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BEHAVIOR OF MOMENTS OF ROW SUMS
OF ELEMENTARY SYSTEMS

By B. M. BROwWN AND G. K. EAGLESON -

La Trobe University and University of Sydney

1. Introduction. Bawly [1] studied the convergence of a sequence of distribution
functions of row sums of an elementary system, i.e. (Gnedenko [3] page 316) row
sums of uniformly small random variables which converge in distribution to an
infinitely divisible law with bounded variance. He introduced their so-called
accompanying laws ([4] page 98, see Section 2), showed them to be asymptotic to
the row sum distributions, and thus obtained necessary and sufficient conditions
for the convergence in law of the row sums.

In this paper, a study is made of the behavior of the moments of the sequence of
row sums, using the accompanying laws, and their moments. First, the cumulants
of the sequence of row sums are shown to be closely related to those of the accom-
panying laws. This leads to necessary and sufficient conditions for the convergence
of the moments of row sums to those of the limit distribution. These conditions
include, as a special case, the Lindeberg conditions of even integer order which are
necessary and sufficient for the convergence of moments in the central limit theorem
(see [2]). The results of Section 1 of [2] are therefore placed in a natural and more
general setting.

Section 4 contains a brief survey of the main results of the paper.

2. Preliminaries. Let X, X,,, ", X,;, be independent random variables for
each n=1,2, -+, with EX,; =0 and DX,; < oo for j=1,2,"*,j,, n= 1,2,:--;
where DX denotes the variance of the random variable X. Assume that the {X,;}
form an elementary system (see Gnedenko, page 316), i.e. that

) max;g;, DX,;—0 as n-oo
and
)] Y DX,; < someC < ©

foralln=1,2,---.

Let F, () denote the distribution function and f,(-) the characteristic function
of X,j. Also, for each n=1,2,---, let Y,,,--*,Y,;, be independent random
variables whose characteristic functions are given by ¢,;(t) = Eexp(itY,;) =
exp (fo;(t)—1), and write

S, = z . and
T,=Y; Y-
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The distribution of the random variables {7} are called the accompanying laws of
the random variables {S,}, and have characteristic functions

(1) = E€'
3 =[1i¢a®
=exp((f(-1))
= exp {Y ([ 2 ("™ —1) dF,{(x))}.

Clearly, the distributions of {7,} are infinitely divisible.

Now let ¢(¢) be the characteristic function of another infinitely divisible random
variable T, with mean zero and finite variance. By Kolmogorov’s representation,
we can write, forn=20,1,2,---

log ¢,(1) = [2 (€™ —1—itx)x "2 dG,(x),

where G,(x) is a non-decreasing function of x with G,(0)— G,(— ) = D(T,). It is
readily verified from (3) that, forn > 1,

“4) dG,(x) =Y ;x*dF,(x).

We assume throughout that S, converges in law as n — oo to T, for which a
necessary and sufficient condition is that the accompanying laws 7, also converge
in law to T, as n —» oo (Theorem 1, page 317 of [3]). An equivalent necessary and
sufficient condition is that

%) G,(x) = Gy(x) weakly as n-— .

The proof of the last fact is contained in the proofs of Theorem 3, page 319 and
Theorem, page 312 of [3], where the required uniform boundedness of total
variations of G,(x) is provided by (2). The additional property lim,., (G,(0)—
G,(— 0)) = Gy(0)— Go(— o) is equivalent to lim,_, , D(T,) = D(T)).

Our basic assumptions throughout are therefore (1), (2) and (5).

For r a positive integer, the rth cumulant of a random variable X, K,(X), is
defined to be i ~"{(d/dt)" log Eexp (itX)},- o, provided this derivative exists. Consider
the rth cumulants (assumed to exist) of the accompanying laws. For r =2,3,---
andn=1,2,---

Kr(T;l) = ZJ Kr( Ynj)

6) =Y,EX,;
= 20 X dE, )
) = [2x""2dG,(x) from (4),

The relation (7) also holds for arbitrary infinitely divisible random variables whose
rth moments are bounded; i.e. for n = 0. It is now convenient to define the rth
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absolute cumulant B,(Y) of an infinitely divisible random variable Y as the (r—2)th
absolute moment of its canonical measure G(-), i.e.

