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MARTINGALE CENTRAL LIMIT THEOREMS

By B. M. BRowN

La Trobe University

1. Introduction, summary and acknowledgments. The classical Lindeberg—Feller
CLT for sums of independent random variables (rv’s) provides more than the
convergence in distribution of the sum to a normal law. The independence of
summands also guarantees the weak convergence of all finite dimensional distri-
butions of an a.e. sample continuous stochastic process (suitably defined in terms
of the partial sums) to those of a Gaussian process with independent increments,
namely, the Wiener process. Moreover, the distributions of said process converge
weakly to Wiener measure on C [0, 1], the latter result being known as an invariance
principle, or functional CLT, an idea originating with Erdos and Kac [10] and
Donsker [5], then developed by Billingsley, Prohorov, Skorohod and others.

The present work contains an invariance principle for a certain class of martin-
gales, under a martingale version of the classical Lindeberg condition. In the case
of sums of independent rv’s, our results reduce to the conventional invariance
principle (see, for example, Parthasarathy [16]) in the setting of the classical
Lindeberg-Feller CLT.

Theorem 1 contains a type of martingale characteristic function convergence
which is strictly analogous to the classical CLT, while Theorem 2 provides weak
convergence of finite dimensional distributions to those of a Wiener process,
followed by (Theorem 3) the weak convergence of corresponding induced measures
on C [0, 1]to Wiener measure, thus entailing an invariance principle for martingales.

Notation and results are listed in Section 2. Section 3 defines the Lindeberg
condition for martingales and gives it several equivalent forms. Sections 4 and 5
contain the proofs of Theorems 1 and 2, respectively, while Theorem 3 is proved
in Section 6 by use of a martingale inequality derived from an upcrossing inequality
of Doob [7]. Section 7 contains brief remarks.

Among the large literature on CLT’s for sums of dependent rv’s, mention of a
martingale CLT is first made by Lévy [12], [13], followed by Doob [6] page 383.
Billingsley [2] and Ibragimov [11] gave a version for stationary ergodic martin-
gales, and Csorgo [4] considered related problems. The author also knows of
Dvoretsky [8]. Invariance principles for various dependent rv’s were found by
Billingsley [1], and in [3] for stationary ergodic martingales, the latter result being
given by Rosén [17] for bounded summands. The present Theorem 3 relaxes the
stationarity and ergodicity requirements of Billingsley’s Theorem (23.1) of [3].

Since preparing the original version of this paper, the author’s attention has
been drawn to Dvoretsky [9], which announces a result strongly resembling the
present Theorem 2, and to the CLT [14] and invariance principle [15] for reversed
martingales, due to Loynes.
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The methods of Section 5 are owed to Billingsley [2] (who in turn acknowledges
a ‘““debt to Lévy”) and to ideas given by Dvoretsky [8]. Finally, I wish to thank
Dr. C. C. Heyde, for making a vital remark, and Mr. David Scott, for helpful
criticism.

2. Notation and results. Let {S,, #,,n=1,2, -} be a martingale on the
probability space {Q, #, P}, with S, =0, and X, = S,—S,_, n=1,2,++-. F,
need not be the trivial o-field {¢, Q}. Let

¢ (1) = E(e™™ | F i) = E;_ (%),
where E;_; denotes E(-|#;_,), and let
0. = E,_1(X,%),
Vil =Yj-10/%
si* = EV,? = ES,?,
Jlt) =TTj=1,/s0) and
b, =s,"?max;,0
forn=1,2,---. Following Parthasarathy [16] page 220, define
Eu®) = 8,7 (St Xiew 1(8,> = 8D/ (57+ 1 —5:2))

for0<r<1land s> <152 <541, k=0,1,---,n—1. £(¢) is a.e. continuous on
0=17<1 for all n, being composed of straight line segments joining the points
(si2/5,2, Si/s,), k=0,1,2,--, n.

Throughout, we consider martingales for which

6)) V2s, 2,1 as n— oo.
For this class of martingales, the Lindeberg condition is said to hold if
@) $n 23 0-1 EXI(|X,| 2 es,) - ,0 as n— oo
for all ¢ > 0, where I(4) denotes the indicator function of the set A.

THEOREM 1. Assume that equation (1) holds. Then
3) () >, e ¥ as n— oo, for all t, and
@ b, - »0 as n— oo
if and only if the Lindeberg condition (2) holds.

