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ABSORPTION PROBABILITIES FOR CERTAIN
TWO-DIMENSIONAL RANDOM WALKS!

By RICHARD W. MENSING AND H. T. DAVID

Iowa State University

1. Introduction. In Section 2 of this paper, we consider absorption of certain
finite random walks on three boundaries amenable to a method of images for the
plane. Each of the three boundaries determines a class of walks to which the method
is applicable; specifically, in the case of a rectangle or a right isosceles triangle with
sides oriented along the axes, walks involving unit steps in directions 0, 7/2, 7 and
3n/2 and walks involving steps of length 2* in directions n/4, 3n/4, 5n/4 and 7n/4;
in addition, for the rectangle, walks involving steps of all eight types; in the case
of an equilateral triangle, walks involving unit steps in directions 0, 27/3 and 4n/3,
walks involving unit steps in directions /3, = and 5r/3, and walks involving steps
of all six types.

For each of these eight boundary-walk combinations, it is possible to compute
certain “untied” and “tied” probabilities. The first of these is the probability
Pr,, of absorption under a uniform distribution over all paths consisting of n
steps of the specified types. The second is the probability Pf, ,, under a uniform
distribution over all paths consisting of n steps of the specified types and ending at a
specified interior point e, that absorption occurs at or before the [an]th step,
0 <a = 1. We note that the tied absorption probability for one of the eight above
boundary-walk combinations has been derived in [3], by an argument less direct
than that presented here, for the case « = 1.

Limits of expressions derived in Section 2 provide asymptotic absorption prob-
abilities not only for the few cases examined there, but also, through the in-
variance principle, for rather large classes of walks, both “untied” and “tied”.
These are detailed in Section 3 and Section 4. The invariance principle simultaneously
provides probabilities of absorption of two-dimensional? untied and tied Wiener
processes on cylinders with triangular base, and hence the corresponding distribu-
tions of the time to absorption.

2. A method of images for the plane. We first illustrate the derivation of a “‘tied”’
absorption probability in terms of the boundary-walk combination treated in [3],
i.e., the (open) equilateral triangle I" together with a walk involving unit steps in
directions 0, 27/3 and 47/3 (in the termihology of [3], steps of type 4, B and C).
We are interested in first computing the probability Pf , . that an n-step walk of
this type, starting at the origin and terminating at the interior point e of T, exits I'
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? The qualifier “two-dimensional” refers here to the range of the process (i.e. space) rather than,
as for example in [6], to the domain (i.e. time).
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at or before the [an]th step. In view of uniformity,
(2.1 Fan = |Buel/Nes

where N, is the number of n-step paths from the origin to e, and |B, | is the number
of these paths in the set B, , of paths exiting I" at or before the [an]th step.
It is useful to write

(2.2) |Bue| = [Dase| +|Fuel>

where D, , is the subset of paths in B, , for which the [an]th step is outside I', and
Fa,e = Ba,e_Da,e'

Analogously to the procedure in [3], we compute |Fm| by resorting to certain
sets A, and A, of auxiliary paths. These sets are defined in terms of a grid of
auxiliary points and triangles in the plane generated as follows; given the equi-
lateral triangle I', a system of contiguous triangles is generated by successive
“unfolding” of I'. The triangles so generated are called auxiliary triangles. Those
obtained as a result of an odd number of unfoldings are called @ triangles, and
those obtained as a result of an even number of unfoldings are called © triangles.
If one imagines the point e as participating in the successive unfoldings, one obtains
analogously a certain grid of points. Clearly there will be precisely one such grid
point within each of the auxiliary triangles. Grid points located within @ triangles
are called @ points, and grid points located within © triangles are called © points.
Ay, is the set of n-step paths, consisting of steps of type 4, B or C, starting at the
origin, which, at the [on]th step, is inside (and not on the boundary of) some @
triangle and ends at the @ point in that same triangle. 4, is defined analogously.
The reader may wish to refer to [3] for a further discussion and diagram for the
case when e is the origin. Note that, in the terminology of [3], |47 ,| = Ng and

IAl-’ol = Ne.
We now proceed to verify that
(2.3) |Foe| = |Ase| —| A

Since F, ,nA,. =0, we need only construct a 1-1 map of F, ,UA,, onto 4,:
given an auxiliary path in A4;,, the [an]th step of such a path ends inside some &
triangle. Hence there is a last point of entry into that triangle, prior to the [an]th
step. “Reflection” of the path segment following that entry point provides the
desired map.

