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CONVERGENCE OF SUMS OF RANDOM VARIABLES
CONDITIONED ON A FUTURE CHANGE OF SIGN!

By THoMAS M. LIGGETT

University of California, Los Angeles

1. Introduction and notation. Let {{,} be a sequence of independent and identi-
cally distributed random variables which have a non-lattice distribution and which
are in the domain of attraction of a non-degenerate stable law of index «(0 < « < 2).
Let S, denote the partial sum &; +---+¢,. It is the purpose of this paper to study
the limiting behavior of {S,, kK < n} as n — oo under the condition that S, S, <O0.
It turns out that the results depend on whether « < 1 or @ =1 as is so often the
case in the study of stable laws and their domains of attraction.

We will assume for simplicity that no centering constants are needed for the
convergence of the normalized partial sums. So, there are constants b, > 0 so that
S,/b, converges in distribution to an appropriate stable law, which we will call
X (1). For each n, define a stochastic process X,(¢) by

Xn(t) = S[(n+ l)t]/bn for 0 é t< 1
= S,/b, for t=1.

These processes are regarded as random elements of Skorokhod’s space D0, 1]
(see Chapter 3 of [1]). It then follows from a theorem of Skorokhod that X,(¢)
converges weakly in D[0, 1] to a stable process X () whose one-dimensional
distributions are the same as those of t!/X (1) (see Theorem 1 of [5]).

The processes of interest here are (X,,(t)|S,, S,+1 <0), which again are re-
garded as random elements of D[0, 1]. In order to insure that the conditioning
event (S,S,+; <0) has positive probability for each n, we will assume that the
stable law X'(1) is not one-sided. The main result of this paper is that the processes
(X, | S, S,+1 < 0) converge weakly to a limiting process which concentrates at the
origin at time one if 1 £ « < 2 and which concentrates on the whole line at time
one if a < 1.

In two earlier papers, the author studied the limiting behavior of processes of
the form (X,(¢) | X, (1)e E™) where E" is a sequence of Borel subsets of the real line
([5] and [6]). Theorem 1 of this paper may be regarded as an application of the
results of [6].

2. The case 1 <o <2. We will show that in this case (X,(f)|S,S,+1 <0)
converges to the process which is obtained by “tying” X (¢) down to the origin at
time one. For a = 2, this process is the ordinary Brownian Bridge.
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In order to obtain the desired result for « = 1, we will need the following two
simple lemmas. In the first one, no restriction is made on the value of «.

LemMmA 1.

lim;.,o limsup, ¢ P(|&,+1]| S 8|S, Sp+1 <0)=0.
PRrOOF. Choose an & > 0 so that P(|¢,+,| > &) > 0. Then by Theorem 1 of [7],
P(S,Sp+1<0)2 P(§p+1 > )P(—e<S,<0)
+P¢,.1<—-e)P0<S,<e¢)
= &b~ pO)[1 +0o(D]P(Eps 1| > 2)
where p(-) is the density of X (1) and o(1) —» 0 as n — c0. So,
1) liminf,_, b, P(S,S,+; <0)>0.
On the other hand,
P(&1| $6,5,5,11 <O S PO S &0y SOP(-5<5,<0)
+P(—0=<¢&,.1 S0)P0O<S, <)9).
Again using Theorem 1 of [7], we have
lim sup, b, P((y+ 1| S 6.5, 5,41 <0) < 5p(0),

thus concluding the proof of the lemma.

LEMMA 2. Assume 1 £ a £ 2. Then, for each y > 0,

P(|+1] Z ybu| S4Sus1 <0) >0

asn-—» o.

ProoF. Consider first the case 1 < « < 2. From the known tail behavior of the
distribution function of ¢; (see page 176 of [4]), we see that for each y > 0,

2 nP(|y+1| Z yby) —> By~
where 0 < B < 0. On the other hand,
nP(S,S,+1 <0) = &4 P(X,(1)edx)nP(E,+ 1 < —xb,)
+ (2% P(X (D) edx)nP(&, 4, > —xb,).

