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1. Summary. The Strong Law of Large Numbers, valid for independent, identi-
cally distributed (i.i.d.) random variables {X,, n = 1} with finite first moment, may
be regarded as merely one of a host of summability methods applicable to the
divergent® sequence {X,}. Here, a subclass of regular (Toeplitz) summability methods
will be considered and concern will focus on the almost certain (a.c.) convergence
to zero of the transformed sequence

O T,= A4, Yj-19;X;
when centered where
() a, =0, A"=Z;=laj—-) 0,

thereby ensuring regularity.

If T,—C,—,..0 for some choice of centering constants C,, the i.i.d. random
variables {X,} will be called a,-summable with probability one or simply a,-
summable. The Strong Law is the special case (a, = 1) of Cesaro-one summability
with C, = EX.

Of course, if X,* = X,—X,’, n = 1 are the symmetrized X, (ie., {X,'} is i.i.d,,
independent of {X,} with the same distribution), then a,-summability of {X,}
implies a,-summability of {X,*} with vanishing centering constants, i.e.

(2) Tn* =An_lzs!=lanj* —’a.c.o‘

It will be shown, on the one hand, that no such choice of {a,} and {C,} will
render i.i.d. {X,} with the St. Petersburg (mass 2~" at the point 2", n = 1) or Cauchy
distribution a,-summable. On the other hand, necessary and sufficient conditions
for certain types of a,-summability more refined than (implied by) Cesaro-one will
be proffered. The prototype of these appears in Corollary 1 and Corollary 2.

2. Results. Criteria, in the case of a numerical sequence x,, for a comparison
of a,-summability and a,’-summability are given in [1]. For example, if a,, a,’
are strictly positive and a,,,/a, £ a,.,/a, then a,-summability implies a,’-
summability.

If {X,*, n = 1} is i.i.d. and a,-summable with C,* = 0, then necessarily
(*) ll m =t An+ 1

n— o n
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Forif A4,/A,,_, > 1 +0 > | for some subsequence n;, i > | of the positive integers,
then (2) would entail

A, -
Xo= N (T =T )+ Tk >, 0
since A,,_/a,, < 1/. But a sequence of non-degenerate i.i.d. random variables
cannot converge a.c. to a finite constant so that () follows. (The argument is a
minor adaptation of Theorem 15 of ([1] page 59)].)

THEdREM I. Independent, identically distributed random variables { X} with the St.
Petersburg or Cauchy distribution (or merely obeying lim inf_, , xP{|X,| > x} > 0)
are not a,-summable for any {a,} satisfying (i).

PrOOF. If {X,} is a,-summable, the symmetrized sequence {X,*} is a,-summable
with vanishing centering constants whence by a prior remark (*) holds or equiva-
lently A,/a, — 0. Choosing x > 0 so that P{|X,| < x} = 4,

P{X,*| > x} = P{|X,— X,/| > x} = P{|X,| > 2x, |X.)| < x}
2 1P{|X,| > 2x}

whence there exist positive constants ¢, x, with P{|X,*| > x} = ¢/x for x = x,.
Consequently, if n, is a positive integer ensuring 4,/a, = x, for n = n,,

(3) ZP{|X"*|>—Al'}gc Y & oo
n=1 an n=ng An
by the Abel-Dini theorem.
However, (2) and (%) entail (a,/4,)X,* —, . 0 which is incompatible with (3) in
view of the Borel-Cantelli lemma.
The next theorem subsumes the classical Strong Law as the special case a(x) = 1.

THEOREM 2. If a(x), x >0 is a positive non-increasing function and a, = a(n),
An = Z?=I a; bn = An/an where

(i) A, - ©
. .. b, . b,
(ii) 0 < lim mf; a(logb,) < limsup -“a(logb,) < c©
n—oo n—oc n
(iii) xa(log* x) is non-decreasing for x>0

then i.i.d. {X,} are a,-summable if and only if
4 E|X|a(log* |X|) < oo.

Proor. Sufficiency: Since 0 < a(x) |, (i) guarantees that b, T co.
Choose m, such that n = m, implies

(ii") an < b,a(logb,) < Bn
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whence b, = anla(logb,,)] ™" for n = m = m, entailing

© _, _a*logb,
(5 z b; Zg—(az—fn—), m=mg.
j=m

Consequently, defining
(6 Y= X;lyx, 0,05 jz1
it follows from (5) and (ii’) that for m = m,,
Y FemEYP b =Y by (uixst som- 0 X1+ X m i <1x11550 X12)
SO+ n by fipii<ixissn X1
= 0(1)'*'“_2 fomi 1a2(log bi)I[bg_l<|X1|§b‘]X12
SO0 +pa 2y, a(logby) [, <ixy <60 | X1|
S0()+p-a? ;imj[b.-_,qx,]gb.]lxd0(103 IX1|) <
by (4). Thus, Y72, b;”'(Y;—EY,;) converges a.c. and so by Kronecker’s lemma
M An_lz'}=laj(Yj_EYj) 4.0
Via (iii) and (ii"), for m = m,
Yo P{|X,| 2 by} < 37 P{|X,| a(log| X,|) 2 b,a(logb,)}
< Y P{|X,|a(log|X,|) = an} < oo,
whence by the Borel-Cantelli lemma
®) P{X, # Y, i.0}=0.
Combining (7) and (8), {X,} is a,-summable with centering constants
C,=A4,"'Y)_1a;EY;.

Conversely, if {X,} is a,-summable, then b,”'X,* = (a,/4,)X,* —,..0 and so,
once more invoking the Borel-Cantelli lemma ) >, P{|X,*| > b,} < co. By (iii)
and (ii") for n > m = m,

Yo Jtos-1<1xio1s00 | X 1| aClog™ [ X *))
< Ymb;a(logh)P{b;_, <|X,*| < b;}
< BYniPibj-y <|X(*| = by}
= B[y ' P{|X *| > b} +mP{|X,*| > by} —nP{|X,* > b,}]
SO +BYw P{|X *| > b} <0
whence
0 > E|X *|a(log|X,*)) 2 fuxir<a((X:]=0) a(log(|X|+C))
= P{|X'| < C} E[|X,|-C]" a(log(|X,|+C))
which readily implies (4).
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COROLLARY 1. If X, X,, n = 1 are i.i.d., then
(log n)_IZ'}=1 (X;/)—C,=,..0 ifandonlyif E(IXI/IOgIXI)qupe] < .
Moreover, C, may be taken to be (logn)™* Y 1_ 1 j T EX I}, <05 1-
COROLLARY 2. If X, X,, n = 1 are i.i.d. and for some k = 2
a, = [n(logn)---(log,-,n)]~*

where log, n = logn, log, n = log(log,_,n), k = 2, then {X,} is a,-summable if and
only if for all large C > 0,

X[ Inx1>1
E — < 00.
(log|X|)-- - (logy | X|)
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