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ON MEASURABLE GAMBLING PROBLEMS'

By WILLIAM D. SUDDERTH

University of Minnesota

1. Introduction. Let I be a measurable gambling house defined on a Borel set of
fortunes F. (Precise definitions are given later.) Starting with fortune f, a gambler
chooses a strategy o available to him. The strategy o induces a probability measure
on the product space H = F x F x --+ of histories of fortunes and the gambler is
paid [ g do, the expectation of g under o, where g is some utility function on H. Let
M,(f) be the sup | gdo taken over all measurable strategies “‘essentially”” available
at fand let I',(f) be the same supremum taken over all strategies o available at f.
The function M, is well-defined when g is a bounded, Borel measurable function
and it is shown below that, in this case, M, is universally measurable. The function
T, is well-defined if g is bounded and finitary. If g is bounded, finitary, and Borel,
then both functions are well-defined and seen to be equal. Thus a gambler can do
just as well when restricted to measurable strategies for these problems.

These results seem to contain most of the known results on the measurability
of the return function and the adequacy of measurable strategies but the problem
which motivated this research nevertheless remains open. That is, do good measur-
able strategies exist for measurable problems with a measurable utility function of
the type studied by Dubins and Savage? (If so, the return function is universally
measurable.)

Some progress is made on this question. Let u be a bounded function on F and
o a strategy. Then u(o) is defined to be limsup, ., fu(f;)do, where the lim sup is
over all stop rules z. It is shown below that for  and ¢ measurable, it is equivalent
to take the lim sup over all measurable stop rules and also u(c) = [ u* do where u*
is a bounded, measurable function on H. By the result previously mentioned, M, *
is universally measurable. The question remaining is whether M,* is the optimal
return function ¥V studied by Dubins and Savage.

For expository reasons, the results for u(s) are presented first. However, the
reader who wishes may skim Section 2 and skip to Section 5 and Section 6 for the
results outlined in the first paragraph.

2. Measurable strategies. Let F be a set and let G be the set of all gambles on F.
That is, G is the set of all finitely additive probability measures defined on all
subsets of F. A strategy o is a sequence 6, 64, - where g,€G and, forn =1, g,
maps F x -+ x F (n-factors) into G. Let H be the countably infinite product
F x F x -+ and let g be a bounded, finitary function on H. Then | g do was defined
in [2].
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Now suppose % is a Borel field of subsets of F. Let o be a strategy and suppose
o, restricted to & is countably additive and, for every n > 1 and every n-tuple
(f1s - +5 fy) of elements of F, o,(f,**+, f;) restricted to 4 is countably additive.
Suppose also that, for everyn > 1and every Be &, 6,(f;, ***, f,)(B)isa® x -+ x B
(n-factors)-measurable function of (f;, -+, f,). Then ¢ is said to be a measurable
strategy.

Denote by #* the product Borel field # x % x - - of subsets of H. A measurable
strategy ¢ naturally induces a countably additive measure u = u(c) on #®. That
is, the p-marginal distribution of £, is o, and, for every (f, -, f;), the conditional
p-distribution of £, . ; given (fy, **+, ;) is 6,(f1, - *, £,). (Here o, and 6,(f;, ** )
have been tacitly identified with their restrictions to #. Where it is not harmful,
such identifications will be made below also.)

The relationship between the measure o defined on the finitary subsets of H and
the measure p defined on 2% was discussed in [10], but a simpler and more general
analysis is given here. Some related work is also in [5].

THEOREM 1. Let g, be a bounded, finitary function on H and let g, be a bounded,
#B”-measurable function on H. If ¢ is a measurable strategy and g, < g,, then

jgl do < jgz du. (Hence, g, Z g, implies jg1 do 2 jgz du.)

PRrOOF. The proof is by induction on the structure of g,. The theorem is certainly
true for g, of structure 0; i.e. for g, a constant function. Now assume it is true for
functions of structure less than o and suppose the structure of g, is . If g, < g5,
then g, f1 < g,f; for all f; in F (recall that, for any function g on H and fin F, gf
is the function on H defined by gf(fy, *) = g(f; f1, ***)). Let u[f,] denote the
measure on 4% induced by the conditional strategy o[f;]. Then u[f;] is a version
of the regular conditional distribution of p given f; and, using the inductive
assumption, we have

~"91 do = .‘ {I(91f1)d¢7[f1]} doo(f1) = j{f (92/1) dul f11} doo(f1)
=[g.du. [

COROLLARY. If g is bounded, finitary, and measurable, then | gdo = [ g du.
The following proposition is elementary.

