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CONSTRUCTION OF MARKOV PROCESSES FROM
HITTING DISTRIBUTIONS I’

By C. T. SHIH
University of Michigan and University of California, San Diego

Let K be a compact metric space, A a fixed point in K, 0 a
base for the topology of X closed under the formation of finite unions
and finite intersections, and 2 = {(K—U)UA|Ue0} (here A stands

- for {A}). Let {Hp(x,*)|xeK, De 2} be a family of probability measures
satisfying the obvious necessary conditions of being the hitting distribu-
tions (as suggested in the notation) of a Hunt process on K with A as
the death point and the following conditions: (a) if x¢ D there exists D’
such that supyep —afHp(y,dz)Hp(z, D’—A) < 1; (b) if D,]A and
D—A is compact [Hp,/(x,dy)Hp(y, D—A)~0 uniformly on compact
subsets of K—A; (c) there is a subclass 2’ of 2 such that the sets K— D,
De 2’, have compact closure in K— A and form a base for the topology of
K—A, and for De 2’ and real continuous fon K [ Hp(x, dy)f(») is con-
tinuous on K— D. Then a Hunt process is constructed from the prescribed
hitting distributions Hp(x,:). This improves an earlier result of the
author in that the smoothness condition (¢) is much weaker than before;
in fact the smoothness condition we actually assume is somewhat weaker
than (c).

Introduction. This is an improvement of the result in [3], which we shall refer to as
[I] in the sequel. In [I] the following result is obtained. Let K be a compact metric
space, A be a fixed point in K, ¢ be a base for the topology of K closed under the
formation of finite unions and finite intersections, and 2 = {(K— U)uA| Ue0}
(here A stands for {A}). Assume given a family {Hj(x,")|xeK, De@} of
probability measures on K that satisfy the obvious necessary conditions for
being the hitting distributions (as suggested in the notation) of a Hunt process on
the state space K with A as the death point. Then a Hunt process is constructed
from these prescribed hitting distributions under the following two conditions:
(i) the transience condition that if x¢ D, De 2 there exists D'€ 9 containing x as
an interior point such that [Hy(x, dy)Hp(y, D'—A) < 1; (ii) the smoothness
condition that for every De? and real continuous f on K the function
{ Hp(x, dy)f(y) is continuous. In the present article the transience condition is
strengthened to the extent of requiring sup,.p -4 [ Hp(y, d2)Hp (z, D'=A) < 1,
and another condition is added that if D, D,e2, D,|A and D—A is compact
{ Hp,(x, dy)Hp(y, D—A) converges to 0 uniformly on compact subsets of K—A,
which are, however, immediate consequences of (i) and (ii); but (ii) is greatly
weakened, at least to the following extent: there is a subclass 2’ of & such that the
sets K— D, De 9’, have compact closure in K— A and form a base for the topology
of K—A, and for every De2’ and real continuous f on K the function
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98 C. T. SHIH

| Hp(x, dy)f(y) is continuous on K— D. This relaxation has two aspects. One is the
reducing of 9 to 2’, so that smoothness is now required only locally rather than
globally as before. The other is the lessening of the extent of smoothness for each
De2'; this means roughly that the boundary points of D are not required to be
regular for D. The significance of this can be seen from the fact that for some
natural processes there exist no regular neighborhoods for some points. The simple
process of uniform motion to the right on the real line is one such example; a less
trivial example is the process in the plane whose x- and y-components are
independent, with the former being the uniform motion to the right and the latter
being the Brownian motion (or a diffusion process) but having 0 as a trap. Also,
the present result implies the result of Hansen ([2] Theorem 2); remarks concerning
this can be found in Section 1.

1. Main results. K, A, 0, 9 are as in the introduction. Let p be the metric on K
and 4 be the g-algebra of Borel sets. Denote by .# the Banach space of bounded
real Borel measurable functions on K, ¥ its subspace of continuous functions, .#,,
its subspace of functions vanishing at A, and %, the subspace of .#, of functions
continuous on K— A (note that this is not the same &, as in [I]).

Let J= {k2"‘|n 21,05k <£2"}. Let & stand for the class of functions
D = D(r) from [0, 1] into the family of closed subsets of K such that D(r)e 9 for
reJ and D(r) = N;<, D(s) for 0 < r £ 1 (in particular D(r) is decreasing). Note
that since we use D both as a set and as a function of sets, it will be written as D(r)
when the latter is the case. Let &, denote the class of those D(r) in & satisfying
D(r)cint D(s) (interior of D(s)) for s < r.

Assume given for every xe K, De 2 a measure Hp(x,-) on K. We introduce the
following hypotheses:

(a) Hp(x,-) is a probability measure concentrated on D.

(b) Hp(x, B) is Borel measurable in x (Be %).

(c) Hp(x, {x})=1if xeD.

(d) Hp(x, B) = [ Hy(x, dy)Hy(y, B) if D= D'.

(e) If D,| D, Hp(x,7) converges vaguely to Hy(x,"), ie., [Hp(x,dy)f(»)
converges to [ Hy(x, dy) f(y) for all fe 4.

(f) If x¢D, there exists D’ containing x as an interior point such that
sup, . p—a | Hy(y, dz)Hp(z, D'—A) < 1.

Write Hpf(x) for [ Hp(x, dy)f(y). Under the above hypotheses it will be shown
(Proposition 2.3) that for D(r)e &, fe €, x€ K the function r - Hy,, f(x), which is
defined on a dense subset of [0, 1] (including J), has a left continuous extension to
[0, 1]. The value of this extension at any r will be written as Hp,,, f(x) and its
integral [§ Hp,, f(x)dr often denoted by Hpo,1;/(x).

(g) For x# A and a neighborhood U of x there exist D(r)eé& with
xeK—D(0)c K—D(1)c U and a neighborhood V of x such that if fe ¢, Hpo,1;f
is continuous on V.
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(h) If D, A and D—A is compact, | Hy, (x, dy)Hp(y, D—A) - 0 uniformly on
compact subsets of K—A.

THEOREM 1.1. Under hypotheses (a) through (h), there exists a Hunt process on K,
with A as the death point, such that starting at any x its hitting distribution of any
De 9 is Hy(x, ). Its resolvent operators R;, A =0, map €, into €.

For the definition of a Hunt process (X,) see [1], although as in [I] our definition
of the hitting distributions is slightly different in that the hitting time T, of a set A
is defined to be the infimum of the nonnegative (rather than strictly positive) ¢ with
X, € A. Hypotheses (a) through (d) are the same as in [I]; hypothesis (e) as well as
hypotheses (f) and (h) are immediate consequences of the hypotheses for [I;
Theorem 1), i.e. hypotheses (a) through (d) and conditions (i) and (ii) in the
introduction. Hypothesis (g) is of course satisfied when there exists a subclass 2’
of 2 such that the sets K— D, De 92’, have compact closure in K— A and form a base
for the topology of K— A, and for every De 9’, fe €, the function Hyfis continuous
on K—D. This hypothesis seems to be a necessary condition for a process whose
resolvent operators R;, A > 0, satisfy some continuity condition, say, mapping real
continuous functions (on K— A) with compact support into continuous functions.?
It is easy to show that in hypothesis (h) the pointwise convergence is a consequence
of hypothesis (f); thus the content of hypothesis (h) is only the convergence being
uniform on compact subsets of K—A. It is tempting to do without this hypothesis
and to relax hypothesis (f) to requiring only [Hy(x, dy)Hp(y, D'—A) <1 (ie.
assuming only the original transience condition in [I]), but we have not been able
to do this. However, more comments concerning these two hypotheses will be
given later.