(2.1), (2.2) and (2.3) now yield

(24) F,a,n = (IDa,eI + |Aa:e - }Aa—,el)/Ne'

Note that D, | = 0, so that |B, | =|A{ | —|Af |, which s essentially Equation (18)
of [3]. Relation (2.4), written in a form analogous to Equation (19) of [3], is, for
3/ the length of a side of T,

IDa.el

(25) f‘.a,n = —]V_+ 3 ZE';/:I‘,] Zj e J(i) r(isj )n(oc, €(i,j ))/Ne,
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where e(i, j) is the auxiliary point (i.e., @ point or © point) corresponding to the
auxiliary triangle I';; centered at U;: (3/j/2, 3%(2i—))/2), n(a, e(i,j)) is the
number of n-step paths from the origin to e(i, j) whose [an]th step terminates in
Iy, J(i) is the set [2—i, 3—i, 5—i, 6—i,--- 2i]and r(i,j) = —1 fori+j =3, 6,9,
12,---and 1 fori+j=2,5,8, 11, ---.

Similar considerations apply as well when the walk is assumed to begin at a
location other than the center of I', or when considering the other seven boundary-
walk combinations, with the walk beginning at an arbitrary interior point that can
be reached from the origin by steps of the relevant type.

For example, in the case that I" is a right isosceles triangle centered at the origin
with equal sides of length 3/ oriented along the axes, and the walk begins at the
origin and involves unit steps in the directions 0, /2, = and 3x/2, the auxiliary
points and triangles are obtained as in the first case, by “unfolding” I" and e. We
then have

(26) le",a,n = I - 8|+z[”/2’] ieS;jeS;lil+|jl=2k r(i,j)n(oc, e(i’j))/Nea

where e(i, j) is the auxiliary point corresponding to the auxiliary triangle T';;
centered at U;;: (I, [j), Sistheset [--+, —5, =3, —2,0,1,3,4,6,---]and r(i,j) = 1
ifi=--,-9,-5-3,1,3,79, and j—i=---, —12, —6,0,6,12, -+ or if
i=-+,-8,-6,-2,0,4,6,10,--- and j—i=---,-8,-2,4,10,---, and
r(i,j) = —1 otherwise.

Again if T is a rectangle centered at the origin, with sides of length 2/, and 2/,
oriented along the axes, and the walk begins at the origin and involves steps of
length 2% in the directions n/4, 37/4, 5n/4 and 7n/4, .

D
(2.7) Fan= |1\;e| +2 En—/z—lfg/zt,] 5(”1211'“')/212] r(i,j)n(a, e(i, j))/Ne,
e =0 if i>0

where e(7, j) is the auxiliary point corresponding to the auxiliary rectangle centered
at Uy;: (2144, 2L,j) and r(i,j) = 1 if |i—j| is odd and r(i, j) = — 1 if |i—j| is even.

We consider next the derivation of ‘“‘untied” absorption probabilities for the
same eight boundary-walk combinations. Define A* to be the set of all paths whose
nth step terminates within a @ region (triangle or rectangle), and similarly for 4.
Define as well 4 to be the set of all paths whose nth step terminates on the boundary
of some auxiliary region. Finally, define B to be the set of all paths absorbed by the
nth step, and C to be the subset of B con51st1ng of paths whose nth step terminates
within I'. Then

(2.8) |B| = |A*|+|A7|+]|4]+|C].

