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Y-MINIMAX SELECTION PROCEDURES IN TREATMENTS
VERSUS CONTROL PROBLEMS

By RonaLD H. RANDLES! AND MYLES HOLLANDER?
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1. Introduction and summary. Let X be a random variable with distribution
function F(x|0) over a sample space & for each € in ©, the parameter space.
Consider the decision problem with loss function L(6, ) for each a in o7, the
action space. For a decision rule §(x) mapping & into & the risk function is
R(0,6) = [ L(0,5(x))dF(x | 0). If 7(0) is a distribution over ©, the expected risk of
using rule 6(x) is then r(t, §) = [ R(0, 8) dx(0).

In many problems a priori information will be incomplete. Suppose that our
prior information consists of a class Y of distributions over ®. One method of
utilizing such partial prior information to obtain a decision rule is given by Blum
and Rosenblatt [1].

DEFINITION 1.1. The rule d4(x) is a Y-minimax decision rule if

sup, .y H(t, 00) = infysup. . v r(z, 0).

The use of partial prior information by Menges [5] and Hodges and Lehmann [2]
may also be considered as satisfying the Y-minimax criterion for suitable choices of
Y.

In this paper the Y-minimax principle is applied to the problem of selecting
treatment populations which have larger translation parameters than that of a
control population. Let Sy, Sy, -, .S, be k+1 independent random variables with
respective probability density functions fy(s—0,), fi(s—86,), " ,fi(s—06,). The
random variables Sy, Sy, ", S, may represent sufficient statistics from the control
and k treatment populations, respectively. We assume that each f(s), i =0,
1,-++,k, is a Polya frequency function of order two (PF,), that is, if x; < x, and
y1 <y, then

Vixi=y1) Jdx1=y2) >0
fixa=y1) filxa=y2) |~ .

Hence fi(s—6;) has a monotone likelihood ratio in its translation parameter.

In Section 2, necessary notation, the loss function, and the incomplete prior
information are introduced. In Section 3, a Y-minimax decision rule is found, for
the case in which the control population parameter 6, is known, by finding a rule
which is Bayes with respect to a least favorable prior in the class of prior distribu-
tions Y. The case in which the control population parameter is unknown is treated
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in Section 4. Rules are derived which are Y-minimax among procedures for which
the decision to select or reject the ith population depends only on S; and S,. When
specialized to normal populations with common known variance ¢2, a Y-minimax
rule selects (rejects) the ith population as X;— X, = (<) a constant, where the
constant depends on A (a known constant used to define “positive” and “negative”
populations), ¢?, the sample sizes, the ratio of the losses for the two kinds of
incorrect decisions, and the ratio of the prior probabilities of negative and positive
populations. (An analogous result is found in Section 3 for the known control case.)
Section 5 gives comparisons of a Y-minimax rule with a Bayes competitor based on
independent normal priors for the case of normal populations with common
known variance. Some comments on a theorem by Y. L. Tong [7] are given in
Section 6.

Whenever a new criterion is being considered by the statistical community, it is
important to see if the criterion is fruitful in a variety of situations. In the treatment
versus control problems discussed here, the Y-minimax criterion leads to simple
explicit rules which compare favorably with Bayes rules that require stronger
assumptions on the prior distribution. We hope that this work will encourage
others to obtain and apply Y-minimax rules in different settings.

2. Statement of the problem. For i =1, --,k, define the ith population to be
positive if 0; = 6,4 A and negative if §; < 6, where A is a specified positive con-

stant. The objective is to select all positive populations while rejecting all negative
ones. This formulation is similar to that of Lehmann [4] and Tong [7].