THEOREM 2. If (1) and the Lindeberg condition hold, then in addition to (3) and (4),

lim, o, P[S,/s, < x] = ®(x) = 2n) ¥ [* , e ¥ dy

for all x. Furthermore, all finite dimensional distributions of &,(t) converge weakly,
as n— oo, to those of a Wiener process W(t) on 0 < t < 1, where W(0) = 0 a.e. and
EW¥(1)=1.
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THEOREM 3. Let {C, &, Py} be the probability space where C = C |0, 1] with the
sup norm topology, # being the Borel o-field generated by open sets in C, and Py,
Wiener measure. Let {P,} be the sequence of probability measures on {C, B}
determined by the distribution of {&,(1),0 <t < 1}. Then if (1) and the Lindeberg
condition hold, P,— Py, weakly as n — co.

Throughout, we use the notations X, = max (0, X) and X_ = max (0, —X),
while #Iz is used to denote the real part of z.

3. The Lindeberg condition for martingales. For the class of martingales for which
(1) holds, the Lindeberg condition is defined by (2). The definition corresponds
exactly to that of the classical Lindeberg condition which is NSC for (3) and (4)
when X, X,, -+ - are independent rv’s. However, in the martingale case, and under
(1), it is equivalent to several alternative conditions listed in Lemma 2 below. To
introduce such alternatives, consider

g(n,e) = Vn_2 Z;=1 E;_, XjZI(Ile 2 &5y),

G(n,¢) = V,’s; % g(n,e),

h(n,e) =V, 23" E;_ X;2U(X,|e7's, ™), and
H(n,e) = V,2s,” 2h(n,¢),

where U(x) is any continuous nonnegative function of bounded variation on
[0, o) for which U(0) =0 and U(x)— const (> 0) as x — c0. G, H denote rv’s
with a divisor of s,2, while g, h denote corresponding rv’s with a divisor of ¥,2
instead.

LemMa 1. (1) is equivalent to
) lim,., ., E|V,%s;% —1]| =0.

Proor. It suffices to show that (1) = (5). But (1)=1lim,_ , E(V,%s,”2—=1)_ =0,
which = (5), since

E(,2s,~ =1 = E(V,%s, 2= 1)s.

LEMMA 2. Under the condition (1), or alternatively (5), the Lindeberg condition is
equivalent to the convergence to zero as n— oo of g(n, &), G(n, €), h(n, €) or H(n, ¢),
for all ¢ > 0; either in probability or in the mean or order 1.

Proor. Convergence in mean being a priori stronger than convergence in
probability, it will suffice to show firstly-the mutual equivalence of convergences
in probability of g, G, h and H, then secondly to show that each such convergence
in probability implies a corresponding convergence in mean. (Noting of course
that the Lindeberg condition is defined by EG(n, &) — 0 as n— oo for all ¢ > 0.)

Firstly, concerning convergences in probability, those of the pairs g and G; and
h, H are equivalent because of (1), while # —,0 implies g —,0 by noting that there
exist constants a, b > 0 for which

(6) bl(x =z a) < U(x) for all x = 0.
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Finally it is readily verified that
h(n,e) = [§ g(n,ey) dU(y) pointwise a.e.,
< [6dU(»)+K - g(n,ed) a.e.

since ¢g(n, y) < la.e. and g(n, y) | as y |, for each n; where K is the total variation
of U. Thus, by choosing ¢ small, it is apparent that the condition

@) g(n,e)—,0 as n— oo for all ¢ > 0 implies that
®) h(n, &) - ,0 as n— oo for all ¢ > 0.

Secondly, we must show that convergences in probability of g, G, # and H imply
corresponding convergences in mean. In the case of g and 4 this is trivial since the
rv’s in question are uniformly bounded; thus we can assume that

©) lim,,, , Eh(n,&) =0, for all ¢ > 0.
It will suffice now to show that (8) and hence (9) imply
lim,_,, EH(n,e) =0 for all ¢ > 0,

for the mean convergence of G will then follow by applying equation (6). Write
V,2%s,” 2 = 1+6,. Therefore

EH(n,¢&) = E(1+40,)h(n,¢)
= Eh(n, &)+ EJ, h(n, ¢)

which — 0 as n— oo from (9) and since E |5, k(n, &)| < K" E|5,|, -0 as n— oo by
Lemma 1. The proof is completed.