LEMMA. Let L be a linear space of functions on a set H and let X and Y be linear
subspaces. Suppose S and T are linear functionals on X and Y, respectively, such that,
Jor every xe X and ye Y, if x < y, then Sx £ Ty. Then there is a nonnegative linear
Sfunctional V on L such that V restricted to X is S and V restricted to Y is T.

PrRoOF. For xe X and ye Y, let V(x+y) = Sx+ Ty. Then V is easily seen to be
well-defined on the space spanned by X and Y and nonnegative there. Now extend
V to the rest of L. []

It follows from Theorem 1 and this lemma that there is a finitely additive
probability measure defined on all subsets of H extending both ¢ and u. Abusing
language for the sake of convenience, we shall denote by o one such extension.
Thus o restricted to # is u and ¢ is countably additive on #°.
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Now if ¢ is measurable and p = (fi, *-*, f,) is any partial history, then the
conditional strategy o[p] is measurable. Thus a[p] induces a countably additive
measure on #% which we denote by a[p] also. Let ¢ be any stop rule and recall that
pdh) = (f1, . fuwy)> Where, as usual, 2 = (f}, f2, - ). The formula

€Y [ gdo = [[(gp(h)) do[p(W)]do(h)

was given in [2], page 51, for g bounded and finitary. If ¢ is measurable, then (1)
also holds for every g which is bounded and measurable. The proof, as suggested
in [2], is by induction on the structure of p,. The formula specializes to give

0] o(4) = [ o[ p(W](Ap/(h)) da(h)

Where A(fl’ T ’f;n) = {(f;x+ [T '):(fl’ T ’f;vf;t+1’ o ')EA}’ and A iS ﬁnitary or
measurable. Since every countably additive probability measure on £ is induced

by some measurable strategy, these formulae may have some interest other than
their application in the next section.

3. The Dubins and Savage utility of a measurable strategy. In this section, o is a
fixed measurable strategy and u is a bounded %-measurable function on F. The
function u is called the utility function and Dubins and Savage [2] define the utility
of ¢ by u(¢) = limsup,_, ,, u(a, t), where u(c, t) = [ u(f;) do and the lim sup is taken
over all stop rules £. Denote by #i(s) the same lim sup taken over #*-measurable
stop rules 2. (Stop rules are taken to be everywhere finite in [2], but #(o) would be
the same if we permitted stop rules which are finite almost surely.) The result of this
section is a formula for u(c) and #(s) which proves that they are equal. (The
interested reader can see that our argument proves that limsup,.. . u(o, t) taken
over all measurable, positive integer-valued functions has the same value.)

Most of the work is done in the case when u is nonnegative and simple. So, until
further notice, assume u is of the form

) YM,a;1,, where a;>:+>ay>0
and the A; are pairwise disjoint sets in 4.

THEOREM 1. Let u be as in (1) and let B; = {(f1, /5 ***):fx€A; for infinitely
many k} for i=1,++, M. Then

u(o) = i(6) = a,6(By)+a,0(B,—By)+ +a,0(By—(B;u "+ UBy_,)).

This Theorem is a generalization of Theorem 2 of [10]. The proof will be given
in several lemmas. ‘
Let 2 = (f1, /2, - ) and for each positive integer N and for i =1, ---, M, define

EY ={h:f,ed; forsome k= N},
I"‘iN= U;=1EjN, F0N=Q.

Suppose the gambler must play for N days and then may stop whenever he
pleases. He would prefer to stop at a fortune in 4, and receive a,; the next best
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thing would be to stop in 4, and receive a,; and so forth. This idea suggests our
first lemma.

LEMMA 1. For every positive integer N,
sup,znu(0,t) < YL, a;0(EN~FY ).
Here, the supremum may be taken over all integer-valued functions t for which u(f,)
is o-integrable.
ProoF. If ¢ = N, then
u(o,t) = fu(f)do
= [g~o- - uEpn U(f) do
= Zﬁ‘i 1 _f:;‘,b’-i'{*’_1 u(f)do

<YMia0EN-FL). 0
Now let B; be as in Theorem 1 and define, fori=1, -, M,
C = U£=1 By, Co=4,
D;=B,-C;_,,
E= Zﬁ 1 a;0(D)).
If the gambler must play for an arbitrarily long time, it would be best to have a

history 4 in B;. For then he can find fortunes in A, arbitrarily far in the future. If
B, is not possible, he would prefer B, and so on as reflected in the next lemma.

LeEMMA 2. u(o) £ E and ii(c) £ E.