Let L, denote the loss incurred if we fail to select a positive population and L,,
the loss for each negative population selected. If S = (S,, S;, -, S;), consider
decision rules of the form

.1 Y(s) = (Y1(s), "+, Yn(s))

where (s) denotes the conditional probability of selecting the ith population
given S =s. The loss function is then

22 L(0,¥) = Yi-1 L0, ¥)
where
LY(0,y) = L;(1—vy) if 6,2 0,+A;
=Ly, if 6;<0o;
=0 l otherwise.

The risk function is R(6, ¥) = Y%~ ; R®(0, y;) where

R(i)(o, ¥) = Iyo .f.V, Tt ka L(i)(g, Yi(s) H?=o [fi(si’_ 0,) ds;]

and &; denotes the sample space of the random variable S;. Thus R(6, ) =
Ly Ni+L,N, where N;(N,) is the expected number of positive (negative) popu-
lations rejected (selected). Note that there is no loss of generality in considering
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decision rules of the form given in (2.1). For any decision rule there exists a rule in
the class (2.1) with the same risk function. If 7(0) is a distribution over ® then the
expected risk of a procedure ¥ is r(r,¥) = Y5, r(t,¥;) where r(t,y;) =
fo R0, ) ().

Assume that partial prior information is available in the selection problem.
Define ©,(i) = {00, = 6,+A} and ©,(i) = {0]0, < 0,} and assume that we are
able to specify 7; = P[0e®p(i)] and =/ = P[0e®y(i)] so that n;+n/ <1 for
i=1,---,k. Define

(23) Y ={u0)|fepsdt(0) =7; and [e 4 d1(0) = n; for i=1,---,k}.

3. Known control population. Consider the ith component problem, that is, the
selection or rejection of the ith population when 6,,, the parameter of the control
population is known. The loss function for the component problem is L(8, y,).

Lemma 3.1. If y;=1,0 as S;=,<d; and if teX as defined by (2.3) then
rO(z, ) < rO(zy, ;) where 1y X, and

(3.1) Yo={w(0|P[0;=0,+A] =,
P[0,=0,] ==/ and [p,du(@) =1—m;—n/,i= 1", k}
where D, is the complement of (© p(i)uO,(i)).
PrOOF. We consider three cases. If 0 is such that §; = 6,+A, then
ROO,y) = L [%, fi(s—0)ds < L, [* , fi(s—0o—A)ds = R(0*(0), ;)
where 0*%(0) = (04, 9(64,00, A), "+, q(04, 05, A)) and
4(0;,00,A) = 0o+A  if 0,2 0,+A;
=0; if 0y <0;<0,+A;
=0, if 6; < 0,.

If 0 is such that 0, < 6, then R0, y,) = L, |3 fi(s—0,)ds < L, |3 fi(s—0,)ds =
R®(6%(0), y,). Finally, if @ is such that 0, < 0, < 6,+A, then R?(0,y;)=0=
RO(0*(6), ). It follows that r(z, y)) < rO(zy, ).

LeMMA 3.2. If for each i =1, ,k, y,° is a Bayes rule for the ith component
problem with respect to the same t4(0)eY, and if sup,.yr?(z, ¥,°) = r(zo, ;%)
Sfori=1,-- k then Y° = (Y, -, ¥,°) is a Y-minimax decision rule.

PROOF. Let ¥ = (Y, * -, ¥,) be an arbitrary decision rule, then
SupteTr(T9 '/’) g r(TO’ 'll) = {"=1 r(i)(TOa lpt) g Zi"=1 r(i)(fo» ‘//io)

= z:‘= 1 Supt eTr(i)(T'., lpio) g Suptel’r(T’ 'llo)
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Define 0(j) = 0,+A, 0o+A4/2, 0, as j=1,2,3 and set O(jy, ", ji) = {06, =
6(j;) for i = 1,--+,k} where each j; = 1,2,3. Define n(j) = n;, 1 —n;—n/, n;" as
j=1,2,3 and let