4. Proof of Theorem 1. Define functions Q and M by writing e™* = 1 +ix—
1x?+1x2Q(x), and M (x) = min(x/3, 2). Thus
(10) 1-0(x)| =1 and
(11) |0(x)| = M(x) for all x.
By using (10) and the inequality |logz—z+1| £ |z—1]*/(1—|z—1]) (for |z—1| < 1)
we can write, after some computation,
(12)  log f(f) = Y}=1log¢,(ts,™ ")

= —412V,%s,7 2+ 41%,72 Z';: VE (X 200X ;5,7 D))+ 440

where for each fixed ¢, 4,(t) »,0 if b,—,0 as n —oo0. But it is easy to show that
the Lindeberg condition implies that 5, —,0 as # — co. Theorem 1 will then follow
if the convergence in probability to zero as n— oo of the second term of (12) is
equivalent to the Lindeberg condition. But this equivalence can be shown by firstly

applying the inequality (11) and noting that the function M (-) has the properties
required of the function U(-) in Lemma 2; and then conversely by noting that the
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convergence in probability to zero of the second term of (12) implies the corres-
ponding convergence of its real part, and that the function 2IQ(-) has the
properties required of U(-) in Lemma 2.

S. Proof of Theorem 2. It is assumed throughout that (1) and the Lindeberg
condition both hold. Adapting an idea used in Billingsley [2], we can choose any
constant C > 1 and for each fixed » set

Xj*(n) = XjI(VjZ < CSnz), j= 1,2,-++,n.

{X:*(n), X,*(n), -+, X,*(n)} will form a martingale difference sequence and
lim, ., P =1 [X; = X;*(n)] = 1 because of (1), so that to prove convergence in
distribution properties for ) ; X;/s, as n— oo (where the summation of j can be
over any subset of the integers from 1 to n), it suffices to prove them for ) ; X;*(n)/s,
as n — co. Moreover, the Lindeberg condition holds with X; replaced by X;*(n),
j=1,2,+--,n and

(13) P} E;-(X;*(m)* £ Cs,2] =1,

so instead of introducing the {X;*(n)} rv’s, we can work with the original {X;} rv’s
and assume, in addition, that

(14 P[V2<Cs ] =1, alln=1,2,---,

For fixed k; 1,1, -, # not all zero; and 0=y <o, <oy < <oy_; <
o =1, set

— B 2 2
m; =max{m = 0;s,”> < «;s,%},
15) 0,=t; for m;_, <r<m,

0 = max, ., |0, = max; |t;|.

For each fixed n, let ¥, =0, X,/s,, T,=Y5-, Y;, and U,> =Y"_, E;_(Y;*). We
wish to show that

16) lim,, , Ee'Tr = e~ %7°,
where 62 = ’}= 1 t%(ej—a;_ ;). We will do this by showing that
an lim,, , E(exp (iT,+4U,>)—1) = 0, and
(18) lim,, , E [exp(3U,%)—e”| = 0,
for routine computations from (17) and (18) then establish that (16) holds.
PRroOF OF EQUATION (17). For n fixed let
(19) Z; = (exp(iTy- +3U 2" —exp(— 40,70 */s,%)
= (exp (iTj-1 +3U MY, — 4 Y2 (1-Q(Y))
+30,%0,[s,” ~Z(30,°0 2 [5,),
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where Z(x) = e *—1+x for x 2 0. Therefore

IEj—IZjI = et?*c I%Ej—1 IGZQ(IG)—Z(%GJ'ZO','Z/S"Z)I

< $e2C(E;-y YAM(|Y)) +40% %, %)
(using (11), (14), |6;| < 6, and the inequality Z(x) < $x?),
< 10%e7°Cs, " A(E;_ X2 M (|0X)|/s,) +0%b, 5 2/4).
But from (19) we have
‘ |E(exp(iT, +1U,2)—1)| = [EY"-, Z)|
(20 SEY} - |Ei-1 Z)
< 102 e*”CE(h(n, 0~ ")+ 0D, V,/4s,?)

where (see Section 3) the function M (-) has the properties required by the function
U(+) for Lemma 2 to be applicable. The right-hand side of (20) tends to zero as
n— oo by Lemma 2 and (4) and (14), thus proving (17).

ProOF OF EQUATION (18). For any j < n,
sa 2EX? Se+s, 2EXAI(|X)| = es,)
< ¢+ EG(n,¢) (see Section 3)
Se as n— o0
by Lemma 2, since the Lindeberg condition holds. Therefore
(21) lim,.,, s, ?max;<, EX;? =0,
from which it follows, with (15), that
lm,_, o, 8, 2(s5, = Sh,_ ) = o — ;g
for 1 £j £ k; thus permitting an induction argument to be constructed, starting
from (1), to show that
(21a) (V2= V2, sk, =5, )7 =1

in probability as n — oo for 1 £j < k. It follows that U,2 — ¢ in probability as
n— oo, and also, since U,> £ 02C, that equation (18) holds.