A comparison of this result with that of Hansen ([2] Theorem 2) is worthwhile.
We shall state his result briefly in our notation: a Hunt process on K with death
point A can be constructed from a prescribed family of hitting distributions Hp(x, *),
xeK, Din a class 9’ as described above, provided they satisfy, besides hypotheses
(a) through (d) above and a less serious condition (that holding points are isolated),
the following conditions: (A) the lower semi-continuous (L.s.c.) excessive functions
(i.e. nonnegative functions f with Hyf < f for all De 2’) separate points in K—A;
(B) for DeZ’, Hpfe ¥, if fe ¥, and H)f is continuous on K— D if fe #,. It is not
difficult to expand the family {H)(x,-)|x€ K, De 2’} to a family {H)(x, -)|x€K,
De 2} where 9 is a class satisfying the condition for the 2 given above, and show
that hypotheses (a) through (h) are satisfied by this expanded family. The usefulness
of the first part of condition (B) above (Hpf€ %, if f€ %,) is only in this expansion;
for this purpose one of the following conditions may perhaps be an interesting

2 In the case where R;, 4 > 0, map continuous functions vanishing at infinity into such functions
and AR, f— f uniformly as A — oo for such functions f, it is easy to show, using a theorem of
A. V. Skorokhod on weak convergence of processes, that if D(r) is a function from [0,1] into
closed sets with D(r)<int D(s) for s < r and if x, — x, the hitting distribution Hpy(x,, *) converges
vaguely to Hpq)(x,+) for all but countably many r; thus hypothesis (g) holds. The proof is essen-
tially given in ([I] Section 7).
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replacement: (I) the continuous excessive functions separate points in K—A; (II)
there exists a real excessive p such that for every De 2’ and every sequence Xx,
converging to a point x e D either Hy(x,, -) converges vaguely to the point mass at
x or liminf, (p(x,) — Hpp(x,)) > 0. Also, if we assume 2"’ is a class of closed sets
containing A as an interior point and closed under the formation of finite unions
and finite intersections such that the sets K— D, De 2", form a base for the topology
of K—A, and {Hp(x, -)[xeK, De2"} is a family of probability measures on K
satisfying hypotheses (a) through (e) and (i) Hyfis continuous on K— D for De 9",
fed, and (ii) the ls.c. excessive functions separate points in K—A, then via
Theorem 1.1 we can find a Hunt process with the hitting distributions Hy(x, *).
As in [I] the major part of the work is to construct a process with prescribed
hitting distributions as well as a prescribed time scale. Let g be a nonnegative Borel
measurable function on K vanishing at A. We introduce the following hypotheses:

(j) g is bounded.
(k) For x # A, a neighborhood U of x and ¢ > 0, there exists § > 0 such that if
Hp(x, K—U) > ¢ then gp(x) = g(x)— Hpg(x) > 4.
(1) For D(r)e &, thefunction gpo,11(X) = [§ pry(¥) dr = g(x)— H bro. 119(x)isin%.
(m) If D, L A, gp,(x) - 9(x).

THEOREM 1.2. Under hypotheses (a) through (m) excluding (f) and (h), there exists
a unique Hunt process on K, with A as the death point, such that starting at any x its
hitting distribution of any D € @ is Hy(x, -) and its expected lifetime equals g(x). Its
resolvent operators R;, A = 0, map nonnegative 1.s.c. functions into such functions.
If ge¥,, the R, map €, into €.

As we have seen, the statement of hypothesis (g) depends on hypothesis (f) in
that Hp, 1,/ makes sense for D(r)e &, fe €. Although hypothesis (f) is missing in
the conditions of Theorem 1.2, the existence of a nonnegative g satisfying hypotheses
(j) through (m) also guarantees that for D(r)e &, fe % the function r — Hp,,, f(x) has
a left continuous extension to [0, 1] (see Section 2). As remarked in [I], hypothesis
(k) is a necessary condition. The function g we shall construct for Theorem 1.1
turns out to be in €,. If ge%,, it is easy to show that hypothesis (h) must be satis-
fied, and if hypothesis (h) is satisfied, it can be shown that hypothesis (f) must also
be satisfied (assuming of course all other hypotheses). We describe below a process
satisfying all conditions of Theorem 1.2 but neither hypothesis (f) nor (h), and a
variation of it satisfying all conditions of Theorem 1.2 and hypothesis (f) but not
(h). Let K be the unit square {(a, b)|0 < a,b <1} in the plane, with A = (1, 0).
Define a process on K with death point A as follows: on the set {(a, b) | a<l}itis
uniform motion to the right; any point (1, b), b > 0, is a holding point with ex-
pected holding time 1, and from there a jump is made to (0, 0) with probability
q(b) and to A = (1, 0) with probability 1 —g(b). Assume g(b) is continuous. Then all
conditions of Theorem 1.2 are satisfied. If lim sup,-,, g(b) = 1, neither hypothesis
(£) nor (h) is satisfied; if 0 < limsup,..o g(b) < 1, hypothesis (f) is satisfied but (h) is
not.

Hypothesis (1) can be replaced by the following weakened form: for x # A and a
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neighborhood U of x thereexists D(r) € &, such that xe K— D(0) «c K— D(1)= U and
Jpro,17 18 continuous. Also, in place of hypotheses (g) and (I) one can assume the
following: for some 9'c 2 the sets K— D, De 9’, have compact closure in K—A
and form a base for the topology of K— A, and for every De 9’ the function g, is
continuous on K— D and if fe % the function H,f'is continuous on K— D. However
we shall not justify these statements.

The outline of the work is as follows. In Section 2 we prove the continuity of the
measures Hppo 14(x, *) for all D(r)eé&, under conditions of either theorem. In
Section 3 a suitable function g is defined for Theorem 1.1 in a manner similar to
that in [I]. In Section 4 we define approximating processes in the same manner as
in [I] and obtain the resolvent of the to-be-constructed process as the limit (in a
weaker sense than that in [I]) of those of the approximating processes; here modi-
fications of the proofs in [1] are called for. In defining the process, this time there is
difficulty in obtaining the transition operators from the resolvent (and even if they
can be obtained there seems to be difficulty in constructing a process from them and
proving it has the right hitting distributions). However we find it possible to con-
struct the process directly, using the projective limit process of the discrete skele-
tons of the approximating processes defined in ([I] Section 6). Based on ([I] Section
6) this direct construction is not difficult. (D. A. Dawson in his paper referred to in
[I] also uses a direct construction, but his proofs are quite different.) In the case
when no holding points are present it is actually rather short, and we carry out the
proofs for this case; in the general case we shall only sketch the construction. These
are done in Section 5. We remark that if we assume for both theorems Hpf is
continuous on K— D for De @ and fe % (replacing hypothesis (g) ) and for Theorem
2 the function g is continuous on K—A (replacing hypothesis (1)), then Section 2
can be completely omitted and Section 4 largely omitted.