(32 70(0) € {x(0) | P[0€O(jy, ", ji)]
= [Tty m(ji) for each (jy, -, ji) with 1 =j; <3}
Any such 74(6) is in Yy asdefined by (3.1)since Y ;.. .-, juy, ji=r L1 It=1 ()] = 7(7).
THEOREM 3.1. Assume Sy, "+, Sy are independent random variables with respective
probability density functions f{(s—0;) which are PF, densities. If the loss function is
given by (2.2) the Y-minimax decision rule, Y™, is of the form: ;¥ = 1,0as S; =, < d,
fori=1,--,k where each d; is determined so that
3.3) L, n/fs—0,)—Lym;f(s—6,—A)<,>0
ass=,<d,
Proor. For 74(0) given by (3.2) and y(s),
"(i)(To, v) = fy, T jy’k [Ll(l - l/’i(s)){Z(jx. ceey k) Ji=1 [Hf=1 m(Jo fi(s:— o(jt))]}
+ LoV i si=s [l () filse— 00 )]} ] dsy -+ - ds,
= jy’l T ka [L,(1=y()m fi(si—00—A)
AL+ ivnoeterm LLIf= 1, 021 M) fils,— 0N}
+ L, Yi(s)m;'fi(si— 0o)

’ {Z(jl, <+, jk), no ji term [Hf: 1,02 T(Jfi(s — g(fx))]}] dsy - dsy.

Thus the Bayes rule for the ith component problem with respect to 7,(0) sets
;¥ =1,0as

L, n/f(s—0o)—Lym; f(s—0,—A) <, > 0.

Since fy(s—6;) has a monotone likelihood ratio, there exists a d; such that (3.3)
holds as s =, < d;. It follows from Lemma 3.1 that

sup.ey Oz, ¥i") = rO(zo, Yi").

Lemma 3.2 then yields that y¥ = (y,", -, ¥,) is Y-minimax among all decision
rules. '

Note that the procedure depends on the prior probability n;(n;’) that the ith
population is positive (negative) only through the ratio (r;/w;’). Y-minimax pro-
cedures for this problem can also be derived by replacing the loss function given in
(2.2) by an alternative selection criterion. We may desire a procedure ¥ which will
minimize the expected number of negative populations selected while insuring that
the expected number of positive populations selected remains above some pre-

assigned level. Minimax procedures under such a criterion have been considered
by Lehmann [4].
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The following example illustrates the application of Theorem 3.1. Consider k +1
normal populations N(0;,6%) i=0,---,k with 0, and ¢*> known. A random
sample of size n; is taken from each of the k populations N(6;,6%) i =1,---,k. By
the principle of sufficiency we can reduce consideration to X,,- -+, X, which are
independent with normal distributions N(0,, a%/n;), respectively. Since

f(si—0o—A)[f(s;— 0o) = exp [ —4A%n; 0™ % +(5;— Op)m; Ao~ ],

applying Theorem 3.1 yields d; = 0,+A/2+06*(An;) ' In(L,n;//L, n;). Thus the
Y-minimax decision rule selects the ith population if and only if

X, = 0y+A24+0*An) " In(L, /L, ).

4. Unknown control population. Define 2° to be the set of all decision rules
V=, ", ) for which ; depends only on S, and S;. Consider the com-
ponent problem, the selection or rejection of the ith population, when the control
population parameter 0, is unknown. If S’ =(S,, S;) and 0' = (0,, 0,), let G be
the group of transformations which map S into S+ 51 where 1 denotes the vector
(1,1) and b is a real number. The induced group of transformations on the
parameter space is then G = {§|7:0' > 0'+5b1}. A maximal invariant for this
group of transformations is S;—S,. Hence, among rules in 2° we now consider
the invariant ones for which ; is only a function of R; = S;—S,.

Let ©' = {(6y, 0)}, ©p' = {(60, 0)) ! 0; 2 0,+A}, and Oy = {(6, 0)) | 0; < 0o}
If 7(6) is a distribution over ©, denote by 7/(6’) its marginal distribution over ®'.
The expected risk corresponding to () of using the rule (S?) in the ith com-
ponent problem is then

(4.1) r(t, ) =L, j‘@},i Eg[1—9] dti(0)+ L, IQN;Eof[l//i] dt'(0’)
where Eq[Y;] = Iyo,[y.-‘//i(si)fi(si —0.)fo(s0—00) ds; ds.

