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OPTIMAL DESIGNS WITH A TCHEBYCHEFFIAN SPLINE
REGRESSION FUNCTION

By V. N. MURTY

Pennsylvania State University

0. Summary. Studden (1968) showed that the optimal design for estimating any
specific regression coefficient or parameter is supported by one of two sets of points
for Tchebycheff systems with certain symmetry properties. In this paper we consider
a Tchebycheffian Spline Regression Function, defined on an interval, and show
that the optimal design for estimating any specified regression coefficient is sup-
ported on the same set of points. Familiarity with the notation and terminology
used in the paper of Studden referred to above is assumed.

1. Definition of a Tchebycheffian spline regression function (TSF). Starting with
(n+1) functions wq, w,, ---, w, which are strictly positive on [a, b] and such that
wy is of continuity class C"~¥[a, b] we form the system:

uo(x) = wo(x),

uy(x) = Wo(x)ﬁ‘wl(é])dfl,
1) 5
u,(x) = Wo(")jf%(@)ﬁ' wy(€,): 'ﬁ""l WniCn) A€y dE.

It is shown (see Karlin and Studden (1966) page 379, Theorem 1.2) that the

functions ug, u;, -+, u, in (1) comprise an Extended Complete Tchebycheff (ECT)
system on [a, b], obeying the boundary conditions:

(2) uk(")(a)=0; p=0,1, k=1;k=1,2,---,n.

A function s(x) is said to be a Tchebycheffian Spline Function (TSF) on [a, b] of
order (n+ 1) or degree n, with k knots {1;},*,

No=a<ng <my< - <m<b=mny

provided (i) s(x) reduces to a u-polynominal in the ECT system {u;}," in each of
the intervals (n;, n;4+1); i =0,1, -, k; and (ii) s(x) has (n—1) continuous
derivatives. .

The class of TSF’s of degree n with k prescribed knots {y,},* will be designated
by S, (11, 12, -+, m). Lemma 9.1, page 437 of Karlin and Studden (1966) shows
that S, (1, 12, --+, my) is precisely the set of functions

3) s(x) = Y i=o aiui(x) +Z’}= 1 Gny [ Pu(x575)
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where

4) D,(x; 1) = wo(x) [y wi(€1) J5 wa€a) - - [5mt wal&) dE, - - dEy
if n<x=0b,
=0 if a<x=<n.

Notice that ®,(x;a) = u,(x).

A few theorems on best approximation in the uniform norm by a TSF and the
zero structure of TSF, which are needed in the proof of our main theorems, are
stated in Sections 2 and 3 for ready reference.

2. Best approximation in the uniform norm by a TSF. In view of the representation
(3) spline approximation problem with fixed knots {5,},* reduces to the standard
linear approximation problem of determining the best approximation of a given
continuous function, in the uniform norm, by a linear combination of (n+k+1)
functions {u;}o"U{®@,(x;n,)}"

By the general linear theory (see Meinardus, G. (1967), page 1) we have the
following:

THEOREM 2.1. Let a < n; < 1y -+ < N, < b be fixed. Suppose f(x) € Cla, b].
Then there exists a best approximation s*(x) € S, (ny, -+, M), 1.€., s*(x) satisfies

[[s* =1l = ls=/1] = maxa< <o [s(x) =/ (x)]

for every S(X) € Sn,k("l’ Tty nk)
Theorems 2.2 and 2.3 stated below are due to Schumaker (1967a and 1967b).

THEOREM 2.2. Let f'e Cla, b]. Then there exists an s(x) € S, ,(ny, -+, ) such that
f—s alternates at least (n+k+1) times on [a, b, i.e., there exist {x,;},"***? points
a=x; <Xy < Xypx+a = b, such that

Sf(x)—s(x;) = e(— 1) max, < <, | f(x) = s(x)|
where ¢ = + landi = 1,2, -, n+k+2.

THEOREM 2.3. Suppose f€ Cla, b]. Then s(x) € S, ;(ny, +--, n) is the unique best
approximation of f, if there exist points a < t; < t, -+ <ty 42 < b satisfying

L <M <lpyisr; i=1,2,"", k,
and
Jt)=s(t) = (= 1)y i=1,2,, (n+k+2),
where
Ape =ming s, om0 /=8l (=%

3. Zero structure of TSF’s. The following lemma on the simple zeros of a TSF
is due to Schumaker (1967b).
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LemMMA 3.1. Suppose s(x) € S, ,(11y, -+, M) possesses the zeros x; < X, -+ <X,ii
and does not vanish identically on any interval containing two of these zeros.

®) X, <M< Xpapni=1,2, - k.

Moreover, s € S, , can have at most (n+k) distinct zeros provided s does not vanish
identically between any two of them.

One of the perversities of TSF’s is that it is possible for a non-null TSF to vanish
on an interval. When counting zeros of a TSF the following conventions are used.
(See Karlin and Schumaker (1967) and Studden and Van Arman (1968).)