But
|A+| = Ze |Al+,el’ IA_I = ZeIAl-,el’ ICI = ze |F1,e|

so that summing (2.3) over e implies
29 [Cl = |4*|-]47],
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which, together with (2.8), yields
(2.10) |B| =2]|4*|+|4].

Relations somewhat more explicit than (2.10), analogous to (2.5), (2.6) and
(2.7), can of course be written down. For example, for the equilateral triangle with
steps of type 4, B and C,

|A| 2 [n/31] T
(2.11) Pr,= —37+in=1 Zje](i) S(i, j )ny;.
where S(i, j) = (r(i, j)+ 1)/2(cf. (2.5)), and n;; is the number of paths whose nth
step terminates in the interior of the auxiliary triangle centered at U;;.

3. Asymptotic untied absorption probabilities. Theorem 3.1 gives the asymptotic
implications of the untied absorption computations of Section 2.

THEOREM 3.1. Let I' be either an equilateral triangle containing the origin or
an isosceles right triangle containing the origin. Let T" be that “half” of the plane
that consists of the auxiliary @ triangles corresponding to I'. Let the walk 11, consist
of n i.id. two-dimensional vector steps X", X,", -+, X,", where E[X,"]=0 and
VX" = n~ 'L Then
3.1 lim,., , P, = Pr=2Pr*,
where Pr, Pr, and Pr* are the probability that the two-dimensional independent
Wiener process is absorbed by T', the probability that 11, is absorbed by T, and the

probability that an independent bivariate normal with standard deviation 1 is in T'™,
respectively.

ProoF. The proof is detailed for I" an equilateral triangle.

Consider the specialization of the assumptions regarding X," to the case where,
in terms of axes suitably oriented with respect to I', X" = Z,":((2/n)%,0),
Z,":(—(1/2n)%, (3/2n)*) or Zy":(—(1/2n)*, —(3/2n)?), each with probability }.
Let Pf, be the probability that this special walk is absorbed by I'. The invariance
principle gives

(3.2) limn_,oo Pr’n = Pr = limn_,oo P;l“’n,

of which the first equality is the first equality of (3.1). In view of the second equality
of (3.2) the second equality of (3.1) will have been established if it can be shown that

(3.3) lim, -, P¥, = 2P.*.

To this end assume that the dimension /(I') of I' is such that, for some n,
any point of intersection of a path composed of steps Z;” with the boundary must
equal k{ Z,"+k, Z,"+k, Z,". Then in view of (2.10),

34 PR, =2P{(}5%- X' eI} + P{(}3-, X\ "€ G},
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where {v} is a suitable subsequence of the positive integers and G is the set of points
on the boundary of the @ triangles. Now (3.3) follows from the convergence in law
of {d7-1 X’} to the independent bivariate normal with covariance matrix 7, and
the fact that the left-hand side of (3.3) exists in view of (3.2). Finally, the restriction
on /(I') can be removed since the set of so restricted /(I') is dense in the reals and
since, by the countable additivity of Wiener measure, Pr. is continuous in /(T').

The same argument applies for the right isosceles triangle, with the steps Z;”
replaced by steps ((2/n)%, 0), (0, (2/n)?), (—(2/n)?, 0) and (0, —(2/n)?).

The sort of assertion made in Theorem 3.1 applies as well to the rectangular T’
of Section 2, but follows directly from one-dimensional results.

It follows from the argument in Theorem 3.1 that the probability Pr; of
absorption of the standard two-dimensional Wiener process by I' by time T is
2Pf 1, where Pf; is the probability assigned to I'* by an independent bivariate
normal distribution with covariance matrix 77.

4. Asymptotic tied absorption probabilities. Theorem 4.1 below gives the
asymptotic implications of the tied absorption computations of Section 2.