2. Continuity of Hp, ,1f for D(r)e &, fe¥. All results in this section except
Corollary 2.6 hold under either the conditions of Theorem 1.1 excluding
hypothesis (h) or the conditions of Theorem 1.2. The proofs will be given for the first
case. With obvious modifications they are valid when hypothesis (f) is replaced by the
following condition: for De 9, x ¢ D there exists D' € & containing x as an interior
point such that

supyeD’—AjHD(y’ dyl)j-D’—AHD’(yl’ dy,)
t ‘_[HD(,Vzm dyan+ l)j.D’—AHD’(y2n+ 1 @Y2n42)10.

But this condition holds under the conditions of Theorem 2. For hypothesis (k)
implies gr >0 on K—F for Fe9; consequently from hypothesis (I) one has
infycp _o gp(¥) > 0 whenever D'—A is a compact subset of K—D, and the above
convergence is clear.

In Lemma 2.1 and Lemma 2.2 let D,;, » = 0, i = 1, be sets in & and let a stochastic
process (Z,, n = 0) on K have conditional probabilities

P(Zn+leB|Zn =y)=Hp (y,B) on A,
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where for each n, {A,;, i = 1} is a partition of the sample space by sets in o(Z,," - -,
Z,), the o-algebra generated by Z,, - -+, Z,. Let P, denote the probability measure
with P [Z, = x] = 1 and E, denote the expectation with respect to P,. Note that if
A,;€a(Z,) the process is Markov. For F, GeK let 1z =inf{n > 0|Z,,eF } (as
always this is co if Z,e F for no n) and 74 p = inf {n = 14 [ Z,€ F}. We shall use the
convention Z, = A.

LeEMMA 2.1. For Fe9, Hp(x, F—A) = P.[Z(tp) e F—Al.

ProoF. From([I]2.1)(Lemma 2.1 of [I]) H{(y, F—A) 2 [H}, (y,dz)H(z, F — A) =
Hp (v, F=A)+ |p,,-rHp, (y,dz)Hg(z, F—A). This implies

E{H{Z,,F-A);tp 2 n}
=2 (PLtr-a =1 Ayl + E{HE(Z,, F = A);tp > 0, Ay})
= P,[ts_n =n]+E{HKZ, F-A);tp 2 n+1}
and the lemma follows by induction.
LeMMA 2.2. For F,Ge9, [HG(x, dy)Hp(y, F—A) 2 P, [Z(t6 p) e F— Al

ProOF. Let us “refine” (Z,) by adding random variables Z,,, and requiring
them to satisfy

P(Zn+-}eB|Zn =y)= Hy o6y B) on A,
P(Z,,+1€BIZ,,+%=Z)=HDM(Z,B) on Am.
This means that if (Z,,,, m = 0) is defined by the above conditional probabilities,
then with the time set restricted to the nonnegative integers it is the (Z,) defined
above. That this refinement can be done, i.e. that we have
P(Z".'.IEB I Zn = y) = jP(Zn.'.*EleZ" = y)P(Zn'l'l GBIZ".‘.% = Z),

is of course because of hypothesis (d). Let o = inf {m/2|Z,,,€G} and o f =
inf {m/2 2 66| Z,,,€F}.Obviously P,[Z(ts y)€ F— A] £ P,[Z(0¢ r)€ F— A]. Nowit
is easy to show that P.[Z(cg) €] £ Hg(x, *) (using hypothesis (d) and the reasoning
in the previous proof). From Lemma 2.1 we then have P,[Z(ogr)eF—A] <
[Hg(x, dy)Hi(p, F—A). The lemma is proved.

NoTATION. Let B(x, ¢) = {y| p(x, y) < &}, E(x, &) = K—B(x, ¢).
ProPosITION 2.3. If D, €2 for n 2 0 and D, | D, Hp, (x, *) converges vaguely.

Proor. Let (Z,) be as defined above with D,;= D, and A,, equal to the
entire sample space, i.e., P(Z,,,€B | Z,=y) =Hp(y,B). From hypothesis (d)
P.Z,.,€B] = Hp (x, B). We show Z, converges a.s. P,. Let ¢ > 0. From hypo-
thesis (f) there exist Fy, - -, F},Gy, -+, GinZand ¢ < 1 suchthatdiam (K—G)) <,
F;—AcK—G,, E(A, ¢/2)c J;F;and

SupyeFj—AjHGj(ya dz)Hp(z,F;—A) <c
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for all j. For a fixed j let T = 75, r,, and define 7, to be the iterates of t:7, =0,
Tye1 =T, +7(0,) where 0, are the shift operators. Then since (Z,) is Markov
we obtain from Lemma 2.2 P,[r, < o0] < ¢" (note this is independent of x, a
fact to be used in the next proof). It follows that P [the sequence Z, has
oscillation = ¢] = 0.

Because of the above proposition, for any closed D containing A but not in 9
we can define Hp(x, -) to be the vague limit of H), (x, -) where D,e 2, D, | D (it is
independent of D,). In particular if D(r) e & there is a measure Hp,(x, *) for each r;
because of hypothesis (e), Hp,,f(x) is left continuous in r for fe%.

PROPOSITION 2.4. For D(r)eé&, f€%, Y 2 "Hpua-m f(X) converges uniformly to
Hppo.11/(%) = 6 Hpg, f(x) dr (the sum is over k =1, -+, 2™).

Proor. It suffices to show the sum is uniformly Cauchy. For a fixed m define
(Z,,0 <k £2™) by requiring P(Z,eB|Z,_, = y) = Hpus-m(y, B); again P,
denotes the probability measure with P,[Z, = x] = 1.Lete > 0. Define 7;inductively
by setting 1o = 0, 7,4, = inf {k > 1;||f(Z)—f(Z(1)))| < &} (assume Z,, = A). Then
from the previous proof we see that there exists j, such that P [t; < o] < ¢ for all
x, independent of m. Now let 2" > j,/e and m > n. On the set {r;, = co} the total
number of i such that there exists 7; with i2"™" < 1; < ({+1)2"7" is smaller than
Jos but if there is no 7; with i2" ™" < t; < (i+1)2" " "then | f(Z,) —f(Zizm-»)| < 2efor
i2"7" < k < (i+1)2""". Hence, because Hp,-m f(x) = E,{f(Z,)}, we have

IZI%;NI 2~mHD(k2"")f(x)_Zi2:1 Z—nHD(iZ'")f(x)I
._~<: 212:1 2—mEx{Z(i—1)2"“"<k§i2'"'" If(Zk)_f(ZiZ'"‘")
+2{|f|[P[7j, < 0]
< 2e+4e||f]]-
PROPOSITION 2.5. For D(r)e &, fe ¥ the function Hp, 1,f€%.