Since P(X,(1)edx) converges weakly to p(x)dx, and since [|x|™*p(x)dx = oo, it
follows from (2) that nP (S, S,+; < 0) = oo as n — o0. Using (2) again, we see that
the lemma holds.

Now suppose « = 2. By Theorem 1, page 172 of [4]

P(|£n+1| g ybn)y'zbnz -
[ 7250, %%P(8, 41 € %)
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for each y > 0. It then follows from a simple estimate that
by P(|&s+ 1| Z yb) > 0
for each y > 0. This, together with (1) yields the conclusion of the lemma for o = 2.

THEOREM 1. Assume 1 < o < 2. Then the processes (X,(t)| Sy Sy+1 < 0) converge
weakly in D0, 1] to the process Y (t) which has finite dimensional distributions given
by

P(Y(t)eAy, ., Y(t)e Ay

p( _ l’a>
J f U by edz,, -, X(t)edz)
Ax

—1)'%p(0)
for 0<t, <+ <t,<1; Y(0)=0, Y(1)=0. Here Ay, -, A, are Borel subsets
of R.

Proor. That there exists a random element Y of D[0, 1] with the given finite
dimensional distributions is a consequence of Theorem 4 of [S]. Fix a Borel
subset 4 of D[0, 1] which satisfies P(Ye0A) =0, and define a sequence of
measures k,(dx) on the real line and a sequence of functions f,(x) by k,(dx) =
P({,+1€dx|S,S,+, <0)and f,(x) = P(X,e 4| —x* < xS, < 0). Note that f,(x) is
not defined for all xe R, since the conditioning event may have zero probability
for small x, but it will be defined for all x for which it is used in what follows. Then,
we may write '

P(X,eA,S,S,+; <0)=[2, P(X,ed, —x* < xS, < 0)P({,+,€dx)
= [2o f()P(—=x* < xS, < 0)P(¢,+, €dX)
= jfcofn(x)P(én*- 1 de9 Sn Sn+1 < 0)

Here the first and third equalities follow from Fubini’s Theorem, since X, and
¢, . are independent. So, we have

3 P(X,€A|S,S,+1 <0) = [2, f(x)k,(dx).

By Theorem 4 of [6], if 6 >0 and 6,0, f,(x,) = P(Ye A) for any sequence {x,}
with x, in [—48,b,, —d]U[d, 3,b,]. By Lemma 2, there is a sequence §, | 0 so that
k {x||x|>5 b,} =»0. Choose ¢>0. By Lemma 1, there is a 6 >0 so that
limsup,-, k,{x||x| £ 6} < &. So, from (3) it follows that

limsup,_, P(X,€A|S,S,+; <0) < P(YeA)limsup,-, k{6 < |x| < 6,b,}
+limsup,.., k,{|x| £ 6} S P(Ye A)+e.
Similarly,
liminf,. , P(X, €A S, 5,4, <0) = P(Y € A)(1—¢).
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Since ¢ was arbitrary, P(X,,eA |S S,+1 < 0) > P(Ye A). Since this is true for each
A for which P(YedA) =0, it now follows from Theorem 2.1 of [1] that
X, |S S,+1 < 0) converges to Y weakly in D[0, 1].

3. The case « < 1. One might expect that any weak limit of (X,(¢) | Sy Sp+1 <0)
would concentrate at the origin at time one. This turned out to be true in the case
considered in Section 2. When « < 1, however, a different phenomenon occurs.
The limiting process concentrates instead on the whole line at time one. The first
step in studying this case is the following lemma.

LEMMA 3. Assume o. < 1. Then
lim, |, limsup,,, , nP(0 < S,/b, <¢,S,,+; <0)=0.

PRrOOF. Let F be the distribution function of ¢;, and let H(x) = 1 — F(x)+ F(—x)
for x = 0. Then

P(0 < S,/b, < &,S,+1 <0) = [ P(S,/b,edx)F(—b,x)
) < Y1} P(0 < S,/b,—ke/b, < &/b,)F(—ke)
< K/b,[e+0(1)] i F(—ke)

where K is an upper bound for the density p(-) and o(1) > 0 as #n — co uniformly
for all k and all bounded & > 0. The second inequality is a consequence of Theorem
1 of [7]. Since F is monotone,

ey ) F(—ke) < [, F(x)dx < [ H(x) dx.