We begin by verifying an invariance principle for a bivariate tied random walk.
Let S, be a (g—1)-dimensional simplex centered at the origin with edge length
proportional to n™*. Let V,", -+, V" be the set of rays from the origin to the
vertices of S,. Define Z;" to be the projection of V" into a two-dimensional sub-
space. Let W", -+, W,”, n a multiple of g, be an ordered sequence of n/q vectors
Z,", n|q vectors Z,", - -+, and n/q vectors Z,".

NoOTE. Zero correlation of the two components of W (i.e., Y j=, Wi, W, =0)
presumably is basic to the convergence to the independent Brownian bridge dis-
cussed in Lemma 4.1 below. Construction of the W sequence by means of the simplex
S, is one manageable way of achieving zero correlation. Had it been possible to
deal with, simply, zero correlation, a bivariate result at the level of generality of
Theorem 4 of [4] or Theorem 24.1 of [1] would have been achieved.

Let ¢,% -++, " be a random permutation of the W,"’s. Define the random walk
IT,° by

IL,%(1) = Y5, &
with IT,°(1) =0 for 0 £ ¢ < 1/n.

LeMMA 4.1. Let T be a bounded open set in the plane, with 0T, and let T1,° be as
defined above. Also, let WO(t) be the two-dimensional independent Brownian bridge.
Then, for 0 <o < 1, ,
lirnn—voo P?‘,a,n = qu,aa

where PL, and PQ,, are, respectively, the probability that W°(t)¢T for some
t€[0, a] and the probability that T1,°(¢t) ¢TI for some te[0, «].

PRroOF. The proof proceeds by verifying the analogs of conditions (i) ‘and (ii)
in Theorem 3.1 of [2]. First

(4.2) (IL,°(/k), -+, TL(@) = 5 (WO(a/k), -+, WO(2))
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where I1,°(io/k) = Y, &/, n; = [ian/k], and the right-hand side is a 2k-dimen-
sional random variable distributed according to the appropriate finite dimensional
distribution of W°. To verify (4.2), note that ([5])

4.3) (A1, *(a/k), -+, TL,*(@) > o (W*(a/k), -+, WH(@).

Here the IT,*(ia/k) are k(g —1)-dimensional partial sums of a random permutation
of an ordered sequence of n/q vectors V", n/q vectors V,", -+, and n/q vectors
V."; also the W*(in/k) have the k(g—1)-dimensional normal distribution appro-
priate to the (¢—1)-dimensional independent Brownian bridge. In addition ([2],
Theorem 2.1)

(4.4) P, (/k), - -+, TL* (@) =5 P(W *(/k), -+, W (@)
where 2 is the (continuous) orthogonal projection from R~ V* to R?*, (4.2) then
follows from (4.3) and (4.4) and the fact that
(4.5) (IL,%(e/k), -+, L, (@) = 2L, *(a/k), -+, T1,*(@))
(Wafk), -, Wo@)) = P(W*(a/k), -, W*(@)).
(4.5) states that the projection of a vector of partial sums of permuted V’s is in

fact a vector of partial sums of permuted Z’s.
Next, for any ¢ > 0,

(46) qu,a,n = Zf= 1 Zre (ni-1,ni] Zc eC P[Er,a,n,r,cnllnno(r/n) - Hno(r,/n)” g 8]

+Zi Zr Zc P[El",a,n,r,cn”Hno(r/n)_nno(rl/n)” < 8]
where Er,,, . is the event IT,°(¢) ¢ for the first time for ¢ = r/n < o, with path
composition “c’’ up to time r/n, and r’ is the smallest of the n; greater than or equal
tor.

The event whose probability is given by the second term of the right-hand side
of (4.6) implies that, for some n;, I1,°(n;/n) eI where I is the union of all (open)
e-neighborhoods centered at points of ' = R2—T.