3Tjo = w}

Proor. We shall carry out the proof assuming hypothesis (g) is strengthened to
the following extent: for x # A and a neighborhood U of x there exist De 2 with
x€ K—Dc U and a neighborhood V of x such that Hpf; is continuous on ¥ for all
J1€%. In the general case one extends the present proof without much difficulty
(but with much complication in notation) by using the uniform convergence in
Proposition 2.4. It is clear that in proving the continuity of Hp, ;,/at an arbitrary
x we may assume x ¢ D(0). In view of Proposition 2.4 it suffices to find, for given
¢ > 0, a neighborhood V of x and a sufficiently large m such that for ye V

2.1 le 27"H pga-myf (%) — Zk 27"Hpgea -m)f()’)l <e.

Let m be fixed. For ¢; > 0 (to be determined in some way by ¢) let 5 > 0 be such that
[f0)=AD)| <&y if p(y,2) <6. Choose Fj, Gy, j=1,--,j(1), j()+1,---,j(2")
in 2 such that diam(K—-G)) <96, F;—AcK—-G;cK—D(k2™™) for j<j(k),
K—int D(k—1)2"™)< Uj<jwint(F;—A), Hg,f; is continuous on F;—A for all
f1€%, and finally sup, r,—[Hg(y, d2)Hy (z, F;—A) < 1. Assume as we may
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xeinf(F; —A). Define a process (Z,, n Z 0) as follows. Firstset P(Z, € B| Z, = y) —
Hg,(y, B). After Z,, -+, Z, are defined (as usual the initial distribution is left
unspecified) let Borel sets 4,;, 1 £j<j(2")+1, be a partition of K satisfying
ApjcFj—A for j<j(2"), K—int D((k—1)2"™ < Uj<ja4n; and P.[Z,€04,;] =0
for all j(0A denotes the boundary of A4). Then set
P(Zn+ 1 €B I Zn = y) = ch(y, B),})EA,,j,j §J(2m)
=), y€A, jam+1 -

By construction it is clear that the finite dimensional distributions of (Z,) under
P, converge vaguely to the corresponding ones of (Z,) under P, as y — x. From the
previous proof we must have

2.2) P[7p1-2-m >n] >0 uniformly in y, n— 0,
We now refine (Z,) by adding Z,, ; and requiring
P(Zn+~§€B | Z,=y)= HG,-uD(kz-'")(y, B),
P(Zy1€B|Z, = y,Zyy = 2)= Hg (2, B)

for yed,;nD((k—1)2"™)—D(k2™™), j£j2™), and Z,,, = Z, if Z,eA, (3my+ -
Let o0, =inf{n/2|Z,,eA} (recallt, =inf{n|Z,eA}). Then, for any y,
Opu2-m < © a.s. P, and P)[Z(0pu;-m)) €] = Hpuz-m\(y, ) for k <2™. Trivially
Opgz-my = Tpga-my = Op(k+1)2-m)- NOW using (2.2), a calculation similar to that
in the previous two proofs on the oscillation of the paths of (Z,/2), and the
vague convergence mentioned above, one can find for any sufficiently large m a
neighborhood ¥ of x such that (2.1) holds, after having chosen suitable &,. We
omit this detail.

As mentioned earlier for any closed set D containing A and xe K we have a
measure Hj(x, ). Does the family {Hp(x, ')IxeK, D closed and containing A}
satisfy hypothesis (d) ? The answer is yes. Its proof depends on the above proposi-
tion. This proof is relatively easy and will not be given. However there will be
occasions (not serious) that we shall use this fact.

COROLLARY 2.6. Under conditions of Theorem 1.1 (including hypothesis (h))
Hppo,11/€ %, if D(r)e &, fe%,.

Proor. Using hypothesis (h) one can easily show that for any compact Fc K—A
there exists f; € ¢ which differs from f only on a small neighborhood of A so that
SUDer |Hppo,11/(X) — Hppo,11/1(x)| is small. The corollary follows immediately from
the previous proposition. '

3. The function g. We now assume the conditions of Theorem 1.1 and define a
function g satisfying hypotheses (j) through (m). Let &, denote the class of D(r)
in & such that D(r)—A is compact for all r and D(r)—Ac int(D(s)—A) for
s <r. Choose Di(r)eé&;, k =1, such that for x # A, ¢ >0 there is D,(r) with
xe D(1)— A= D(0)—Ac B(x, ¢). Let @, > 0 with ) ,a, < oo and define

g(x) = Zlio:l akj(l) HDk(r)(x9 Dy(r)—A)dr.
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Of course g is nonnegative and bounded, and vanishes at A. If f,e% and f, = 1 on
D(0)—A, fi(A) =0, then g(x) =Y aHp, 0.11/i(X). g is therefore continuous on
k— A from the following proposition.

PROPOSITION 3.1. For D(r)e &, and fe 4, Hp,11f is continuous on K—A.
PROOF. Let F(r)e &, be such that F(1) = {A} and let
F(r) = D(r)oF(1-2"X1-r)).

Then Hp,(,,1,/€ % by Proposition 2.5. But using hypothesis (h) one easily shows that
it converges to Hpy 11/ uniformly on compact subsets of K—A.

If D(r)e &, Corollary 2.6 implies Hpo 1,4 is continuous on K—A; consequently
9pro,11 = 9—Hppo, 139 €%, establishing hypothesis (I). The proof that g satisfies
hypothesis (k) is similar to that in [I], the modification being obvious. It is easy to
establish hypothesis (m); in fact we can show more.

ProrposiTioN 3.2. If D,|A, Hy, g—0 (so that g, — g) uniformly on compact
subsets of K—A.

PrOOF. [Hp, (x, dy)g(y) = Y,a [§ dr{Hy (x, dy)Hp, (v, Di(r)—A). Now each
term (¢ dr [Hp, (x, dy)Hp,(,(p, Di(r)— A), being no larger than [H), (x, dy)Hp, )7,
D(0)—A), converges to 0 uniformly on compact subsets of K—A by hypothesis
(h).

Thus we have shown that g satisfies hypotheses (j) through (m); consequently
Theorein 1.1 follows from Theorem 1.2. We now begin the proof of Theorem 1.2.
As remarked at the beginning of Section 2, all resultsin that section except Corollary
2.6 are valid.

ProrosiTiON 3.3. If D,| D, g5 19p.
PRrROOF. Assume first A¢int D. Let F(r)e&, be such that F(0)= D. Then
Frro,11(X) — j Hp(x, dy)grro,11(»)

=g(x)— Hpo 1 ]g(x) - IHD(xa dy)(g(y)— HF[0,119(}’)) = gp(x)

because of the remark preceding Corollary 2.6 (that hypothesis (d) holds for all
closed sets D, D’ containing A with D<= D’). Similarly

gp(x) = gr[o,u(x) —.f Hp (x, dJ’)gF[o,l](J/)-

Now the proposition follows from the vague convergence of Hp (x, ) to Hp(x, )
and the continuity of ggg,;;. If A¢intD, the convergence follows easily from the
above established case and hypothesis (m).