LEMMA 4.1. Given i (s'), a decision rule for the selection or rejection of the ith
population, and a loss function defined by (2.2), then

SUP;ey rO(z, ¥y = Lym;—Lym;infgi e op Eg[y;]4 L, 7t/ supgic oy Eg[:].
PRrROOF. The result follows directly.

The following lemma is well known.

LEMMA 4.2. If S, S; are independent random variables having respective probability
densities f(s—0;) for j = 0, i which are PF, functions, then R; = S;— S, has a prob-
ability density gr—(0;—0,)) which is a PF, function.

Proor. The density of R; is given by
4.2) gi(r—(0;—00)) = |2 o, fir +u—(8;—00)) fo(u) du.

This is the convolution of two PF, densities fo(—s—0,) and fi(s—0;) which is
known to yield a PF, density. See Schoenberg [6].
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We now interpret the component problem as a test of the hypothesis H: 0'c @'
against the alternative H,:0'e ®,' with y; denoting the probability of rejecting the
null hypothesis.

THEOREM 4.1. If So, Sy, **, S, are independent random variables having respec-
tive probability densities f(s—0;) which are PF, functions, and if the loss function is
given by (2.2), then a Y-minimax decision rule in 9°, Y*, is of the form: y;¥ = 1,0
as R; = 8,—S, =, < d; where the d,' are determined so that

43) - Lyn/gr)—Lymig(r—A)=<,>0
asr=,<d;/, with g(r) defined by (4.2).

Proor. For the ith component test given above, application of the Hunt-Stein
Theorem (see Lehmann [3] page 225 and page 336) yields that the invariant tests
form an essentially complete class in 2°. Hence if y,(s) is a decision rule for the
ith component problem and if we let o = supyi. ¢,: Eoi[¥;], there exists a rule y/;*
based only on R; such that supg: . i Eq[¥;*] < « and such that infy: . o« Eg[¥/;*] =
infyico,i Eg[¥;]. From Lemma 4.1 it follows that sup,.yr®(z, ¥;*) <
sup,. v rP(z, ¥;). If 74(0) is given by (3.2) and v, is only a function of R;, it follows
that

rO (o, ) = j@i [Ly (1 =i(r))gi(r;—A) + L, m/ri(r)g(r)] dr;

where Z; is the sample space of R;. Since g,(r) is a PF, density the Bayes rule with
respect to 74(6) is of the form ;¥ =1, 0 as R; =, < d; where d;’ is determined by
(4.3). From Lemma 3.1 and Lemma 3.2 it follows that % is Y-minimax among
rules for which y; is a function of R;. Since such rules are essentially complete
for 2°, y¥ is Y-minimax among rules in 2°.

We now apply Theorem 4.1 to the following problem. A sample of size #; is
taken from each of k + 1 N(0;, 6%) populations with 62 known. We confine attention
to rules Y where y; is based on X, and X;. Application of Theorem 4.1 proves
that a Y-minimax decision rule in 9° selects the ith population if and only if

(4.4) Xi_XO

[\

A o*(1 1
2t3 (;l'l' n—0> In(L, =//Ly 7).

5. Comparison of a Y-minimax rule with a Bayes rule. If a priori considerations
yield a class of prior distributions over ®, one method of utilizing such information
is to select a member of the class and usé the corresponding Bayes decision rule.
Another approach is to find a rule which is Y-minimax with respect to the class of
priors given. Thus Bayes rules corresponding to prior distributions in Y are
natural competitors for a Y-minimax rule.