®) B(T,) = [, |x[""2dG,(x)

forn=0,1,2,---;and, forn =1,

6)) B(T,) = Y E|X,|
=Y;BAY,)).

Furthermore, it follows from Lemma 3 (below) that the weak convergence of
G, to G,, together with the uniform boundedness of absolute moments
lim Sup, - [ 20 [%|* "2 dG,(x) < oo for some integer k > 2, entails

(10) lim,, , o, |2 X" dG(x) = [2, X" dGo(x) and
(1) lim, ., o [ 2o |%]"dGy(x) = [Zo |%|"dGo(x)

for all integers r < k—2. In addition, if (11) holds for r = k—2, then (10) also holds
for r = k—2. Combining these observations with equations (6)-(9) gives

LemMa 1. If for some k = 3,4, -+, limsup,_, , By(T,) = limsup,_, > ; E|X,;|* <
00, then

(12) limn*oo Br(j;r) = limn*ao Zj EIanIr = Br(TO)
and
(13) limn—'co K,.(T;,) = limn-'co Zj EX:U = r(TO)

for all integers r < k. If in addition (12) holds for r = k, then (13) holds for r = k.

LEMMA 2. There exists a constant M, < oo such that
[KAT,)| < BAT,)
< My(B(T)) >/~

for alln=1,2,--- and positive integers r,k with2 <r < k.

PROOF. Express the cumulants K,(7,,) in terms of the moments of the (normalized)
distribution function G,(x)/K,(T,), apply elementary moment inequalities, and use
).

Finally, we state the following routine lemma for completeness (see Loéve [5]
page 184).

LEMMA 3. Let U,, n = 1,2, - be a sequence of random variables which converges
in distribution to a random variable U as n — o, and let limsup,_, , E | U,,|" < o0 for
some positive a. Then lim,,, E|U,|*= E|U|* and lim,.,, EU,’ = EU® for all
positive b < a. Furthermore iflim, ., E|U,|* = E|U|* < 0, thenlim,_, , EU,*=EU".
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3. Behavior of moments.
THEOREM 1. If E|S,|* < oo for some k = 4,5, -+, and all n, then
IKk(Sn)—Kk(Tn)I = o(By-o(T)) = O(ZjEIan|k_2)
as n— 0. (For k = 1,2, or 3, the LHS is identically zero.)
PROOF. A relation between the moments and cumulants is given by
(14) K(Sy) = Y. KilXa))
= X (EXN;+ Y0, (kA= 1D T Ti= 1 (EX35/w,1)

where Q, = {(w,,"--,w,): each integer w, 22, 12, and w,+---+w, =k}, ie.
0, is the set of ordered partitions of k into integers > 1.

Thus [K(S,)—KT,)| £ X; Yo, (kYD|[Tr=1 EX57/w,!]-
To estimate the RHS we need the following

=

LEMMA 4. For any random variable X and (w, - ,w)€Q,, |[Ir=1 EX™
EX*-E|X|*"2.

Proor. From Hélder’s inequality, for2 < w £ k-2,
E lew é (EX2)1 —(w—2)/(k—4)(E|X|k— 2)(w—2)/(k—4);

giving

|H£=1EXW,- é (EXZ)l +(l—2)(k—2)/(k—4)(E|X|k—2)1—2(1—2)/(k—4)
< EX?-E|X|*?

by employing the inequality E(X2)¢~2*=2/k=) < (F|x|k~2)2¢= /=4,
Now applying Lemma 4 to (14), there exists a constant C,, depending only on k,
for which

IKk(Sn)_ZJ‘EX:JI s CRZJEij-EIX"jl"'Z
< Cumax; g, DX, ¥, B[ X,
= o(By_o(T)), from (1) and (9).
COROLLARY 1. If E|S,|* < oo for all n, then lim,_, ., |[K4(S,)— K4(T;)| = 0.

Proor. This follows immediately from Theorem 1 and the assumption that
Y, DX, < C.

COROLLARY 2. IfE|S,,|" < oo for some k = 3,4, , and all n, and if

(15) lim sup,_, o, By_5(T,) = lim sup, -, ¥y E|X,;|* "2 < o
then
(16) limn*co |K,.(S")—K,.(T;,)I =0

for all integers r < k.