(a) No zeros are counted on any open interval (7;, 7;) if s(x) = 0 there.
(b) The multiplicity of azero z # n,i = 1,2, ---, kis r if
sV z)=0;  j=0,1,-,(r=1);  s7(z) #0.

(¢) If s(x) = 0 on (n;_4, n;) and = O on (n;, ;4 ,) the zero at n, is counted as in
(b) using the right-hand derivatives. Similarly, we use the left-hand derivatives for
s(x) # 0 on (n;—y, n;) and = 0 on (;, N ). '

(d) If s(x) = 0 on (-4, n:) or (n;, N;+,) and

sOni—) = sP(ni+) =0; J=0,1,-,(r=1),
A=s"n,—); B=s"(n;+); and A #B,
then 5, is a zero of order
i r if AB > 0,
(i) r+1 if AB <O,

(iii) r+1 if AB=0 and B—4 > 0,

(iv) r+2 if AB=0 and B-—A4 <0.

Let Z(s) denote the number of zeros of s(x) according to the above conventions.

The following lemma due to Studden and Van Arman (1968) and Karlin and
Schumaker (1967) gives an upper bound to Z(s).

LEMMA 3.2. A non-trivial TSF s(x) € S, (ny, -+, ny) has Z(s) < n+k.

4. Uniqueness and existence of the oscillatory polynomial W#/(x). Utilizing the
theorems and lemmas stated in Sections 2 and 3, we now state and prove:

THEOREM 4.1. Let n = 2 and wo(x) in the system (1) be = 1. There exists a unique
W(x) (unique up to + W(x)) belonging to S, \(ny, :--, n,) satisfying
(i) |[Wx)| = 1VYxela,b],
(ii) The set {x: |W(x)| = 1} consists of precisely (n+k+1) points {x;},"****,
where x; = @, Xy 41 = band x; < x5+ < Xpipeq-
(i) W(x,) = e(=1) where ¢ = + 1;i=1,2, -, n+k+1.

(v) X <M< Xpepsi=1,2,-- k.
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Proor. Consider f = ®,(x;n,) € Cla, b]. Theorem 2.2 assures the existence of an
§*(x) belonging to S, x_ (1, 4, -+, M —,) such that s* is a best approximation of f
with respect to the class S, ,_ (1, -, 1 -,), and f—s* alternates at least (n+k)
times. Hence there exist (n+k+1) points {x;};"***! where a < x, < x, -+ <
Xp+k+1 = b and

S(x)=s*(x;) = e(— 1) max,<x<p |f(x)—s*(x)|

i=1,2,--, n+k+1.
Set

1
W) = e )= 570

= Z?=o ai*“i(x)+zlf'= 1 a:+jq)n(x; n;)-

Clearly ||W|| = 1; hence (i) of Theorem 4.1 is proved. Since n = 2, W'(x) =
(d/dx)W(x) exists, it belongs to S, _; ,(n,, -+, 1) and has at least (n+ k — 1) distinct
zeros {x;},"** and does not vanish identically between any two of them. Hence,
from Lemma 3.1 we have:

(6) Xip1 <M < Xpyi; i=1,2,---, k.

This establishes (iv) of the Theorem. We have thus seen the existence of a poly-
nomial belonging to S, (11, 15, -+, 1) possessing properties (i) to (iv). To show
that this is inique, let W;(x)=7_obuy(x)+Y 5 b,y ;$u(x;n;) be another
polynomial having properties (i) to (iv) of Theorem 4.1. From Lemma 3.4, page
251 of [2] and since W, has (iii), it follows that each b,(i = O, 1, ---, n+k) is
different from zero and in particular b,,, # 0.

b; k-1
u(x)— 3
=1

0 bn+k
Clearly s, belongs to S, x_ (111, 3, =+, ;). If s€ S, , alternates n+j+1 times
on any subinterval [X,, X,,, ;1] < [a, b], then s is a best approximation of f in
the class S, ;. (See Schumaker 1967a.) Since s, € S, ,_, and W, satisfies (iii) of
Theorem 4.1, f—s, does alternate n+ & times and hence s, is a best approximation
of f. Since W, also satisfies (iv) of Theorem 4.1, from Theorem 2.3 we conclude that
sy 1s the unique best approximation of f, thus establishing the uniqueness of W.

If the set {x: [W(x)| = 1} has at least (n+k+2) points, the additional point,
say x,, cannot be such that the function W(x) attains its maximum absolute value
with alternating signs at each of these (n+k +2) points. That is, this additional
point x, and the (n+k+1) points {x;}"]"! cannot form an alternant of W(x),
for then W’(x) e S,_,, must vanish at every such interior point so that W’ will
have at least (n+k) distinct zeros, which is a contradiction, since W’ cannot have
more than (n+k—1) such zeros. Hence W’ may vanish identically in (x,, x,) if
the additional point x, at which | W(x,)| = 1isin [a,x,), orit may vanish identically
In (Xp4441, Xo) if Xq is in (X, 44, 6], or it may vanish identically in (x;, x,) if

bos
b +J¢n(x; ’71)
n+k

M=

Consider si(x) = —

1
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Xo € (x;, Xx;4,). In each case it is easily seen that Z(W’) =z n+k, which is a
contradiction. Hence the set {x: |W(x)| = 1} consists of precisely (n+k+1)
points {x;},"***!. Moreover, x, = a and x,,,,, = b.