Proor. Notice that, for every positive integer N, u(a) < sup,sy (o, t). Also, the
sets EN and F}_, decrease to B; and C;_,, respectively, as N — 0. These sets are
2 measurable and ¢ is countably additive on #®. Hence, ¢(E¥N—FN ) —
6(B;—C;_,)as N> oo fori=1,---, N. Now apply Lemma 1 to see u(¢) < E.

The proof for #(c) is the same. []

The next two lemmas help to establish the reverse of the inequalities in Lemma 2.

LEMMA 3. For every positive integer N, sup,»yu(c,t) = E. Here the supremum
may be taken over all measurable stop rules t.

ProOF. We construct a measurable stop rule ¢ such that ¢t = N and u(o, ?) is
arbitrarily close to E. Let ¢ > 0.

Set Ny = N and inductively define measurable, (possibly) incomplete stop rules
ty, "+, ty and integers Ny, -+, Ny as follows: Fori =1, -, M, let

t(h) =thefirst k= N,;_, suchthat f,e4;
= oo if thereis no such k.
Using countable additivity, choose N; > N;_, so that ¢[t; < 0] < o[t; < N,]+e.
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Then, fori=1,---, M, [t; < ] 2 B; 2 D;. Hence,
oD;n[t; 2 N]) S o([ti < o]n[t; =2 N =, and
a(D;n[t; < Ni]) Z o(D)—e.

Now define £ = t; A **+ A tyy A Ny that is, stop as soon as any of the ¢; do, but
no later than N,,. Then ¢ is a measurable stop rule and ¢ = N. Notice thatif z; < N;,
then 7 < N; and ¢ = t; for some j < i. So u(f)) = u(f,) = a; Z a;.

Now we can compute

u(o, ) = YLy [p,u(f) do
2 Zf": 1 IDm[n<N,] u(f,) do
2 YM afa(D)—¢}.
Since & was arbitrary, the proof is complete. []

LemMA 4. For any stop rule s, sup,s u(c, t) 2 E. Here the supremum is over all
stop rules t.

PROOF. Let ¢ > 0.
Let p = (f,, ' -+, f,) be a partial history. By Lemma 3, there is, for every p, a stop
rule ¢(p) such that

u(o[p], 1(p)) = YL, a;6[p)(D) —¢
=M1, a;6[p](D;p)—e.

The last equation uses the factthat D;p = {(f,41, " ):(f1, " s S fus 1o )ED} =
D, for every pand fori=1,:-+, M.

Recall that p(h) = (f1, ***, fy) and let ¢ be the stop rule which is the composition
of s with the family #(p,(%)). That is,

t(h) = s(h) +t(p(M)(fsmy+15 ")
for 4 in H. Then, by formulae (1) and (2) of Section 2,
u(o, t) = [ u(a[p(h)], Ap(h)))do(h)
z [ {31, a;alp(M](D; p(h))—e} do(h)
= qu: 1a;0(D)—e. [J

Since u(o) = inf,sup,s,u(a, 1), it follows from Lemma 4 that u(c) = E. Now
ii(o) equals the same expression except that the infimum and supremum are over
measurable stop rules. Let s be a measurable stop rule. Then, for any & > 0, there
is an integer N such that o[s £ N]> 1—e. It is easy to see that sup,,,u(c, 1) =
sup, s y (o, t)—2¢sup |u/, and, hence,

17(0') = ian Sup, =N u(O', t)

So, by Lemma 3, ii(¢) = E.
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This completes the proof of Theorem 1.
As Lester Dubins mentioned to me, the expression in Theorem 1 is the integral
of u* where

u*(f19f2, U ) = hm Supn-hoo u(fn)'
This suggests:

THEOREM 2. Let u be a bounded, measurable function on F. Then u(c) = i(o) =
fu*do.

PRrOOF. There is no loss of generality in assuming u is nonnegative. (If not, add a
sufficiently large constant to # and check that no harm is done.) So assume » = 0
and choose a sequence u, of nonnegative simple functions converging uniformly to
u. The desired equations hold for the u, by Theorem 1. Now pass to the limit. []

4. A digression on a ‘‘Fatou equation’’. As the last theorem implies, the integral
and lim sup over the directed set of stop rules commute. The usual lemma of Fatou
might lead us to expect only an inequality in general. Here we show that equality
holds in fair generality.

THEOREM 1. Let Xy, X,, * -+ be a uniformly bounded sequence of random variables
on a probability space and let Y* =limsup,.,X,. Then EY* = limsup,., , EX,
where the lim sup is taken over the set of measurable stop rules with respect to the
X,-process.