As in the previous section, consider k+1 normal distributions N(0;, 62) with
o? known. Assume that 6, 6,, - - -, 6, have independent normal priors 7,(0;) with
known mean o; and variance y;%, respectively. The prior distribution over @ is then

(5.1) ‘t*(l)) = H?=o 74(0)).
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As in the Y-minimax derivation above, by the principle of sufficiency we reduce
consideration to X =(X,, X;, ", X,). To find the Bayes rule with respect to
7*(0), ¥®, we find the Bayes procedure for each of the k component problems.
This is accomplished by minimizing

fop (1 —=Y(X}) dv,* (@ | X)) + [o V(X)) dv,*(6' l X))

for X' where v;*('|X’) is the cumulative distribution function of the posterior
distribution of 0° given X' = (X,, X;) =X'. But v;*(0"|X’) = v,(6;| %) X vo(0, | Xo)
where v;(0; l %), the posterior distribution of 6; given X;, is normal with mean q; =
{(n;x;/0%)+ (27 }{(n;/6*)+(1/y;*)} and variance b = (a%y;2InpI{(0*[n) +7,}
The Bayes procedure will thus be of the form y 2(%;, X,) = 1, 0 as

L, P[0; < 00| X, Xo]—Ly P[6; 2 0 +A | %, %] <, >0
or as
L, ®((ag—a)/(bo® +b2)¥)— L, ®((a;— ao—A)j(be* + b)) <, >0
where ®(z) denotes the cdf of an N(0, 1) variate.

When L, = L, = 1, the procedure becomes ¥ %(%;, X,) = 1, 0 as
(5.2) ai_ao g s < A/Z.

Under these independent normal priors, the probability that the ith population is
positive is given by 7; = ®((a;— o —A)/(7o% +7;°)*) and the probability that it is
negative is given by 7" = ®((xo —;)/(y0% +7:2)%).

Comparison is thus made between the Bayes procedure given in (5.2) which is
based on the specific prior information of independent normal distributions with
the Y-minimax procedure which is based on the less stringent prior specifications
of m;and n;/ fori=1, -+, k. Assume that L, = L, =1 so that the expected risk
becomes the expected number of wrong decisions where a wrong decision is defined
to be the rejection of a positive population or the selection of a negative one. Since
r(t, ) = Y ¥, rO(1,,), it suffices to compare these procedures with respect to the
selection or rejection of one population. Without loss of generality, we confine
attention to the population corresponding to 6,.

One meaningful comparison is found by examining the increase in expected risk
which results from the use of the Y-minimax procedure when @ isdistributed over ©
according to t*(0), as given by (5.1). Let w;? = y:*/(y;>+(6%[n))), o =a;—a,
t =702 +71% 1, = 0y2 + %, and t3 = 62((1/no)+(1/ny)). The expected risk of
the Bayes procedure is then

rO(c*, ¢, B) = Fo(—aty 7%, (a—A2)t, 735 — (/1))
+Fo((a—A)t, 3, (—a+ A, 7% —(t)t)?)

where Fy(u;, u,; p) is the cumulative distribution function of a bivariate normal
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distribution with zero means, unit variances, and correlation coefficient p. The
Y-minimax procedure, Y¥, given in (4.4) has expected risk

riO(t*, YY) = Fo(—at, %, (@a—A2—t3In(n [m, )t +13)7F; — (8, /(2 +13)))
+F0((oz—A)t1“’}, —(a=A2—tyIn(my[m Y, +13)7F;
=/t +13))%).

Table 1 exhibits r'¥(z*, ,5) and r(c*, ,¥) when y2 =9>and n,=n, i =0, 1.
Here

2
Ay—0y ,, Ny A
= ——m = — and = ——,
@7 Pa As )

0.2
The Y-minimax procedure is seen to have only slightly higher expected risk under
independent normal priors in the cases given.