Note that for D(r)eé, letting F(r) = D(1—-27%1—r)) we have gr0.1;T9nc1)-
Hence g, is 1.s.c. for every De Z; in particular g is l.s.c.

4. Approximating processes and convergence of their resolvents. The approxi-
mating processes X™ are the same as in [I]. We choose a sequence (,, #°,) where
Y w=1{Va1> "> Viun} is a partition of K by Borel sets and U, = {U,,, **+, U, } isa
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subclass of O such that max,diamU,; <1/n, V,,=U,— U;<;U,; (in particular
Vi< Uy, and (U, ¥",)c(Uy, ¥7,) for k < n, i.e., whenever V,;,nU, ; # & we have
U,.= U,;. Denote by 9, the class of sets of the form (K— U)uUA, U a (finite) union
of sets in U, and let 2, = U,9D,. 2, is closed under the formation of finite unions
and finite intersections, 2,19, and 2, 2. Let D(n, x) = (K— U,;)UA for xeV,;;
it is the largest set in 9, not containing x, and so if x¢ D where De, for some
k <n, we have D= D(n, x). Let

Qn(x’ B) = HD(n,x)(x’ B)’ hn(x) = gD(n,x)(x)’ en(x) = l/hn(x)

We construct first as in ([I] Section 4) the discrete skeletons Z™ = (Z,, 0,™) of
the jump processes X™. The Z™ have as their common sample space the product
space # = [],<.K,, where K, = K and 7 denotes the ordinal w® (w is the first
infinite ordinal), and Z,, « <, is the ath coordinate. Z™ has one-step transition
probability Q,(x, B) and satisfies the left continuity

4.1 if a,ta, Z, —>Z, as. (ie.as. Q™ forall x).

Since the conditions are now different the construction must be justified. Again
this is done by successive extension of the measures Q. on the ¢-algebras
0(Z,, o < B). For a fixed f < n we assume the Q,™ are defined on o(Z,, « < f) and
(4.1) and

(42)  Hy(x,B) = Q. "[Z(tp)e B;1p < 2] +[Q,"[Z,edy; 1, 2 a]H,(y, B), De D,
(where 7, =inf{y <n|ZyeA} if there is such y, and = n otherwise) hold for all
o < f, and show that

4.3) if o,18, Z,, convergesa.s.

and that with Q™ extended to ¢(Z,, « <p) by the obvious requirement (4.2)
holds when « is replaced by B. There is nothing to show when f =0, and little to
show when f has a predecessor «: using the fact Dc D(n, y) for y¢D, DeZ, one
can write the second term on the right of (4.2) as

Qx(n)[Z(TD) €B;tp= “] +IQx(")[Z¢+ 1€dy;Tp 2 at l]HD(.V, B)

by hypothesis (d). Thus we assume f is a limit ordinal and may indeed assume B is
such that y+ g = f for y < .

PRrOPOSITION 4.1. (4.3) is valid.

PROOF. Suppose the contrary. Then it is easy to obtain (see [I; 4.2]) distinct
Xy, X5 With x; # A such that for any Fy, F,e 9 with x,€intF,, x,cint F, we have

(44) SupxeFl—A Qx(n)[Z(TZm)EFl _A;TZm < ﬁ] = 19 m g 0

where the 7, are defined inductively by: 7,=0, Tom = Tom—1+Tp,(0,,,,_,), and
Tom+1 = Tam+Tr,(05,,)(0, is the shift operator satisfying Z,(0,) = Zysys Tme1 =70
if 7, =m). Let Fy, F, satisfy the above conditions and be such that F,—A is a
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compact subset of K—F,. Define (Y,,, m = 0) by requiring P(Y,,,4, eB| You=»)=
Hi(y, B), P(Y;,€B| Y,,_, = y) = Hy (y, B). Then since inf {gy(g) |yeF,—A} >0
we must have

SupxsF,-APx[YZmeFl _A] -0

where P, denotes the probability measure with P, [Y, = x] = 1. We show that for
any m and x

(45) . Px[Y2m GFl _A] z Qx(”)[Z(TZm) eFl _A; Tom < ﬁ]a

which contradicts (4.4). In a manner similar to that in the proof of Lemma 2.2
we can refine Z® by introducing symbolic times «+j/2m, 1 <j < 2m, « <, and
defining Z(«+j/2m) by the conditional probabilities

2j+1 ]
Qx(")(Z<ot+ chs )eBIZ(OC) =), Z(“"‘#) = z> = Hpg,y0r,(2, B)

2m

j+1 2j+1
Qx(”)(Z((Z'I'j—'n—)EB I Z(d) = ,V,Z(a+—j§7n—> = Z> = HD(n,y)uF;(z’ B)

Let o,, kK = 0, be defined as follows:
0, =0,

O+ 1 = Inf{a+j/(2m) = 13, | Z(a+j/(2m))e F,}
(if there is no such «+j/(2m) its value is 7), and

i+ 2 = inf {a+j/(2m) 2 t544 1| Z(a+j/(2m))e F, }.
We may assume that the induction hypothesis holds for this refined process, so that

0."Z(63x+1)€B, 6341 < B I Z(ox) = y,02 < B) < Hp(y, B)
0."(Z(62k+2)€B, 634, < B | Z(02k+1) = 041 < B) < Hp (v, B)

and consequently Q,"[Z(c,,)eF,;—A; 6;,, < ] £ P,[Y,,,€F; —A]. But obviously
the left-hand side of the last inequality dominates Q,™[Z(7,,)€F, —A; 75, < B,
proving (4.5) and therefore establishing the proposition.

Now extend the 0. to 6(Z,, « < p) by requiring Z, ,— Z, a.s. 0,™ if ,,1 B.

PROPOSITION 4.2. (4.2) holds when o is replaced by B.

PROOF. Let D(r)e&, with D(1) = D and let Dy(r) = D€1—2"%(1—r)). For a fixed
k define Z® =(Z,, §,™),<, as follows: let D(n, x) = D(n, x)UD,(0) for x¢D,(0),
and = D(n, x) otherwise; then require Z™ to have one-step transition probability
0,(x, B) = Hp, (%, B). Of course we may assume Z® satisfies the properties
established for Z™. Now clearly Z® killed at the time tp, is dominated by
(Z,, 0,™),<; killed at 1j,, and using hypothesis (e) it is not difficult to show
that it actually increases to the latter (i.e. its finite dimensional distributions
increase to those of the latter as k — c0). Also, using hypotheses () and (d) it is
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easy to show that, as k— 00, §,"[Z(tp, o)) €dY; Tp,(0) < B] converges vaguely to
0."[Z(zp)edy; 7p < B, and for fi G(gj Qx(")[Z(TDk(O))Gdy 3 Towo) = B1Hp,g0,11/1 )
[0, ™[Z(zp)edy; T, < BIf(»). Now for fe® using the continuity of Hp,o,11/
(Proposition 2.5) we have

Hp, 0,11/ (%) = I Qx(")[z(fbk(O) AP)edylHp, 0,11/ ()-

Letting k — oo in this equality we obtain from the above statements the relation
Hpf(x) = [Q,"[Z(tp A B)edy]Hpf(y), which is (4.2) when « is replaced by B.
The construction of Z™ is thus justified.