PRrOOF. Let B be a uniform bound on the X,. We can assume that the probability
space is the space of sequences Q = {(xy, x,, ***):|x;| < B,i=1,2,---}, and X,
is the nth coordinate map.

Set f, = (x,, ***, x,). Let o, be the distribution of X, and let o,(f;, ", f,) be
the conditional distribution of (X, -, X,.,) given (X, -, X,) = (x, ", X,)-
Thus we are, in effect, taking F to be all finite sequences (x;, ** -, x,) with |x;| < B
for all i. Define the utility function by u(x,, - -, x,) = X,,.

There is a natural correspondence between stop rules. Let s be a stop rule on H.
The corresponding stop rule ¢ on Q is given by

HX 15 X5, X3," )= s(xl’(xlaxZ)’(xla X2, X3), ).
Since o gives probability one to histories of the form (x,, (x;, x,), - - *), the map is
essentially a one-one correspondence. Moreover, the random variables u(f;) and
X, have the same distribution. Likewise u* and Y * have the same distribution. The
desired result now follows from Theorem 3.2. []

If one drops the boundedness assumption and assumes only that the X, are
uniformly dominated by an integrable random variable, then the conclusion of
the theorem still holds. A proof can be based on the techniques of Section 3.

5. A lemma. In this section, a lemma needed for the sequel is proved and a few
conventions are made about notation.

If (X, #(X)) is a measurable space, denote by 2(X) the collection of countably
additive probability measures defined on #(X) and let £(X) be the smallest o-field
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of subsets of 2(X) which makes p — p(4) a measurable function of p for each 4 in
B(X) (cf. [1]).

LemMMA. Let (X, #(X)) and (Y, B(Y)) be measurable spaces and let g be a real-
valued measurable function defined on the product X x Y. Suppose also that g is
bounded from below (say). Then the map

(x,p) = [ 9.(») dp(y)
is measurable from X x P(Y) to the extended reals. (Here g,(y) = g(x, y).)

PrOOF. Choose a sequence g, of simple functions on X x Y such that gnlg.
Then, for every (x, p),

§(gnxdp1 | g.dp.

Thus we can assume g is simple and, in fact, we may as well assume g = 1, is the
indicator of a measurable subset of X x Y.

Now let &/ be the collection of sets A for which (x, p) —» p(4,) is measurable.
(Here, 4, = {y:(x, y)e A}.) Then o/ is a monotone class which contains the field
of disjoint unions of measurable rectangles. []

(The lemma could be stated and proved with M(Y) (the set of finite signed
measures on X(Y)) in place of (Y) and would then be a generalization of 2.2 of
[11)

In what follows, we deal mainly with Borel sets, which we take to mean a Borel
subset of a complete separable metric space. Let X be a Borel set and #(X) the
Borel subsets of X. If 2(X) is given the usual weak topology (see, for example,
Chapter II of [4]), then 2(X) has the structure of a Borel set. It is not difficult to
see that the o-field of Borel subsets of 2(X) is the o-field £(X) defined above.

6. Basic results on measurability. In the remainder, we assume the setting of a
measurable gambling house as defined in [7]. That is, F is assumed to be a Borel
subset of a complete, separable metric space and 4 to be the Borel subsets of F.
A gambling house I on F assigns to each fin F a non-void set I'(f) of gambles y
defined on all subsets of F. Let p(y) denote the restriction of any gamble y to 4.
The house I is called measurable if, for every fin F and every y in I'(f), p(y) is
countably additive and if the set I = {(f; p(y)):ye'(f)} is in the product o-field
2 x X(F). In the sequel y is often written for p(y).

A strategy o is available at f in T if 6,eI(f) and, for every (fy, " *,f.),
0,(f1> s /) €L(f,). A natural class of stochastic processes is the set of measurable
strategies available at some fin I'. This set may be empty, however (see [8] and [9D.
So we consider the measurable strategies o such that g,eI'(f) and, for every
n>0,0,(f;,,f,)€I(f,) o-almost surely. Such a ¢ is said to be essentially avail-
able at fin I.

REMARK. As pointed out in {9], there are measurable strategies available in
I"iff there is a measurable map o: F — 2(F) such that a(f)eI(f) for every f. If
such a map exists, then every measurable strategy o which is essentially available
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at fin I induces the same distribution on A as some measurable strategy & available
at fin I. To get &, just change the values of the o,(f}, - *, f,) to be a(f,) whenever
an(fl’ e ’f;t)¢r(f;p)

Denote by I'°(f) the set of all measurable strategies o essentially available at f
in I'. Let u(o) be the probability measure induced by ¢ on £ (see Section 2) and
set

I ={(f,uo)):0eT*(f)}.