MOMENTS OF ROW SUMS 1857

PRrOOF. The inequality of Lemma 2 implies that lim sup,_, ,, B, ,(7,) < oo for ali
integers r such that 2 < r < k. Applying the Theorem, it follows that (16) is true
for all r < k.

COROLLARY 3. If E|S,|* < oo for some k = 4,5, -, and all n, then
|KASw) = KAT,)| = o(B(T,))" =9/t~
as n— oo, for all integers r with 4 < r < k.
PrOOF. The proof follows immediately from the inequality of Lemma 2.
THEOREM 2. For fixed k = 1,2, -, the two conditions
17 lim sup,., , ES,** < oo, and
(18) : lim sup,.,  Box(T;) < 0

are equivalent.
Further, either (17) or (18) implies that

(19) lim,, , |K(S,)— K(T,)| =0
for all integers r < 2k.

Proor. By Lemma 3, (17) implies that lim,_, , ES,” = ET," < oo, for all integers
r < 2k. Then, since cumulants of order 2k may be expressed in terms of moments
of order £ 2k (cf. equation (14)), it follows that limsup,., . K,(S,) < oo for all
integers r < 2k, and in particular for r = 2,4, -+, 2k. Therefore, by Theorem 1,
limsup,,,, B;-5(T,) < oo implies that lim sup,_, o, B,(T,) < oo, forj = 1,2, ,k.
(18) then follows by induction, starting from the initial assumption, (2), that
limsup,_, ., B,(T,) < .

Conversely (18) implies that lim sup,_, , |K,(T,,)| < oo for all r £ 2k, by Lemma 2.
Then by Corollary 3 of Theorem 1, lim sup,, , |K,(S,)| < oo for all integers r with
2 £ r £ 2k, and (17) follows.

Finally, (19) follows from (18) by Corollary 3 of Theorem 1.

THEOREM 3. Let E|T,|* < oo for some k = 2,3, The condition
lim,, o, B(T,) = lim,_, ,, ZIElxndk = B(Ty)
is necessary and sufficient for
(20) lim,., , ES,* = ET*
when k is even; sufficient for (20) when k is odd; and it also implies that
21) lim,, , ES,” = ET', for all integers r =< k.

ProoF. If lim,_, ,, B(T,) = Bi(T,), then Lemma 1 shows that lim,., , B(T,) =
B(T,), and lim, ., , K,(T,) = K,(T,), for all integers r < k. Therefore, by Theorem 1,
lim,_, ,, K,(S,) = K,(T,), for all integers r < k, and equation (20) follows.
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Conversely, let lim,., ES,* = ET,* when k is even. Then by Lemma 3,
lim,., , ES," = ET,", for all integers r < k, and therefore

lim,, , Ki(S,) = K(T,) = B(T,,) < co.

But condition (20) implies that lim sup,_, , ES,* < oo, so thatlim sup,_, , By(T,) <,
by Theorem 2.

Equation (21) now follows by applying Lemma 3.

COROLLARY 4. Suppose that E|T,|** < oo for some k = 1,2,---. Then a necessary
and sufficient condition that lim,_, ,, ES,?* = ETy?* is that lim,_, , ET,?* = ET,?*.

Proor. The Corollary follows immediately from the Theorem.

REMARK. Theorem 3 and its Corollary state that the even integer moments of the
sequence of row sums converge to the moments of the limit law if and only if the
corresponding moments of the accompanying laws converge to the moments of the
limit law; or alternatively, if and only if the corresponding cumulants of the
accompanying laws converge to the cumulants of the limit law. In the particular
case of convergence to the normal or Poisson distribution, these necessary and
sufficient conditions take the following form:

COROLLARY 5. If T, is normally distributed with zero mean and variance o2, then
lim,, , E(S,**) = 2no?)"* [*, x%*exp (—x?[20%) dx, where k is a positive integer,
if and only if

lim,, ¥ E|X,,|* =0, for kz2,
=g? for k=1.

COROLLARY 6. If T, has a Poisson distribution with parameter A, then
lim,, , E(S,?*) = Y 3o x****e~%/x\, where k is a positive integer, if and only if
lim,, Y E|X,,|* = A. .

