ADMISSIBILITY OF ARBITRARY ESTIMATES AS UNBIASED ESTIMATES OF THEIR EXPECTATIONS IN A FINITE POPULATION

By V. M. Joshi

Secretary, Maharashtra Government, Bombay

- **0.** Summary. A conjecture of Hanurav (1968), that subject only to a mild restriction, any arbitrary estimate is admissible in the class of all unbiased estimates of its expectation (which is a population function) is shown to be false.
- **1. Preliminary.** $U = \{u_1, u_2, \dots, u_N\}$ denotes a finite population. A sample s means any non-empty subset of U. S denotes the set of all possible samples s. A sampling design d is determined by defining on S a probability p;

(1)
$$p(s) \ge 0 \qquad \text{for all } s \in S, \text{ and}$$

$$\sum_{s \in S} p(s) = 1.$$

With each unit u_i , $i = 1, 2, \dots, N$, is associated a variate value $x_i \cdot \mathbf{x} = (x_1, x_2, \dots, x_N)$ denotes a point in the N-dimensional space R_N . Estimates and their admissibility in the unbiased class are defined as follows.

DEFINITION 1.1. An estimate e is a function defined on SXR_N , such that for any $s \in S$, e depends on \mathbf{x} through only those x_i for which $u_i \in s$.

DEFINITION 1.2. For a given sampling design d, an estimate $e = \{e(s, \mathbf{x})\}$ is an unbiased estimate of a population function $V(\mathbf{x})$, if

(2)
$$\sum_{s \in S} p(s) \cdot e(s, \mathbf{x}) = V(\mathbf{x}), \quad \text{for all} \quad \mathbf{x} \in R_N.$$

DEFINITION 1.3. For a given sampling design d, an unbiased estimate e of a function $V(\mathbf{x})$ is admissible in the class of all unbiased estimates of $V(\mathbf{x})$, if there does not exist any other unbiased estimate $e_1(s, \mathbf{x})$ of $V(\mathbf{x})$, such that

(3)
$$\sum_{s \in S} p(s) [e_1(s, \mathbf{x}) - V(\mathbf{x})]^2 \le \sum_{s \in S} p(s) [e(s, \mathbf{x}) - V(\mathbf{x})]^2$$

for all $\mathbf{x} \in R_N$ and the strict inequality holds in (3) for at least one $\mathbf{x} \in R_N$.

2. A conjecture regarding admissibility in the unbiased class. In the following we take the sampling design d as fixed. For convenience, let \overline{S} denote the subset of S consisting of all those samples s for which p(s) > 0. Let $g = g(s, \mathbf{x})$ be any arbitrary estimate (Definition 1.1). Then g is an unbiased estimate of the population function

(4)
$$G(\mathbf{x}) = \sum_{s \in \overline{S}} p(s) g(s, \mathbf{x}).$$

Received February 11, 1969; revised February 11, 1970.

840 v. m. joshi

Hanurav (1968) has expressed the conjecture, that if for each $s \in \overline{S}$, $g(s, \mathbf{x})$ depends on (s, \mathbf{x}) fully, i.e. $g(s, \mathbf{x})$ is not independent of any x_i , $i \in s$, then g is admissible in the class of all unbiased estimates of $G(\mathbf{x})$. We shall show this conjecture to be false by constructing a counter-example.

Let $h = h(s, \mathbf{x})$ be an arbitrary estimate (Definition 1.1) such that

(5)
$$\sum_{s \in S} p(s)h(s, \mathbf{x}) = 0 \qquad \text{for all } \mathbf{x} \in R_N, \text{ and}$$

(6)
$$h(s, \mathbf{x}) \neq 0$$
 for at least one $s \in \overline{S}$, for at least one $\mathbf{x} \in R_N$.

Let $K = \{K(s, \mathbf{x})\}\$ be any arbitrary nonnegative estimate, i.e.

(7)
$$K(s, \mathbf{x}) \ge 0$$
 for every $s \in \overline{S}$, and every $\mathbf{x} \in R_N$.

Put

(8)
$$g(s, \mathbf{x}) = K(s, \mathbf{x}) \cdot h(s, \mathbf{x}),$$
 and

(9)
$$e(s, \mathbf{x}) = g(s, \mathbf{x}) + \alpha h(s, \mathbf{x}), \text{ where } \alpha > 0 \text{ is a constant.}$$

Then both $g(s, \mathbf{x})$ and $e(s, \mathbf{x})$ are unbiased estimates of $G(\mathbf{x})$ defined by (4).