As for the first term,

(47) P[El",a,n,r,cm”HnO(r/n)_Hno(r'/n)” g 8] = P[||Hn0(r/n)_nn0(r’/n)“
g & I El",a,n,r,c]P[Er,a,n,r,c]

where

(48) P[”an(r/n)_nno(r’/n)” Z & | Er,a,n,r,c]. = On(l)/k’

uniformly in » and c¢. The last equality is verified as follows:

(4.9) P[|I°(r/n)=TL( /n)|| = €| Ergnrcd < FLI X, —X0| Z /22| Ec yr.c]
+P[i Y;‘_ Y;’l g 8/2% I EI, a,n,r,c]

where X and Y are respectively the horizontal and vertical projections of I1. Given

El",a,n,r,c ,

IL°(r/n) = TL,°(r' In) = 3527 ¢
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where ({,",+++,{%_,) is distributed as a random sample of size r'—r from a finite
population (W, *", -+, W,*") of n—r vectors, composed of the set (W,", -+, W,"),
with r vectors specified by “c’” deleted. Hence, if X;*" is the horizontal projection of
W *",

X,—X, =Yy

where (y,",-*,y%_,) is distributed as a random sample & of size r'—r from a
finite population (X, *",- -+, X*",) of size n—r. Hence

(4.10) . E(X,—X,) = YIZ1E@MNX) = (' =n/(n—n) YIZ1 X",
where 6" = 1 if X;*" is in & and is O otherwise. But
(4.11) E(@") = (' —n)/(n—r) = (an/k)/n(1—a)
=a/k{l—0a) and
(4.12) IYiors 1 X1 = X, = 0,

uniformly in r and ¢, which follows from the fact that I" is bounded. In view of
(4.11) and (4.12)

(4'13) IE(Xr— XJ')I < On(l)/k
so that, for n, k large, |E(X,—X,)| < ¢/2*/%, uniformly in r and c. Also given
El",a,n,r,cs
VX,—X,)
' =r(n—r) r—r[r—r—1 r—r
4.1 = M Xr | = n_ X M2
( 4) (n_r)(n_r_l)Zl—r+1 i +n_r n—r—1 n—r (Zt—r+1 x)

=0,(D/k
uniformly in r and ¢. Thus, for n, k large,
PI|X,—X,| 2 ¢/2* | Epgprc]
4.15) < P[|(X,— X,)~ E(X, -X,)| 2 /22| Ergns.c]
< V(X, -X,)/¢
=0,k
uniformly in » and c.
A similar argument applies as well to Y,— Y, yielding (4.8). Thus, in view of

(4.7), the first term of the right-hand side of (4.6) is O,(1)/k.
Hence, (4.6) leads to

(4.16) P[IL,°(ny/n)¢T for some i=1,2,---,k]
< P?.,<0,()/k+P[I1,°(n/n)el* for some i =1,2,-+,k] or

(4.17)  1—P[I,%n/n)eT*, some i]—0,(1)/k < 1—PL,,
< P[IL,°(ny/n)eT, ¥ i]
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and, using (4.2) and letting n — oo,
(4.18) 1—P[W°(ia/k)eI™®, some i]—o,(1)
<liminf(1-P2,,) < limsup(1—Pg,,) < P[W°(ia/k)el,V i].
Since I'"® and T are open and W?° is continuous on [0, 1], letting k — oo,
(4.19) P[#] = P[W°(t)eT, some te[0,a]] £ liminfPQ,, < limsup P,
< P[WOt)eT®, some te[0,a]] = P[£].

Now, letting ¢; be a sequence tending to zero, the event [);6” implies that
infiero 4, xer||X— WO(2)|| = 0. But the continuity of W°(¢) on [0, ¢] implies that
of infe.r ||x—WO(?)||, so that, since T is closed, infio,,[infier||x— W (2)||] =0
implies the existence of (#, £) with ||£— W°(3)|| = 0. In other words, ;6 = .