(5.3) B

TABLE 1
Expected risks under normal priors

Ba% =25 B2 =10 B2% = 10.0

Y-Minimax Bayes Y -Minimax Bayes Y-Minimax Bayes

ﬂ: =.2
pi=-10 1151 1142 1151 .0968 .0922 .0333
ph=—-3 .3085 .2701 .3055 .1907 .0895 .0576
= 00 .3861 3104 .2497 .2104 .0648 .0623
b= 3 3815 3018 .3089 .2063 .0708 .0613
= 1.0 1587 1555 1587 1250 1067 .0410
B3 = 1.0
Bi=-10 .0228 .0227 .0226 .0191 .0028 .0015
p=-3 .0967 .0910 .0782 .0598 0044 .0036
fi= 00 1532 1361 .0948 .0793 .0048 .0044
p= 3 1825 1717 .0962 0925 .0050 .0049
f= 10 1532 1367 .0948 .0793 .0048 .0044

Another important consideration is the comparison of sup,.yr(t, ¥®) and
sup,e ¢ (7, ¥¥). The Y-minimax procedure is defined to be that procedure which
minimizes the supremum of the expected risk when 7 is in Y. We know from the
proof of Theorem 4.1 that

SuPreTr(l)(T,W1Y) = r(l)(TO,W1r) =Ty (D(A_ltf ln(nl’/nl)_%At3_i)
+n1'(D(—A_113*1n(7t1'/7t1)—%At3_*)

where 1,€ Y, as defined in (3.1).
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If b,%(6%/n,)~" # bo*(6?/ne)~! then it is easily shown using Lemma 4.1 that
sup;e vz, ¥1®) =, +n,". Unless iy, =mand n,/ = ' fori =1, -+, k, however,
it will not always be true that sup, yr(t, ¥®) = Y*_, (n;4 ;). When y,> = y? and
n;=n,i=0, 1, the Bayes procedure is of the form y,2=1,0as X, - X, >, <¢
for some real number c. In this case it i invariant under the group of translations
and sup, .y r*(z, ¥,®) is achieved by any t,e Y, as defined in (3.1). Thus

rto, Y, ") = 1y +(my — 1, YOG B3(B, ™! = B2) —(B1/B2))-

A comparison of r'(to, ¥,¥) and r'(z,, ¥,®) when ;2 =y? and n; =n,i=0, 1
is given in Table 2. Little difference in the supremum of the expected risk is
exhibited in these cases. Here B;, 8,2 and B, are defined as in (5.3).

TABLE 2
Expected risks under a least favorable distribution

B2 =25 B2=1.0 B2*=10.0

Y-Minimax Bayes Y-Minimax Bayes Y-Minimax Bayes

ﬂs = .2
Bi=-10 1151 1235 1151 .1936 1150 2721
pr=—-3 .3085 .3608 .3085 .3813 .2901 .3343
pr= 00 .4200 .4361 4109 .4207 .3420 .3452
pr= 3 .3821 4195 .3805 4125 .3306 .3430
b= 10 1587 1776 1587 .2501 1583 2933
Bs = 10
pi=-10 .0228 .0232 .0227 .0383 .0102 .0198
Br=-3 .0968 .1081 .0940 1196 .0248 .0295
pi= 00 1581 1755 1425 .1587 .0307 .0328
Bi= 3 2274 .2339 1815 1849 .0344 .0347
Bi= 10 .1581 1755 .1425 1587 .0307 .0328

Consider a third distribution over ®. Assume the prior distribution over the
treatment population parameters is conditioned on 6,, the value of the control
population parameter. This situation may arise, for example, when a treatment
which may be slightly effectual (such as a saline solution) is administered to the
control population and the same preparation only with additional ingredients is
given to the treatment populations. Assume a uniform prior for 6, over the
interval [—1, 1] and denote its cumulative distribution function by t°(6,). Assume
also that the distribution function of the prior over © given 6, is t'(8]6,) =

i-17,'(0;] 8) where 7,'(0; | 0,) is the distribution function of a uniform distribu-

tion on the interval
Am;’ A(l—m,")
0o— : , 0 L
[ 0 1'-7tl'_7t,', O+1_7ti_7t,',]
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Hence P[0, = 0,+Al=n; and P[0, <0,1==n/ for i=1,---, k. Let 7,00)=
J% o [T Tk= 1 7:"(6:| )1 d7°(w). For a procedure, ¢, which selects 6, if and only if

