 18 2 8 8 9 17 7 4 10
P=12 22 2 4], P,=|1 702 2
0O 8 2 2 4 4 4 2 2 4
2 8 4 46 4 10 2 4 4

We also have p3; = pi, = pls = 3 and p3, = p3s = 0. There does notappear to be
any way of combining the associate classes to obtain a four class scheme, and by
analogy from the case s = 4 it is to be expected that defining z, by z, = a; z; +
o, z, +0a5 23 where a,, a,, a5 are nonzero elements of GF(5) will give rise to similar
schemes. Designs with this scheme for s = 5 have not yet been investigated. Similar
extensions of these schemes for s > 5 with m > 4associate classes can be conjectured.
The large number of varieties required when s > 5 suggests, however, that this may
not be of practical interest.
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