Recall that 2(H) denotes the set of probability measures on the Borel sets #%
of H

THEOREM 1. The set T'® is a Borel subset of F x ?(H).

ProoF. Essentially the same as Theorem 2.1 of [9]. []
Now let g map H to the reals. Think of g as a utility function. For g bounded
above or below and measurable, we can study the optimal return function

M(f) = sup|gdo,
where the supremum is over all ce T °(f).

THEOREM 2. The function M, is universally measurable (i.e. measurable with respect
to the completion of any measure on the Borel sets of F) if g is bounded above or
below and measurable.

This result is a variation of Strauch’s Theorem 7.1 in [6]. Using Theorem 1, we
could essentially repeat Strauch’s proof. Instead we prove Theorem 3 below which
includes Theorem 2.

ExampLes. To illustrate Theorem 2 above, let r, be a sequence of nonnegative
measurable functions on F. In gambling and dynamic programming problems, the
function g is often one of the following forms:

ri(f)++r(f) )

2r(f), limsup r,(f,), or limsup -

Now recall that (gf)(f;, - -*) = 9(f, f1, - - -) by definition.

THEOREM 3. The function f— M, (f) is universally measurable if g is bounded
above or below and measurable.

PRroOF. For any real number g, the set {f: M, (f) > a} is the projection of the
set {(f; p):peT*(f), [(gf)dp > a}. By Theorem 1 and the lemma of Section 5,
the latter set is Borel. So its projection is analytic and, hence, universally measurable
by a famous result of Kuratowski. []

Now, for any bounded, finitary function g on H and fin F, set

[,(f) = supf gdo,
where the supremum is over all strategies ¢ available at f.

THEOREM 4. If g is bounded, finitary, and measurable, then T'; = M,,.
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Proor. Certainly, M, < I'; since any strategy o essentially available induces the
same distribution on H as some strategy ¢’ which is available. To get ¢’, just change
o to make it available on those partial histories where it is not. By assumption, the
changes take place on a set of g-measure zero.

The proof of the opposite inequality is by induction on the structure of g. The
result is clear for g of structure zero. So assume it is true for all functions of structure
less than o and suppose g has structure a.

Fix fin F and ¢ > 0. Choose a strategy ¢ available at f such that

fgdo >T,(f)—e.
Then notice that

§gdo = [{[(gf)) do[ f,1} doo(f})
= fr(gf,)(fl) doo(f1)
= j]vl(gfl)(fl)dao(fl)'

The last equation is by the inductive assumption. Now, by Theorem 6.3 of [3],
there is a measurable map G: F — 2(H) such that

oo{f1:0(f1)eT>(f,) and j(gf1) do(fy) > M, (f))—e} = 1.

(To apply the theorem cited, use the fact that, by Theorem 3, M, (fy) differs
from some Borel measurable function on a set of o, measure zero.) Now let ¢’ be
that measurable strategy whose initial gamble is ¢, and whose conditional strategy
given f; corresponds to (/). Then o is essentially available at £, and we have

M(f) 2 [gda’ = [{[(af)d5(f1)} doo(f,)
2 [{M s (f)—etdao(f)) 2 T(f)—2e. [0

Theorem 4 generalizes Theorem 2.2 of [9], which, as pointed out there, implies
Strauch’s result in [7] on the measurability of the return function ¥ for measurable,
leavable gambling problems.

Now consider a measurable gambling problem with a utility function of the type
studied in Section 3. That is, let # be a bounded, measurable function on F and let
u(o) be as in Section 3. For fin F, let Q(f) be the sup u(o) taken over all measurable
strategies o essentially available at fin I, and let ¥ (f) denote the same supremum
taken over all strategies ¢ available at fin I.

THEOREM 5. The function Q is universally measurable.

ProOF. By Theorem 2 of Section 3, we see that Q = M, *. Now apply Theorem 2
of this section. []

The question remaining is whether Q = V. Certainly, Q < V (see the first para-
graph of the proof of Theorem 4). Thus to prove equality, it is enough to find nearly
optimal measurable strategies essentially available. Equality was proved for
leavable houses by Strauch in [7] and for houses with a goal by the author in [10].
The construction of good measurable strategies given in [10] can, with some effort,
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be adapted to handle the case when u is the indicator of a countable set. It is
possible that a more sophisticated adaptation would handle the general case.

One is tempted to apply Theorem 4 since Q = M, *. But u* is not finitary, so
I, * has not been defined.
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