PROPOSITION 4.3. For De@,, gp(x) = E,"{Y,<nhl(Z)} (E™ denotes the
expectation with respect to Q™).

PrROOF. We use the same technique as in the previous proof. Let D(r), Dy(r) and
Z™ be as in there. Then with £,(y) = g5 .,,(¥) and using the fact that, for x¢ D(0),
gpyg0,11(X) = gb(n,x)(x)-"jHD(n,x)(xa dy)gp,g0,11(¥) We obtain from (4.1) (applied to
Z™) and the continuity of g5,(0.1

ng[O,I](x) = Ex("){2¢<n)k(0) En(Za)} +Ex(”){gbk[0,l](limatnZa); TDk(O) = 7[}

where £, ™ denotes the expectation with respect to 3, ; note that from the proof
of Proposition 4.1 Z, converges a.s. if o7 and we denote by lim,;,Z, such a
limit. Since as k — co Z®™ killed at 7, increases to Z® killed at 7;, and h,1h, we
have from Proposition 3.3

(4'6) gD(x) = Ex("){Za <tp hn(Za)} + Ex(") {gb(lima‘rn Za); TD = TC} .

The proposition follows.

Since g, is l.s.c. and strictly positive on K— D, we again have as in ([I] 4.5)
that Z, = A a.s. for all « = w™ (m, is the cordinality of ). The construction
of the jump process X™ = (X,, P,™) from Z™ is the same as in [I]. Let T, =
inf{r 20| X,ed}, H(x,B)=P,"[X(T)eB; T,<x]= 0. M[Z(r)eB; <]
for Borel A. Then from (4.2)

4.7 Hp™(x,+) = Hp(x,"), De9,.
Also since Q,™[t, =n] =0 for De 2, (4.6) gives

(4.8) 9p(x) = B 4 ip 1al(Z))} = ESV T, De2,,
(E,™ denotes the expectation with respect to P,™), in particular

4.9 9(x) = B} g<nh(Z.)} = ESVT,.

Let {R;™, 1 = 0} be the resolvent of X™ on ,:

Wy = B | o _pa e,,(zp)) 1 }
= E f =k, ){Z(Hmn(zﬁ) Trez) *f

a<m \p<a

(See [I] Section 4 for the second equality; the infinite product in the last integrand
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is defined in the obvious manner, with the understanding that its valueis 1 ifa =0
and 0 if Z, = A for some f <a.) Then ||R,™|| < min{]|g]|, 1/4}.

PROPOSITION 4.4. For fe€%4, R,™f converges uniformly. In the case ge%,, Ry™f
conver ges uniformly on compact subsets of K— A for f€%,.

ProoF. The proof is the same as that of [I, 5.1]; for the second statement one
uses the fact Hj, g— 0 uniformly on compact subsets of K—A if D, | A.

PROPOSITION 4.5. For fe%, let R, f=lim, R,"f; then R,f is 1s.c. if f= 0. In the
case ge€y, Ryfeb, for f€¥,.

ProOF. If we make the assumption that for x # A and neighborhood U of x
there exists De9,, with xe K— D< U such that gj, is continuous on K— D and H,f
is continuous on K—D for all fe¥, the proof is essentially the same as that of
[I; 5.2], using the fact that H; g— 0 pointwise (and uniformly on compact subsets
of K—A if ge¥%,) for D, | A. The extension of this proof to the general case does
not pose real difficulty and will not be given (see also the proof of Proposition 2.5).

In the case ge%, one obtains easily that R,™f converges, uniformly on compact
subsets of K—A, to a limit R, fin €, by induction based on the above results, the
equation

R™f = Y2 o (=AY (R, ™), |2—u| <|lg||™*

and the fact that for D, | A, R,,"')l b, = Hp,g—0 uniformly on compact subsets
of K—A. In the general case a delicate consideration is needed for obtaining the
limit resolvent {R,} and its properties.

PROPOSITION 4.6. (i) for A= 0, fe€¥,, R,™f converges pointwise to a limit R,f,
(11);ff20 , R, fisLs.c.; (iii) R, f— R, f= (u—DR,R,f; (V) ||R.Sf|| £ ||.f]| min {||g]|,
1/

ProoF. Choose D(r)eé, with D(1) = {A} and D(r)e 2, for reJ. By considering
a subsequence of X® we may assume D(k2™")e 9, for all k. Let T, = Tp,-») and
S f(x) = E,™[§™e~*f(x,)dt. We shall prove that for fe%, with f= 0

(4.10)  Y2L,27"S;™*f(x) converges uniformly to a continuous function.

If D(0) is sufficiently small, then for a fixed x and ¢ >0

R, ()= 22778, ()] < || ]| Hooyg (x) <2

for all n; (i) and (ii) thus follow immediately. We prove (4.10) by induction.
Consider first the case A =0. Let reJ with r <1, and let £,27" =r from some n,
on. Since f'is continuous on K—int D(r) it follows from Proposition 4.4. and Prop-
osition 4.5 that S,"**f converges uniformly to an Ls.c. function, to be denoted by
So'f. For a fixed x, S,"f(x) is of course increasing with r; hence we extend it to all
re[0, 1] by taking left limits. Proposition 3.3 implies that S,"f(x) is in fact left
continuous. If r, seJ with s < r, then since gp,)(») = [i(r—5) " gp () du = gp(»)
and the middle term is continuous in y by hypothesis (1), it follows from the proof
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of Proposition 4.5 that Sy’f(x) = limsup,..,Sof(y). Now (4.10) clearly holds when
A=0. To establish the induction step assume 0 <A—p < ||g||”" and there exists
for each re[0, 1] a nonnegative S,"f'such that (a) S,"fis 1.s.c., (b) So’f(x) is increasing
and left continuous in r, (c) for s <r, S,/f(x) = limsup,..S,(»), (d) for s<r,
Yson<kgran2 "S,Mf(x) converges to [7S,f(x)du uniformly in x, in particular if
k2 "=r<1 for all large n, S,"*f(x)— S,"f(x), and (e) for s <r, [{S,“f(x)du is
continuous. Then for s <r, s, reJ, and with k£,27" =r for all large n

Sn"'k"(2s2"<k§r2" 2-n S””’kf)(x) -8, ( j' ¢S, "fdu)(x)

uniformly in x. Let (S,")*/(x) = lim,,S,"((r—s) "' [%S,*fdu)(x) and extend it to all
re[0, 1] by using left limits. Then it is easy to verify that (a) through (e) above are
all valid when (S,")?fand (S,"*)f replace respectively S,’f'and S,™*/. By induction
we find (S,")!f for /> 1 that satisfy (a) through (e) (with (S,"*)f replacing S,”*/).
Now fors<r

Yean<kgran 27 "SMF(X) = Y 27" Vi o (u—A)'(S,M)' T (x)
= YiZo (=4 Xk 27%S,"' " f (%)
= Yo (u=A)'[5(S.) " f (x) du

uniformly and the limit is continuous. Dividing the last expression by r—s and
letting s7r we get a limit S,’f(x). (a) through (e) are satisfied when p is replaced by
A. Hence by induction (a) through (e) are true for all u, and we have established
(4.10) and thus (i) and (ii). From the above reasoning it is also easy to get

R®R,Of = S7"S,"f - 5,18, = R,R, f

pointwise; (iii) then follows from the resolvent equation of {R,™}. (iv) of course
needs no proof.