(5.4 e, X—coXo2d,
where ¢,, ¢y and d, are real numbers, the expected risk is
(e, Y1) = L 180 agy 71/ (2Ag,) T 0(H(0;, 0,)) 6, O,
+[L1 J621A% 7, '(2Ag,)) T @(—h(8;, 6,)) dO, d,
where ¢, = (1—=n,)/(1—n,—=n,"), q," = 7,'/(1 =7, —m,") and
h(0,,0,) = (c1 0, —co 0o —dy)/{(6%co?/no) +(0%c,*/ny)}E.

For the Y-minimax procedure given in (4.4) ¢o=¢; =1 and d, = (A/2)+
t;In(n,’[n;). The parameters of the normal priors for the procedure in (5.2)
must satisfy £,72=A? and ol = A® !(n,’) where T =® (n,)+® (n,").
Subject to these restrictions the Bayes procedure is then in the form of (5.4) with
c;=b*?*n)"',i=0,1, and

d, = A/2—b12¢’_ 1(751’)A(T)’12)"1 "'f"o[b12(¢72/nl)—1 —boz(az/"o)_l]‘

Assume n; = n, i =0, 1. Table 3 displays r(z,, ¥, %) and r(z,, ¥, ¥) for several
values of m; and n,’ and levels of A, 6%/n and the normal parameters. In this
comparison the Bayes procedure shows a slight improvement over the Y-minimax
procedure in most cases. The improvement diminishes as n, approaches 7,’.

The expected risks of the Y-minimax procedure given in (4.4) and the Bayes
procedure given in (5.2) have been compared for three distributions in Y. The
Y-minimax procedure compares favorably with the given Bayes procedure in
terms of expected risk. Moreover, the Y-minimax procedure has the advantage of
requiring less prior information than the Bayes procedure.

6. Comments on a theorem by Y. L. Tong. One problem considered by Tong in
reference [7] is the partitioning of a set of normal populations with known common
variance into two subsets according to the relationship of their respective transla-
tion parameters to that of a control population. His formulation of the problem
is similar to our own except he assumes no prior information about the translation
parameters. In Theorem 1.3 of his paper, Tong states that (i) his decision rule (1.3)
is minimax among invariant rules because (ii) in each component problem it is the
Bayes rule among invariant rules with respect to the least favorable prior distribu-
tion (1.28). He has tacitly assumed, apparently, that the decision in the ith com-
ponent problem depends only on X; and X,. The following example shows that
without such a restriction (ii) is not correct.

Using Tong’s notation, let k =2, §,*—A=6,*=0,Z,=X;— X, fori=1,2
and ¢? = n/2. Then Z = (Z,, Z,) has a bivariate normal distribution with respec-
tive means u, —uo and p, — o, unit variances, and a covariance of 4. Denote the
density of Z by A, _ 05 uy—uo (21, 2;). Any G invariant decision rule may be con-
sidered a function of Z, a maximal invariant. It follows that among G invariant
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rules, the Bayes decision rule for the first component problem with respect to the
prior distribution (1.28), selects (rejects) the first population as

(6.1) hoo(z1>22) +ho a(Z15 22) = hp,o(21, 22) = By A(21, 22) <(>)0.

Substituting A = (200/99)z, = —z, = (3)}, the left-hand side of equation (6.1) is
seen to be negative. This contradicts the fact that the first component of Tong’s
decision rule (1.3) is Bayes among invariant rules for the first component problem.

It is correct, however, to conclude that rule (1.3) is minimax among decision
rules which are G invariant and for which D,, the decision concerning the ith
population, depends only on X; and X,. Moreover, application of the Hunt-Stein
theorem as in our Theorem 4.1 would yield that Tong’s decision rule (1.3) is mini-
max among all rules for which D; depends only on X; and X,,.
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