But clearly & <;£“?, and the &“” decrease monotonically, so that

(4.20) lim;, , P[] = P[#] = P2,,
and (4.19) and (4.20) imply

limn—'oo qu,a,n = qu,z'
LEMMA 4.2. For T, I1,°, PL, , and PQ, as defined in Lemma 4.1 and « £ 1,
(4.21) lim,, o Pf{m =P,
Proor. All that remains to be shown is that
(4.22) lim,,, PR, =PL,.
The fact that
(IL,°(1/k), - -+ , IL,O(1)) = o (WO(1/k), - - -, WO(1))

follows in the same way as in the previous lemma.
Further, for any ¢ > 0,

(423) qu‘,l,n = ZEI;_IH/Z] reni-1,ni] ZCP[EF,n,r,cml|Hn0(r/n)_ Hno(rl/n)“ g 8]
+Zr €(npr-k1/21,nk] ZCP[EF,n,r,cn| |Hn0(r/n) - Hno(r,/n)“ g 8]
+ Zf= 1 Zr ZCP[EF,n,r,cnllnnO(r/n) - Hno(r,/n)” < 8]‘

The event whose probability is given by the last term of the right-hand side of
(4.23) implies that IT,°(n;/n) eI for some n;.
As for the second term,

Ve onecitramd e PLER e O|[TL(r/m) = IL (7' [m)]| Z €]
< Yr e onemstrzmd e PLEC nyrc]
(4.24) = P[I1,°(r/n)eT for the first time for r = [[k—k*]n/k]]
< P[11,°%(r/n)eT for some r = [[k—k*]n/k]]
= P[I1,°(r/n)eT for some r < n—[[k—k*]n/k]]

=0 P[WO(H)eT for some 1 < 1/k*] = PR 0
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where the last conclusion comes from Lemma 4.1 with « = 1/k*. Since the sequence
of events, E,: W°(t)eT, t < 1/k*, is monotone decreasing and N E, =0, P, k172
is 0,(1).

The first term of the right-hand side of (4.23) is O,(1)/k*. The portion of the
argument in the proof of Lemma 4.1 corresponding to the verification here is that
between (4.9) and (4.15), with a essentially set equal to 1—1/k*.

The rest of the argument proceeds as before.

Analogously to the arguments in Theorem 3.1, we now give an explicit form for
the left-hand side of (4.21) in two special cases—I" an open equilateral triangle and T’
an open right-isosceles triangle, both centered at the origin of IT,°:

(4.25) lim,, o P2, , = PR, = PP%, 0<a=<1

where the right-hand side is the limit of (2.5) and (2.6) respectively for the two
cases. Expression (4.25) gives, analogously to (3.1), absorption probabilities, indeed
absorption waiting time distributions, for the tied Wiener process in absorbing
triangular cylinders.

THEOREM 4.1. Let T be either of the two triangles described in Section 2. Let
the walk T1,° be as described in Lemma 4.1. Then relation (4.25) holds, with PLY
given by (4.27) and (4.34) respectively for the two triangles.

Proor. The proof is detailed only for I' an equilateral triangle.

Consider the specialization of the assumptions regarding I1,° to the case where
the sequence Z,", -+, Z,", n = 3m, consists of m each of the three vectors ((2/n)?, 0),
(=(1/2n)%, (3/2n)Y), and (—(1/2n)%, —(3/2n)?). Let PR%,, 0 <o <1, be the prob-
ability that this special walk is absorbed on I' at or before the [on]th step. The
invariance principle of Lemma 4.2 gives, for 0 <o <1

(426) limn—mopl"an_Pl"a"'hmn-'ooPFan—PFw

and it remains only to derive the form of the right-hand side. For the equilateral
triangle case we show that

