ALMOST CERTAIN SUMMABILITY OF INDEPENDENT, IDENTICALLY DISTRIBUTED RANDOM VARIABLES

By Y. S. CHOW¹ AND H. TEICHER²

Columbia University and Rutgers—The State University

1. Summary. The Strong Law of Large Numbers, valid for independent, identically distributed (i.i.d.) random variables $\{X_n, n \ge 1\}$ with finite first moment, may be regarded as merely one of a host of summability methods applicable to the divergent³ sequence $\{X_n\}$. Here, a subclass of regular (Toeplitz) summability methods will be considered and concern will focus on the almost certain (a.c.) convergence to zero of the transformed sequence

(1)
$$T_n = A_n^{-1} \sum_{j=1}^n a_j X_j$$

when centered where

(i)
$$a_n \ge 0, \qquad A_n = \sum_{i=1}^n a_i \to \infty,$$

thereby ensuring regularity.

If $T_n - C_n \to_{a.c.} 0$ for some choice of centering constants C_n , the i.i.d. random variables $\{X_n\}$ will be called a_n -summable with probability one or simply a_n -summable. The Strong Law is the special case $(a_n \equiv 1)$ of Cesaro-one summability with $C_n \equiv EX$.

Of course, if $X_n^* = X_n - X_n'$, $n \ge 1$ are the symmetrized X_n (i.e., $\{X_n'\}$ is i.i.d., independent of $\{X_n\}$ with the same distribution), then a_n -summability of $\{X_n\}$ implies a_n -summability of $\{X_n^*\}$ with vanishing centering constants, i.e.

(2)
$$T_n^* = A_n^{-1} \sum_{j=1}^n a_j X_j^* \to_{a.c.} 0.$$

It will be shown, on the one hand, that no such choice of $\{a_n\}$ and $\{C_n\}$ will render i.i.d. $\{X_n\}$ with the St. Petersburg (mass 2^{-n} at the point 2^n , $n \ge 1$) or Cauchy distribution a_n -summable. On the other hand, necessary and sufficient conditions for certain types of a_n -summability more refined than (implied by) Cesaro-one will be proffered. The prototype of these appears in Corollary 1 and Corollary 2.

2. Results. Criteria, in the case of a numerical sequence x_n , for a comparison of a_n -summability and a_n' -summability are given in [1]. For example, if a_n , a_n' are strictly positive and $a'_{n+1}/a'_n \le a_{n+1}/a_n$, then a_n -summability implies a'_n -summability.

If $\{X_n^*, n \ge 1\}$ is i.i.d. and a_n -summable with $C_n^* = 0$, then necessarily

$$\lim_{n\to\infty}\frac{A_{n+1}}{A_n}=1.$$

Received June 25, 1970.

¹ Research under ONR contract N00014-67-A-0108-0018, NR 042-205.

² Research under NSF Contract GP-9301.

³ Only in the degenerate case X_n a.c. constant is a sequence of i.i.d. random variables a.c. convergent to a finite limit.

401

For if $A_{n_i}/A_{n_i-1} > 1 + \delta > 1$ for some subsequence n_i , $i \ge 1$ of the positive integers, then (2) would entail

$$X_{n_i}^* = \frac{A_{n_i-1}}{a_{n_i}} (T_{n_i}^* - T_{n_i-1}^*) + T_{n_i}^* \to_{\text{a.c.}} 0$$

since $A_{n_i-1}/a_{n_i} < 1/\delta$. But a sequence of non-degenerate i.i.d. random variables cannot converge a.c. to a finite constant so that (*) follows. (The argument is a minor adaptation of Theorem 15 of ([1] page 59)].)

THEOREM 1. Independent, identically distributed random variables $\{X_n\}$ with the St. Petersburg or Cauchy distribution (or merely obeying $\lim_{x\to\infty} xP\{|X_1|>x\}>0$) are not a_n -summable for any $\{a_n\}$ satisfying (i).