Furthermore, the condition K,(T,) = [2x**~2dG,(x) -0 as n— co implies
that

lel > 4Gy(x) = Zj.fln >e x? anj(x) -0
as n— oo for all £ > 0, so that T, is normally distributed. Similarly, if
(22) 2 B (X = 172 = Y2 4 = 1)K, 4 o(T,)
=2 (x—1)*"2dG,(x) 0 as n- o,
then
Ji5-11>6dGa(%) =, f 15 1) X2 dF, (x) = 0 as n— o

for all ¢ > 0; and T, has a Poisson distribution. These observations lead to the
following improved versions of Corollary 5 and Corollary 6.
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COROLLARY 7. (see also [2]). The condition
lim,. , Y ; EX2f=0, for k=2,
= g2, for k=1,

where k is an integer = 1, is necessary and sufficient for the convergence in law as
n = 0 of S, to a normally distributed random variable T, andlim,_, , ES,?* = ET,*.

COROLLARY 8. The conditions
lim, -, ¥, EX2* = i and
lim,_, ZJ- EX,?,(I —X,,j)”"2 =0,

where k is an integer > 1, are necessary and sufficient for the convergence in law as
n— o of S, to a Poisson random variable T,, and lim,_, , ES,** = ET,**.

REMARK. Since K(S,) = K(T,) for j=2,3 and all n, while lim, . o, |[Ko(Sa) —
K4(T,,)| = 0 (Corollary 1) it follows that lim,_, ,, K,(S,) = 0 implies lim,_, , K(T,) =
0 and hence that S, converges in law as n — oo to a normally distributed random
variable. Similarly,

lim, . , (K4(S,) —2K3(S,) +K5(S,)) = 0
implies
lim, ., , (K«(T,) —2K5(T) +Ky(T;)) = 0,

and hence (from (22) with k = 2) that S, converges in law to a Poisson random
variable. These results are stronger than those obtained by Pierre [6].

4. Remarks. The principal features of our results seem to us to be the following:

(i) The behavior of the cumulants K;(S,) is closely linked to that of the cumu-
lants K,(T,) of the accompanying laws. In fact, the difference K(S,)— K(T,) is
identically zero for k = 1,2, 3, is o(1) as n — oo for k = 4, and thereafter (k = 5)
is o(1) as n — oo if the B,_,(T,) are uniformly bounded in n.

(i) Necessary and sufficient conditions are obtained for the convergence of the
moments ES,?* to ETy* as n— oo, when S, converges in law to T, as n— oo.
These conditions are in terms of the moments of the accompanying laws, or, more
usefully, in terms of their cumulants. The conditions involving cumulants are easy
to work with, because of the relation K,,(7,) = Y; EXZ}. They lead, for example, to
simple necessary and sufficient conditions for convergence of moments to those of
the limit law 7, when T, has either a normal or Poisson distribution. In the case
of the normal, the condition is also sufficient for the convergence in law itself.

(iii) The requirement of uniform boundedness in n of B,_,(T,) is a key one.
Apart from ensuring the asymptotic property for kth order cumulants,
|Kk(S,,)—K,‘(T,,)| =o(l) as n— oo (see (i)), it also governs the behavior of lower
order moments and cumulants in that it forces their convergence as n — oo to those
of the limit law T,,, by Lemma 1 and Theorem 3.
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Note also that when k = 4, it reduces to the basic assumption (2), and in that
sense, our initial assumptions act as a prototype for Corollary 2.

REFERENCES

[1]1 BawLY, G. M. (1936). Uber einige Verallgemeinerungen der Grenzwertsitze der Wahrschein-
lichkeitsrechnung. Mat. Sb. 1 917-930.

[2] BRowN, B. M. (1969). Moments of a stopping rule related to the central limit theorem. Ann.
Math. Statist. 40 1236-1249.

[3] GNEDENKO, B. V. (1962). The Theory of Probability, 2nd ed. Chelsea, New York.

[4] GNEDENKO, B. V. and KoLMOGOROV, A. N. (1954). Limit Distributions for Sums of Independent
Random Variables. Addison-Wesley, Reading.

[5] Lotve, M. (1960). Probability Theory, 2nd ed. Van Nostrand, Princeton.

[6] PIERRE, P. A. (1969). New conditions for central limit theorems. Ann. Math. Statist. 40 319-321.