PR =1—P[NeI(0,0;31/(ac(1—o)))]+3> 721 ¥ sy 1(isJ)
@27) - P[NeT(GU(1—a)al/2, 312i—)[(1—0)/al?/2; 3/l —2)*)]
~exp[ —31%(i% +j —1j)/2],
where NeI'(a, b; d) denotes the event that a bivariate normal vector with co-
variance matrix I is in the region bounded by an equilateral triangle centered at
(a, b) with sides of length d. I, refers to regions V, corresponding to i+j =2, 5, 8,
11, --- while I'_ refers to regions A, corresponding to i+j=3,6,9, -

For /(T) restricted as in the proof of Theorem 3.1 and the corresponding sub-
sequence {v}, (2.5) may be rewritten

(428) PpL, =PIl Z)¢T|Y0-1 Z = Ugo)
+3 Z[n/NJZIE J(i) r(i, j )P[Z[“v{ Z'e rij I ZZ: 1 Z = Uij]Ni.i/NO'
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It is readily shown that, conditional on ) ;- Z,” = U,
(4.29) Y Z, - 5 NGalj/2, 3%al(2i—j)/2;0(1 — o).
Also,
(4.30) Ny;/No = ([n/3]D)°/{[(n/3) +jl(n/2)*]1 [(n/3) +(i —j)i(n/2)*]!

-[(n/3)—il(n/2)*]!}
= exp [ —31%(i*+j%—1ij)/2] for n large.

In view of (4.28)-(4.30) it suffices to show, for 0 < « < 1 and for k large, that
(4.31) R(n,k,l,0) = Zx[';/l?” Zje.l(i) r(i’j)P[Zl[cag]l Zkverij | Zl‘é: 12 = Uij]Nij/NO
is arbitrarily small uniformly in » for »n large and also, for k large,

(4.32) IZioik Zje.l(i) r(i,j)P[NeT';]exp[ - 32 +j 2 ij )/2]|
is arbitrarily small. Looking first at (4.32), this is bounded by
|2 X2 iexp [ -3 —[i/2]* —i[i/2])/2]|

which is small for k large.
Looking at (4.31) and using an argument similar to that in [3],

(4.33) R(n,k,1,0) < 3Y 130 [(n/3)1]%/[(n/3)— iln*]! [(2n/3) + iln*]!}

: (leeJ(i) r(i,j )P[ZIE‘I——"JI Z'ely; I ZI:= 12" = Uij]

iin1/2
(G-

For fixed i, since |r(i, ) P(*)| £ 1,
.. iinl/2
]Zis](i) r(i, j )P[Zl[fg]l Zkverij | Zl:= 1Z) = Uij](((zn%s)):ﬁ’:lﬂ )I
ilnt/2
= Yiesn (G imr)

. 2n/3)+iln1/2
<2 max; ey (((nr/l/3))-l-jllr:"/1)

. (2n/3)+iln1/2
= 2’(En/"3/)3r[i/3]1n1/2)-

Therefore, following the argument in [3] and using the fact that
(130 /[(n/3)— i1 [(nf3) + [i/20im*]: [(0/3)+ (= (/2D In*]!
= exp [~ (K + [k/2* — k[k/2])],
R(n, k, 1, ) is essentially bounded by ’
2kexp [~ P(k? +[k/212 = k[k/2])]/(1 — exp (— I*[k/2]))

for n large, and is arbitrarily small uniformly in #.
Applying the results of (4.29)-(4.32) to (4.28) we have

lim,, ,, P2% , = right-hand side of (4.27)
for0<a <1,
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Finally, as in Theorem 3.1, we can remove the restriction on /(T).

A similar argument applies as well to the right isosceles triangle with steps
ZMi=1,-+,n, consisting of an equal number of steps ((2/n)%, 0), (0, (2/n)?),
(—=(2/m)%, 0), and (0, —(2/n)?). For this case

@.34) PY* = 1—P[NeT(0,0;3l/(a(l —a))t]
+ 201 Liess jes; fif+171=2k 7(0  )P[N e CU[(1 — ) o],
[ —o)/ad?; 31j((1 — )] exp [ —21%(2k* — 2k |i| + i%)].
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