PROOF. If $\{X_n\}$ is a_n -summable, the symmetrized sequence $\{X_n^*\}$ is a_n -summable with vanishing centering constants whence by a prior remark (*) holds or equivalently $A_n/a_n \to \infty$. Choosing x > 0 so that $P\{|X_1| < x\} \ge \frac{1}{2}$,

$$P\{|X_n^*| > x\} = P\{|X_n - X_n'| > x\} \ge P\{|X_n| > 2x, |X_n'| < x\}$$

$$\ge \frac{1}{2}P\{|X_1| > 2x\}$$

whence there exist positive constants c, x_0 with $P\{|X_n^*| > x\} \ge c/x$ for $x \ge x_0$. Consequently, if n_0 is a positive integer ensuring $A_n/a_n \ge x_0$ for $n \ge n_0$,

(3)
$$\sum_{n=1}^{\infty} P\left\{ \left| X_n^* \right| > \frac{A_n}{a_n} \right\} \ge c \sum_{n=n_0}^{\infty} \frac{a_n}{A_n} = \infty$$

by the Abel-Dini theorem.

However, (2) and (*) entail $(a_n/A_n)X_n^* \rightarrow_{a.c.} 0$ which is incompatible with (3) in view of the Borel-Cantelli lemma.

The next theorem subsumes the classical Strong Law as the special case $a(x) \equiv 1$.

THEOREM 2. If a(x), x > 0 is a positive non-increasing function and $a_n = a(n)$, $A_n = \sum_{i=1}^n a_i$, $b_n = A_n/a_n$ where

(i)
$$A_n \to \infty$$

(ii)
$$0 < \liminf_{n \to \infty} \frac{b_n}{n} a(\log b_n) \le \limsup_{n \to \infty} \frac{b_n}{n} a(\log b_n) < \infty$$

(iii)
$$xa(\log^+ x)$$
 is non-decreasing for $x > 0$

then i.i.d. $\{X_n\}$ are a_n -summable if and only if

(4)
$$E\left|X\right|a(\log^{+}\left|X\right|)<\infty.$$

PROOF. Sufficiency: Since $0 < a(x) \downarrow$, (i) guarantees that $b_n \uparrow \infty$. Choose m_0 such that $n \ge m_0$ implies

(ii')
$$\alpha n \le b_n a(\log b_n) \le \beta n$$

whence $b_n \ge \alpha n [a(\log b_m)]^{-1}$ for $n \ge m \ge m_0$ entailing

(5)
$$\sum_{j=m}^{\infty} b_{j}^{-2} \leq \frac{a^{2}(\log b_{m})}{\alpha^{2} m}, \qquad m \geq m_{0}.$$

Consequently, defining

(6)
$$Y_j = X_j I_{[|X_j| \le b_j]}, \qquad j \ge 1$$

it follows from (5) and (ii') that for $m \ge m_0$,

$$\begin{split} \sum_{j=m}^{\infty} E Y_j^2 / b_j^2 &= \sum_{j=m}^{\infty} b_j^{-2} (\int_{[|X_1| \le b_{m-1}]} X_1^2 + \sum_{i=m}^{j} \int_{[b_{i-1} < |X_1| \le b_i]} X_1^2) \\ & \le O(1) + \sum_{i=m}^{\infty} \sum_{j=i}^{\infty} b_j^{-2} \int_{[b_{i-1} < |X_1| \le b_i]} X_1^2 \\ & \le O(1) + \alpha^{-2} \sum_{i=m}^{\infty} i^{-1} a^2 (\log b_i) \int_{[b_{i-1} < |X_1| \le b_i]} X_1^2 \\ & \le O(1) + \beta \alpha^{-2} \sum_{i=m}^{\infty} a (\log b_i) \int_{[b_{i-1} < |X_1| \le b_i]} |X_1| \\ & \le O(1) + \beta \cdot \alpha^{-2} \sum_{i=m}^{\infty} \int_{[b_{i-1} < |X_1| \le b_i]} |X_1| a (\log |X_1|) < \infty \end{split}$$

by (4). Thus, $\sum_{j=1}^{\infty} b_j^{-1} (Y_j - EY_j)$ converges a.c. and so by Kronecker's lemma (7) $A_n^{-1} \sum_{j=1}^{n} a_j (Y_j - EY_j) \rightarrow_{a.c.} 0$.