Since ¢; belongs to the domain of attraction of the stable law X' (1) and « < 1, it
follows from Theorem 2, page 175, of [4] that H(x) is a regularly varying functlon
with exponent —a. Applying Theorem 1, page 273, of [3] (note that while there is
a small error in the proof of this theorem, it can be corrected whenever the
functions involved are measurable), we see that (eb,)H (gb,)/[5" H(x)dx —» 1 —a.
From page 176 of [4], it follows that nH (eb,) — De™* where D is a positive, finite
constant. So

n [bnl ( )dx
11:11 iupb_..kz F(—ke) = 111:1 s:p m nH(eb,)
_ D
T (l-a)e”

The statement of the lemma now follows from (4)

THEOREM 2. Assume a < 1. Then the processes (X, | S, S,+1 < 0) converge weakly
in D[0, 1] to a process Z with distribution given by

B, |3 P(XeA,X(1)edz)z™*+B, [° , P(X e A, X(1)edz)|z|™*
B, [¢ p(2)z7%dz+B, %, p(z)|z|~*dz

Jor any measurable subset A of D[0, 1], where B, and B, are positive constants.

(5) P(ZeA)=
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Proor. Note that the expression on the right of (5) is indeed a probability
measure on D[0, 1]. Let 4 be a measurable subset of D[0, 1] with P(Z€dA4) =0
It then follows from (5) that P(XedA) = 0. Let G = {x(-)eD[0, 1]| x(1)e(u, v)}
for any choice of u, v with —o0 < u < v < co. Then

P(X e (AnG)) < P(X €9G)+P(X €dA) =0,

so P(X,e A, X,(1)edz) converges weakly to P(Xe A, X(1)edz) as a sequence of
measures on (— oo, c0). Now we may write

P(X,€A|S,S,+1 <0)
jo+ P(X,eA,X,(1)edz)F(—b,z)+[°% P(X,€ A, X, (1)edz)[1-F(—b,2)]
f&, P(X,(1)edz)F(—b,z)+ (>, P(X,(1)edz)[1 - F(-b,2)]
We see from page 176 of [4] that nF(—b,z)—> B,z"* for z>0, and n[l—
F(—b,2)]- B, |z|™* for z < 0. Since all these functions are monotone in z, the

convergence is uniform for z bounded away from zero. So, using Lemma 3, we may
conclude that

P(X,eA | S,S,+1 <0)—> P(ZeA).
By Theorem 2.1 of [1], (X, | S, S,. 1 < 0) converges weakly to Z in D[0, 1].

Acknowledgments. This paper forms a part of the author’s Ph.D. dissertation at
Stanford University. The author wishes to express his appreciation to Professor
Samuel Karlin for his guidance and encouragement during its preparation.

REFERENCES

[1] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

[2] Dwass, M. and KARLIN, S. (1963). Conditioned limit theorems. Ann. Math. Statist. 34 1147-
1167.

[3] FeLLER, W. (1966). An Introduction to Probability Theory and its Applications 2. Wiley, New
York.

[4] GNEDENKO, B. V. and KoLMOGOROV, A. N. (1968). Limit Distributions for Sums of Independent
Random Variables (rev. ed.). Addison-Wesley, Reading.

[5] LicGert, T. M. (1968). An invariance principle for conditioned sums of independent random
variables. J. Math. Mech. 18 559-570.

[6] Licgerr, T. M. (1970). Weak convergence of conditioned sums of independent random
vectors. Trans. Amer. Math. Soc. 152

[7] STONE, C. (1967). On local and ratio limit theorems. Proc. Fifth Berkeley Symp. Math. Statist.
Prob. 2 2 217-224.

[8] WICHURA, M. (1968). On the weak convergence of non-Borel probabilities on a metric space
Ph.D. dissertation, Columbia Univ.