REMAINDER OF PROOF OF THEOREM 2. Having proved equation (16), the proof of
Theorem 2 will be completed by noting that, for each j =1, 2, -+ - k,

Ién(aj) - én(s'an/an)| = |€n(s'3lj+ 1/Sn2) - én(srznj/snz)l
= X, /4]

— 0 in probability as n— oo,
by (21).
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6. Convergence to Wiener measure. In order to prove Theorem 3 from the weak
convergence of finite dimensional distributions obtained in Theorem 2, the
property of relative compactness, or tightness (see Billingsley [3]) must be verified;
namely ([16] page 222) in the case of C|[0, 1] that

@2 11, i SUP, -, PLSUD, -y 21 [£4(0) = £(0)] > €] = 0
for all ¢ > 0. To establish (22), we employ a martingale inequality (Lemma 4) which
is derived from Doob’s upcrossing inequality (Doob [7]), namely

LeEMMA 3. Let B be the number of upcrossings of the interval [a, b] by the sub-
martingale Uy, Uy, * -+, U,. Then (b—a)Ef+E(Uy—a), < E(U,—a), .

LemMA 4. Let U, =0, U,, U,, -, U, be martingale. Then, for all constants
c>0,

P[max;g, |U,| > 2¢] £ P[|U,| > ]+ [quaz2a (¢ ™ |Ua| =2) < [ruazac ™ |Ua|-

PrOOF. Let A4, = [min,<, U, < —2c], and let B, be the number of upcrossings
of [-2¢, —c] by Uy, Uy, *++, U,. Then

(23) PA,=PA[U, 2 —c]+PA,[U, < —c] < P[B, > 0]+P[U, < —c],

and similarly, if B, = [max,s, U, > 2c] and if f, is the number of upcrossings of
[-2¢, —c] by Uy, = Uy, -+, —U,, then

(24) PB, < P[B, > 0]+P[U, > c].

Therefore P(A4,UB,) £ PA,+ PB,, and the Lemma follows by adding equations
(23) and (24), noting that P[B; > 0] < EB,, i = 1, 2, and then applying Lemma 4
to Ef; and Ef,.

PrROOF OF THEOREM 3. To establish (22), we follow the proof of Parthasarathy [16]
page 222, and hence we omit most details. We have

(25) P[Suplt—ylghIén(t)_én(y)l > ¢]

S V<t P[SUDPy<r <+ 198 Ién(t)_ @(kh)l' > /4]
and

(26) SUPw <t (k+ 1yn |En(D) — Sul(k)| S 2maXg <r 1 <gn [Dimger1 Xj8n Y

where g, = max {j = 1:s5;* < khs,?}, k=0, 1,2, -. Apply (26) in (25) and then
apply Lemma 4. (22) then follows by the convergence of finite dimensional distri-
butions (Theorem 2) and (21).

7. Remarks. (i) The Lindeberg condition, which by Theorem 2 and Theorem 3
is sufficient for the CLT and the invariance principle, is also necessary and sufficient
for a type of convergence of conditional characteristic functions specified by (3)
and (4). The question can then be asked: are (3) and (4) also necessary conditions
for the CLT and invariance principle, as they are in the classical case of independent
rv’s?
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(ii) The results of Theorem 1, Theorem 2 and Theorem 3 are obtained under the
assumption of (1). Though this condition might be dispensable for the purposes of
the CLT, it seems to be a natural (and perhaps necessary) condition in the case of
the invariance principle. This is because it leads, with other conditions, to (21a),
which specifies the fact that the (random) function of conditional variance converges
in some sense to that of a Wiener process; namely a constant, additive function.

(iii) Conditions of the type aj2 < constant, a.e., or ¢ j2 = constant a.e.,
j=1,2,--- are used in [4], [6], [8], [12], and [13]. The CLTS of Billingsley and
Ibragimov ([2], [11]) for stationary ergodic martingales assume no extra conditions,
but in fact (1) and (2) follow from ergodicity and stationarity, the convergences
produced in (1), (2) being a.e., compared with convergence in probability here.

Loynes [14] uses some conditions very similar to ours, with a.e. convergence
replacing our convergence in probability. Dvoretsky [9] mentions conditions
corresponding closely to ours.
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