COROLLARY 4.7. Let De 9 ,. Then for a nonnegative fe ¥, and A = 0 the function
E,™[Ioe=%f(X,)dt converges pointwise to an l.s.c. limit. In particular E,™e™*T?
converges pointwise to an u.s.c. function.

ProoF. This follows from Proposition 4.6 by considering the X killed at T},
for all large n.

5. Construction of the process. As mentioned in Section 1 we shall construct the
desired process directly. Let Z(*) =(Q, Z,™, p™)y<nm>1.5cx be the projective
limit process of the Z™ constructed in ([I] Section 6) (where the notation is
(W s Z,", Q%)y<nmz1,xex)- Let us review some notation and facts. In (¥, Z,),
the common sample space of the Z™, let 6, = 7, if Zo = x and let g,,, & <7, be
the iterates of g,, i.e., 6,0 =0, 0, .41 =0,,+0,0,,), 0,, =sups<,0,, for a limit
ordinal o. Then #,={we #| g, (w)=a for all « <z} has Q,™-probability 1
for all x. Let m, be the projection from [[,# ", to #°, and let Z,™ = Z, om, Then
Q= {we[[,#,|Z&N(w) = Z,"(w) for all «<m and m=n = 1}. The probability
measures P* are such that for every n (Q, Z,™, P¥),<, x is equivalent to Z" =
W, Z,y Q™) y<nxex- (This reflects the fact that for every pair n <m there is a
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natural imbedding of Z™ in Z™ which is based on (4.7) and the inclusion 2, 9,,.)
We shall use the Markov property ([I] (6.3)) of Z(* without explicitly mentioningit.
For m=n let

é(ma n, a) = Za<a,(,f,") hm(Za(M))

where ¢{™ = g,, om,, (this is the same notation as in ([I] Section 6) if the set D there
is {A}). Then as shown in ([I] (6.1)) {&(m, n, «), m 2 n} is a uniformly integrable
martingale relative to any P*. Let

T,, = liminf,, &(m, n, o).

In the case when no holding points® are present this will be the ath iterate of the
stopping time in the to-be-constructed process which equals the hitting time of
D(n, x) when starting at x. It was the main concern in ([I] Section 6) to show
T,, >0 a.s. P* for x # A. There a set De@,, say De 2, and a point x¢ D were
fixed. Let &, = Y y<ctm hn(Z,) and ¢ =liminf,, ¢, Then it was shown that { >0 a.s.
P>*. The proof relied on two facts. The first is the upper semi-continuity of u(y) =
P*[¢ = 0], which follows in turn from the fact that E,™e™*T? converges pointwise
to a u.s.c. function. But this again holds here (Corollary 4.7). The second is the
following: let F be a compact subset of K— A consisting exclusively of instantaneous
points and D, be the largest set in &, disjoint from F; then sup {h,,(y)[ y¢D,} 0.
This again can be easily proved as in ([I] (6.5), (6.6)), this time using the continuity
of gpo,1; for D(r)e D,. Thus as in [I] we have, in the above set-up, £ >0 a.s. P*.
Applying this to 7,, we have T,; >0 a.s. P~ for all x # A. Let

T, =sup{T,|a<mnz=1}.

Then it is easy to see that P¥[T,, < T, 4] = P[T,, < T, ] = P*[Z,”eK—A] for
all x, n, a. Note that T, = T,,, a.s. for all large a, specifically for a« = ™. It is also
clear that T, < o0 a.s.; in fact EX[T,] = g(x) for all x (E* stands for the expectation
with respect to P¥).

We now assume that all points in K— A are instantaneous. Thus from what was
said above 4, |0 uniformly on compact subsets of K—A. From this the following
proposition is clear.

PROPOSITION 5.1. For weQ let T (w)= {T(w)|a<n,n=1}. Then T(w) is
dense in [0, T (w)] a.s.

Assume J () is dense in [0, T.,(w)] for every w. Define X(7,,(w), ®) = Z,"(w).
From the fact T,,; < T, s+ a.s. on {T,,, < T,} it is clear that this is independent
of n and « except possibly on a subset of P*-measure O for all x; we may define its
value to be A on this exceptional set.

3 A point xe K—A is called a holding point if as Dt K— {x} the measure Hp(x, *) does not
converge vaguely to the point mass at x. It is easy to show that this is equivalent to the condition
that limp; k- z)gu(x) (Which always exists) is positive. A point xeX— A is called instantaneous if
it is not a holding point.
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PROPOSITION 5.2. For almost every w, t — X(t, w) has a right continuous extension
on [0, T (w)] with left limits.

Proor. The right continuity of X,(w) on 7 (w) for almost every w is clear since if
To(@) £ Tp(@) < T, 44 1(@), X(Tp(w), w) is of distance less than 1/n from
X(T, (), w). For any ¢ >0 let t = inf {alp(Za, Z,) > ¢} and let 1, be the iterates
of 7; then the reasoning in Section 2 shows that Q,™[r, < 7] —» 0 as k - oo uniformly
in n (and uniformly in x). Since {7, (w)|a<n}17 () a.s., this guarantees the
existence of right and left limits on [0, 7,(w)] for almost every w.

Assume as we may that for every o, t — X(¢, ) has a right continuous extension
to [0, T,(w)] which has left limits, and X(7,(w), w)=A. Let X(¢t, w)= A for
t 2 T (w). Define X () = X(1, ), 4, = 6(X,, s < 1), and 4 = o(X,, t = 0). It is easy
to see that X, is measurable with respect to the o-algebra ¢(Z,™, a <7, n>1);
therefore P* is defined on ¢ for all x. Let P*(A) = [u(dx)P*(A) for probability
measures u on K. Denote by # the completion of % with respect to the family of
all such measures P*, and by #, the completion of %, with respect to the
above family and  (see [I] page 26 for this terminology). We shall prove that X =
(Q, X,, P¥) is the desired Hunt process. Let P,f(x) = E*f(X,) for fe.#; itis Borel
measurable in x and if fe %, it is right continuous in ¢.