Via (iii) and (ii'), for $m \ge m_0$

$$\sum_{m}^{\infty} P\{|X_n| \ge b_n\} \le \sum_{m}^{\infty} P\{|X_n| \ a(\log |X_n|) \ge b_n \ a(\log b_n)\}$$
$$\le \sum_{m}^{\infty} P\{|X_1| \ a(\log |X_1|) \ge \alpha n\} < \infty,$$

whence by the Borel-Cantelli lemma

(8)
$$P\{X_n \neq Y_n, \text{i.o.}\} = 0.$$

Combining (7) and (8), $\{X_n\}$ is a_n -summable with centering constants

$$C_n = A_n^{-1} \sum_{i=1}^n a_i E Y_i$$
.

Conversely, if $\{X_n\}$ is a_n -summable, then $b_n^{-1}X_n^* = (a_n/A_n)X_n^* \to_{a.c.} 0$ and so, once more invoking the Borel-Cantelli lemma $\sum_{n=1}^{\infty} P\{|X_n^*| > b_n\} < \infty$. By (iii) and (ii') for $n > m \ge m_0$

$$\begin{split} & \sum_{m}^{n} \int_{[b_{j-1} < |X_{1}^{*}| \le b_{j}]} \left| X_{1}^{*} \right| a(\log^{+} \left| X_{1}^{*} \right|) \\ & \leq \sum_{m}^{n} b_{j} a(\log b_{j}) P\{b_{j-1} < \left| X_{1}^{*} \right| \le b_{j}\} \\ & \leq \beta \sum_{m}^{n} j P\{b_{j-1} < \left| X_{1}^{*} \right| \le b_{j}\} \\ & = \beta \left[\sum_{m}^{n-1} P\{\left| X_{1}^{*} \right| > b_{j}\} + m P\{\left| X_{1}^{*} \right| > b_{m-1}\} - n P\{\left| X_{1}^{*} \right| > b_{n}\} \right] \\ & \leq O(1) + \beta \sum_{m}^{\infty} P\{\left| X_{1}^{*} \right| > b_{j}\} < \infty \end{split}$$

whence

$$\infty > E |X_1^*| a(\log |X_1^*|) \ge \int_{\mathbb{L}|X_1'| < C_1} (|X_1| - C) a(\log (|X| + C))$$

= $P\{|X_1'| < C\} \cdot E[|X_1| - C] \cdot a(\log (|X_1| + C))$

which readily implies (4).

COROLLARY 1. If $X, X_n, n \ge 1$ are i.i.d., then

$$(\log n)^{-1} \sum_{i=1}^{n} (X_i/j) - C_n \to_{a.c.} 0$$
 if and only if $E(|X|/\log |X|) I_{\lceil |X| > e \rceil} < \infty$.

Moreover, C_n may be taken to be $(\log n)^{-1} \sum_{j=1}^n j^{-1} EX_j I_{\lfloor |X_j| \le j \log j \rfloor}$.

COROLLARY 2. If $X, X_n, n \ge 1$ are i.i.d. and for some $k \ge 2$

$$a_n = \lceil n(\log n) \cdots (\log_{k-1} n) \rceil^{-1}$$

where $\log_1 n = \log n$, $\log_k n = \log(\log_{k-1} n)$, $k \ge 2$, then $\{X_n\}$ is a_n -summable if and only if for all large C > 0,

$$E\frac{|X|I_{[|X|>C]}}{(\log|X|)\cdots(\log_k|X|)}<\infty.$$

REFERENCE

[1] HARDY, G. H. (1949). Divergent Series. Clarendon Press, Oxford.