This completes the proof of Theorem 4.1.

5. Optimal designs of individual regression coefficients with a TSF as regression

function.

THEOREM 5.1. Let n = 2 and
E(y | x) = Z?:oei“i(x)"‘Z?ﬂ 0n+j¢’n(x; ’7j)

where x € [a, b] and {u;}," is the ECT-system (1) with wo(x) = 1. Then the optimal
design for estimating any 0,(1 < [ £ n+k+1) is unique and is supported on the full
set of extreme points of W(x) obtained in Theorem 4.1 and the unique optimal

design for estimating 0, concentrates its entire mass at the point x, = a.
Before we give the proof of Theorem 5.1 we recall some of the definitions given
in Studden’s paper (1968), so as to facilitate ready reference and easy understanding

of the proof.
Starting with (n+ 1) regression functions fy, f1, -+, f,,, and the (n+1) Tcheby-

cheff points sq, s, -+, s, (see page 1438 of Studden (1968)), for any vector
¢ #(0,0,:,0)
fo(s0)  Sols1) - Sfolsy=1)  Sfolsys1) = folss)  co

D(c) = f;(.so) fl(sl)" 'f1(5v—1) f1(fv+ V) fl(sn) C'l
T O N O RRTACHI B A C BT CA RS

v=0,1,2,---,n.

If D,(c) =0, the sign of D (c) may be defined as —1 or +1. ¢, = (0,0, ---,
0,1, 0, -+, 0) is an (r+1) component vector with a one only in the (p+ 1)st
component, p = 0, 1,2, ---, n. R denotes the class of vectors ¢ = (¢, ¢y, ***, Cp)
such that eD(¢) 2 0 for v =10, 1,2, ---, n where ¢ is fixed to be +1 or —1 for a
given vector c (i.e., the D (c), v =10, 1,2, .-, n, all have the same sign in a weak
sense).

Now in our case we start with (n+k +1) functions {u;}," and {¢,(x; n;)},*, and
the Tchebycheff points {s;}," of Studden are replaced by the (n+k+1) points
{x;},""** 1. In Studden’s notation we have

uilx) = fi(x), i=0,1,2, -, n,
¢n(x;nj)=j;|+j(x), j:1,2,"‘,k,

and Studden’s s; will be our x,, ;.
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Note that
Jo(s0) = uo(xy) =1,
fi(so) =us(x1) = uy(a) =0,  fur1(50) = ¢u(x1;511) = Pula; ny) =0,
fz(fo) =uy(x,) = uy(a) =0, fn+‘2(SO) = Pulx1312) = ¢u(a; ny) =0,

Su(s0) = uy(x;) = u,(a) =0, Susi(80) = du(xy; n) = éaa; n) =0.
PROOF OF THEOREM 5.1. Let
K(x, i) = uyx), i=0,1,2,---,n,
:(Dn(x;rli—n)’ i=n+17n+2’.“’n+ka

so that K(x, i) = fi(x),i =0,1,2, -, n+k.
If we look at the determinants
D,co) for v=0,1,2, -, n+k

the first and the last columns in each of the determinants D,(c,), D,(cy), -+,
D, ,(cy) are identical as (fy(so),f1(S0)s > fusk(S0)) = ¢o, and hence these are
all equal to zero, and in view of (6), Dy(c,) # 0. Thus all the D (co); v=0,1, ---,
n+k have the same sign, i.e., ¢q € R.

Now let p > 0, and consider the determinants Dy(c,), D(c,), -+, Dy(c,), -+,
D, (c,). The determinants D (c,),v = 1,2, ---,n+k,each of whichisa (n+k +1)th
order determinant, can each be immediately reduced by deleting the first row and
first column and (p + 1)th row and last column, since the first column of each of the
determinants is (1, 0, 0, ---, 0) and the last column is ¢, = (0,0, ---, 0, 1, 0, ---, 0).
These deletions do not change the value or the sign of these determinants. The
determinant D(c,) can be reduced to the determinant obtained by deleting the last
column and the (p + 1)th row. It is now easily seen that these reduced determinants
have the same form as K(x, i) in the Theorem 2.2 page 514 of Karlin (1968)
implying that all of them have the same sign.

Hence c,e Rforp = 1,2, -, n+k.

Using Theorem (2.2) page 1439 of Studden (1968), we conclude that the design
¢ = £, concentrating mass

k
= Dy, 2V26[Dyley)]
at the points x,,,; v =0, 1, -+, n+k is the unique optimal design for estimating
0,(1 £ ! £ n+k),and that the unique opt1ma1 design for estimating 6 , concentrates
its entire mass at x; = a.
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