PROPOSITION 5.3. For A2 0 and fe .l y, R, f(x) = E*[§ e~ “f(X,)dt.

ProoFr. We may assume fis continuous. Let ¢ > 0. Choose m so that | f(y) —f(z) |<e
if p(y, z) < 1/m and Hpg(x) < ¢ for the smallest set De 9,, with AeintD. Forn=m

e, (Z,™) 1
R,™ = x = 7
g f(X) )’gﬂ E {a,‘,,’;,) _S_ago' (n) <ﬂl:[¢ j’ + en(Zﬂ(”)) '1 + en(Za(n))f( ¢ )

my+1

Let 7,,, = min {6,,,, 7p}. Then R,™f(x) differs from

X (m en(Zﬂ(")) 1
(51) y;uE {f(Zy )){r'("';)éagt(n) <ﬂl—<-'[a'1+en(zﬂ(")) A"'_l_e"(Za(n))

my+1

by smaller than e(g(x)+||f]|). By writing (A+a)~! = 1~ (1 —a/(1+a)) we have

en(Zﬂ(”)) 1 _ 1 1—[ en(Zﬂ(”)) en(Z(n))
peahte Z,™) ) A+e(Z2.)  i\jiad+e(Z,™) Fsat+e(Z,™)
for a < 7,™. Since Y 4,(Z,™) < oo a.s. the series in the integrand of each term of
(5.1) telescopes a.s. Hence (5.1) equals -

x 7 (mn 1 el(Z,™) e(Z")
R <

Now since 4, | 0 uniformly on K—D
en(Zﬁ("))

g A +en(Zﬂ(")—) = exp(—ZﬂqW log[Ah(Z,™)+1]) > exp(—T;;,)
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where T,,, = min {7, Tp (T, = inf{t 2 0| X,eD}); see the proof of ([I] 5.6) in
[I] Section 6. For f=0 the integrand of (5.2) is uniformly integrable (being
dominated by ||f]|><-#.(Z,")) and each term in the sum is nonnegative. Hence
(5.2) converges to

EXY, <nf (X(To A (7T — ™4 Tmrs 1)},
But the latter differs from E*[{?e”#f(X,)dt by smaller than eg(x), and since
EX{T,—Tp}= lim,,E"{Z,g.)§a<,,h,,(Za(”))} = g(x)—gp(x) = Hpg(x) <e, we have
forn=zm

[R,f(x)—E* [§ e *f(X,) dt| < 2e(9(x)+]| f])-

The proposition now follows from Proposition 4.6.
We prove next that the process X is Markov.

PropoOSITION 5.4. P, ,f(x) = P,P,f(x) for xeK, fe#,s, t = 0.

ProoOF. Since both sides are equal to 1 when f=1 we may assume fe%, and
f20. Let D(r)e&, with D(1)={A} and D(r)e2, for reJ. Define P/f,(x)=
E*{fi(X,); t<Tpy} for fi€%,. Let Syf(x)= [¢e *P/f(X)dt 1t is the same
notation as in the proof of Proposition 4.6; there we have shown [§S,7/(x)dr is
continuousin x. Since P, ,f(x) and P,P,f(x) are right continuous in ¢ it suffices to
show their Laplace transforms are equal. Obviously we need only show for 1 >0

(5.3) Jodr[§ e *Pr f(x)dt = [§dr[§ e *P/P/f(x)dt;

for letting the function D(r) go through an appropriate sequence we then obtain
the desired equality of the Laplace transforms. Let S, =inf{7,,|T,, = s}. Then
S,lson {s<T,}. Now the right-hand side of (5.3) equals

EX{[1S, /(X)) dr;s < T} = lim, EX{[} S,f(Xs,) dr; S, < T}

where T = T),,. On the other hand the left-hand side equals

[SES(T V" e f(X, ) dt} dr = lim, [ EX(JL"Sne™ */(Xs, , ) dt} dr
and applying the Markov property of Z(* we reduce the above to

lim, [§ EX{EXG» (T e~#f(X,)dt; S, < T} dr
= lim, E*{[5 S,'f(Xs,) dr; S, < T}.
Thus (5.3) is established and the proof is complete.
PROPOSITION 5.5. X =(Q, X,, P¥) is a Hunt process.

Proor. The proof of the strong Markov property (with respect to the o-algebras
& ,.) is modelled after that of the theorem on ([1] page 41), using the continuity
of [§S;’f(x)dr defined in the previous proof and a similar technique. For the proof
of the quasi-left-continuity we refer the reader to the last part of the proof of the
theorem on ([1] page 46); again the continuity of [§ S,’f(x)dr plays the central role.
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PROPOSITION 5.6. EXT, = g(x) and P*[X(Tp)eB; Ty < )= Hy(x, B) for all x,
De9.

Proor. The first part and the second part for De 2 are obvious from the
construction. That the second part holds for arbitrary De 2 follows from hypothesis
(e) and the quasi-left-continuity of X.

For the case when all points in K— A are instantaneous the proof of Theorem 1.2
is now completed except for the uniqueness assertion. But this is easy since any
Hunt process on K with the same hitting distributions on the sets De2 and the
same expected lifetimes as X must have the same resolvent as X (to see this consider
the approximating processes X ™) and is thus equivalent to X.

For the case when holding points are present, we give only a sketch of the con-
struction without proof. In this case Proposition 5.1 does not hold. For each w
let (a,(), by(w)), (ar(w), b(w)), +- be the disjoint intervals whose union is
[0, T,(w)]— 7 (w) and arranged with their lengths decreasing; itis understood thatif
[0, T.(w)]— T (w) is empty or is the union of finitely many disjoint intervals, all
or all but finitely many (a,(w), b(w)) are (0, 0). Almost surely b, (w)e T (w) for all
k, but this is not necessarily so for a,. However, define X(¢, ) for te 7 (w) as
before; then for almost every w it still has a right continuous extension on [0, T, ()]
with left limits, and furthermore this extension is left continuous at those a,(w) not
in (w). Again let X(¢, w) = A for t = T, (w). Now define for each w a measure
(o, ) on the infinite product R, ® = {(y, t,, ***)| #, = 0 for all k} to be the product
measure v,!xv,2x -+ where v,* is the exponential distribution with mean
by(w)—a,(w) (point mass at 0 if b(w) = a(w) =0). Let O =Qx R, and P* be
the measure on Q defined from P~ and the transition probability v(w, -). For each
& = (, (11, t,, --*)) in Q define ¢,: Z(w) - [0, o] as follows:

0o(8) = S+ isbiw) <s(ti—b(w)+a(w)).

Almost surely (i.e. a.s. P~ for all x) ¢, is an increasing homeomorphism of T(0)
onto a compact subset of [0, co], hence has an extension ¢,: [0, co] — [0, co] which
is an increasing homeomorphism. Now define X, (&) = X(¢, ®) for such & to be
X(¢,~1(1), w). The process (Q, X,, P*) is then the desired process.
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