The estimate $e = \{e(s, \mathbf{x})\}\$ is inadmissible for $G(\mathbf{x})$ because by (9),

$$\sum_{s \in S} p(s)[e(s, \mathbf{x}) - G(\mathbf{x})]^{2} - \sum_{s \in S} p(s)[g(s, \mathbf{x}) - G(\mathbf{x})]^{2}$$

$$= \alpha^{2} \sum_{s \in S} p(s)h^{2}(s, \mathbf{x}) + 2\alpha \sum_{s \in S} p(s)h(s, \mathbf{x})[g(s, \mathbf{x}) - G(\mathbf{x})]$$

$$= \alpha^{2} \sum_{s \in S} p(s)h^{2}(s, \mathbf{x}) + 2\alpha \sum_{s \in S} p(s)h(s, \mathbf{x})g(s, \mathbf{x}), \qquad \text{by (5)}$$

$$= \alpha^{2} \sum_{s \in S} p(s)h^{2}(s, \mathbf{x}) + 2\alpha \sum_{s \in S} p(s)h^{2}(s, \mathbf{x})K(s, \mathbf{x}) \qquad \text{by (8)}$$

$$\geq \alpha^{2} \sum_{s \in S} p(s)h^{2}(s, \mathbf{x}) \qquad \text{by (7)},$$

$$\geq 0;$$

and by (6) the strict inequality holds in the extreme right-hand side of (10) for at least one $\mathbf{x} \in R_N$.

The estimate $e(s, \mathbf{x})$ in (9) is therefore inadmissible.

Since $h(s, \mathbf{x})$ and $K(s, \mathbf{x})$ are arbitrary subject only to the restrictions in (5), (6) and (7), they can be so chosen that for each s, $e(s, \mathbf{x})$ depends on all x_i , $i \in s$, and further so that $G(\mathbf{x})$ in (4) is not a mere constant but involves all the x_i , $i = 1, 2, \dots, N$. The following is a simple illustration.

The population consists of three units, $U = \{u_1, u_2, u_3\}$; the sampling design assigns positive probabilities to only three samples $s_1 = (u_1, u_2)$; $s_2 = (u_2, u_3)$ and $s_3 = (u_3, u_1)$; $p(s_1) = p(s_2) = p(s_3) = \frac{1}{3}$.

Let $h(s_1, \mathbf{x}) = x_1 - x_2$; $h(s_2, \mathbf{x}) = x_2 - x_3$; and $h(s_3, \mathbf{x}) = x_3 - x_1$, so that $\sum_{s \in S} p(s)h(s, \mathbf{x}) \equiv 0$ for all $\mathbf{x} \in R_3$.

Putting in (8),

$$K(s, \mathbf{x}) = 1$$
 if $h(s, \mathbf{x}) > 0$
 $= 0$ if $h(s, \mathbf{x}) \le 0$, we have $g(s_1, \mathbf{x}) = x_1 - x_2$ if $x_1 > x_2$,
 $= 0$ if $x_1 \le x_2$;
 $g(s_2, \mathbf{x}) = x_2 - x_3$ if $x_2 > x_3$,
 $= 0$ if $x_2 \le x_3$;
 $g(s_3, \mathbf{x}) = x_3 - x_1$ if $x_3 > x_1$,
 $= 0$ if $x_3 \le x_1$.

Then

$$G(\mathbf{x}) = \frac{1}{3} [g(s_1, \mathbf{x}) + g(s_2, \mathbf{x}) + g(s_3, \mathbf{x})]$$

= $\frac{1}{3} [\max(x_1, x_2, x_3) - \min(x_1, x_2, x_3)].$

Thus $G(\mathbf{x})$ depends on each of x_1 , x_2 and x_3 . Next taking $\alpha = 1$ in (9), we have

$$e(s_1, \mathbf{x}) = 2(x_1 - x_2) \quad \text{if} \quad x_1 > x_2,$$

$$= x_1 - x_2 \quad \text{if} \quad x_1 \le x_2;$$

$$e(s_2, \mathbf{x}) = 2(x_2 - x_3) \quad \text{if} \quad x_2 > x_3,$$

$$= x_2 - x_3 \quad \text{if} \quad x_2 \le x_3;$$

$$e(s_3, \mathbf{x}) = 2(x_3 - x_1) \quad \text{if} \quad x_3 > x_1,$$

$$= x_3 - x_1 \quad \text{if} \quad x_3 \le x_1.$$

and

Thus for each s, $e(s, \mathbf{x})$ depends on all the x_i , $i \in s$, but the estimate $e = \{e(s, \mathbf{x})\}$ is inadmissible being inferior in variance to $g = \{g(s, \mathbf{x})\}$.

REFERENCE

1] HANURAV, T. V. (1968). Hyperadmissibility and optimum estimators for sampling finite populations. *Ann. Math. Statist.* **39** 621–642, (particularly 637).