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WEAK CONVERGENCE RESULTS FOR A CLASS OF
MULTIVARIATE MARKOV PROCESSES

BY SIEGFRIED SCHACH!
The Johns Hopkins University

1. Introduction. In this paper we obtain weak convergence results for several
variations and generalizations of the classical Ehrenfest process. The basic model
considered here can be described as follows: N balls are distributed among K urns,
with n,(¢) balls being in urn k at time ¢. Balls move among the urns according to the
following rules: The probability that a ball shifts from urn & to urn / # k during
(t, t+ At) is m A py At +0(At), (1 £ k, I £ K), and the probability of more than one
transition during (¢, ¢+ At) is of order o(Af). We are interested in the limiting
behavior of suitably normalized versions of the process (n,(¢), --+, ng(t)), as the
number of balls gets large. Our main result states that, suitably normalized, these
processes converge to what we call multivariate Ornstein—Uhlenbeck processes
in the sense of weak convergence of probability measures [2]. In particular, we
arrive at a diffusion approximation for (n,(¢), ---, ng(t)) as N gets large.

The technique of a “random change of time’’ enables us to obtain weak con-
vergence results for a large class of discrete-time multivariate Ehrenfest models
also. As a special case, we obtain a new proof of Iglehardt’s [5] limit theorems.

A diffusion approximation to the two-urn model has been derived by Kac [6].
Karlin and McGregor [7] analyze several multivariate extensions of those results.
Iglehardt’s limit theorems are closest to ours, but they require that the time-
parameter be discrete and that the probabilities p,; depend on / only.

Several applications of multivariate Ehrenfest urn-type models are mentioned in
[5], page 875. The model has also been found useful in describing the distribution
of N vehicles over the K lanes of a long stretch of a unidirectional K-lane freeway
[9]. In this application variables of interest are the usage of different lanes, the
return to equilibrium after a bottleneck situation, etc.

Weak convergence results can be useful in two directions: For large N the
distribution of a certain functional of the process can be approximated by the
distribution of the same functional of the limiting process, provided that the latter
is known. On the other hand, if an approximate distribution of a functional
under the limiting process is desired, it might be possible to obtain the distribution
of the same functional under the Nth approximating process, where N is large.
In our case this procedure is particularly useful if simulation techniques are to be
employed. Since the approximating processes have sample paths which are step
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functions, they can be represented by finitely many “coordinates”, whereas the
limiting processes have continuous sample paths, for which this is not possible.

2. The basic model. Let n(t) = (n,(z), -, ng(t)) be a multivariate stochastic
process, where the #,(¢) are nonnegative integer-valued and satisfy Yamlt) =N
We assume that only transitions of the form

("1, T, "K)‘*("l, M =L g, L gy, "'9"1()17é k

are possible, and that the probability of such a change during (¢, 1+ At) is of the
form m Ay p,, At +0(At) for some constants 4, > 0, and some irreducible transition
probability matrix P = (py,) (with p,, = 0 for all k). Suppose also that the prob-
ability of two or more changes during (¢, 74 At) is of order o(Ar). Under these
assumptions the random process (n,(¢), ---, nx(t)) is a K-variate continuous-time
Markov chain.

Let p(n, t) be the probability that at time ¢ the process is in state n = (n,, ---, n),
given that it started from some fixed state (m;, ---, my) at time 0. Since we are
dealing with a finite chain, the Kolmogorov forward equations determine the
transition probabilities uniquely. These equations are:

op(n, 1) _
(2.1) % —p(n, t) Z Ay
+ Z;;I:p(nl, el =1, g, O)A(ng+Dpy
where it is understood that p(n, 1) = 0 whenever n, = —1 or n, = N+1 for some

k.
We can gain more insight into the behaviour of the process by examining the
generating function

(2.2) E(u, 1) =Y, p(n, u™ - ug”

where the summation extends over all possible states n = (n,, ---, ng). It is easy
to verify that the system of equations (2.1) yields the partial differential equation

2.3) 6§(u t) Zlkuk ag(u t) Z Zikpuux 6é(u l)

Let P be the matrix with elements p,,, and let A be the diagonal matrix with
Akl = 5“1}*. Set
(2.4) Q =AP-1).

The standard method (e.g., [11], page 53) of solving the differential equation (2.3)
consists in first solving the associated system of ordinary linear differential
equations

(2.5) dlf(t) = —QV(1),
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where V(r) is a K-dimensional vector function. The solutions of this system are
of the form

(2.6) V(t) = e 2V,.

The general solution to (2.3) is then given by

(2.7) &(u, 1) = x(e®u),

where y(-) is a function to be determined by initial conditions.
Assume that at time O the process is in state (m,, m,, ---, mg). Hence

(2.8) &(u, 0) = [Ty w™ = x(u).

Set

(2.9) (€% = pul?)-

Then we obtain

(2.10) Eu, ) =TTk 1 G pua(®u)™.

Specializing to the case m, = 1, m, = 0 for ! # k, it follows that, for each ¢t > 0
Pu(t) 20, YK pu(t) =1 foreach k.

Hence, by inspection of (2.10) we obtain

THEOREM 2.1. Given that n(0) = (my, ---, mg), the distribution of n(t) =
(ny(2), -+, ng(t)) is that of a sum of K independent multinomial random variables
with parameters

{mk;pkl(t)7 “.9pkK(t)}9 k =1, 2,""K'

This result can be expressed in a somewhat different form, which will be useful
later. Obviously Q is the matrix of transition intensities of a Markov process
Z'(t) taking values among the states 1, 2, ---, K. Let Z(¢) be the process which is
obtained from Z'(¢) by replacing state k by the kth unit vector ¢, = (0,0, ---,
1, .-, 0), so that Z(¢) takes its values on the K unit vectors. Now let {Z,,(¢);
k=1,--,K;l=1,--,m} be Nindependent Markov processes of this type with
Z,(0) = ¢;. Set

(2.11) Z(t) = YKo 1 Y0 Zu(1).
Then we obtain '

THEOREM 2.2. The processes {Z(t),t = 0} and {n(t), t = 0} have the same
distribution.

PROOF. It is easy to see that {Z(¢)} is a Markov process. Since the Z,, processes
have transition probability matrix 2, it follows that P{Z,(t) = e;} = pu(t).
By independence Z(t) has the same distribution as n(¢) for each fixed ¢. Now, since
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this is true for any initial state, {Z(#)} and {n(¢f)} have the same transition
probabilities, and thus their laws coincide.

Since e? is the transition probability matrix of a Markov process with a finite
number of states, and only one communicating class, it follows that there exists a
unique probability vector p = (py, -+, px)’ With

(2.12) pe¥=p.

From Theorem 2.2 we conclude that the stationary version of our model, which we
denote by 7(¢) = (,(¢), -, Aig(t)), has a multinomial distribution with parameters
(N; py, -+, px)- It will be useful to have formulas for the first and second moments:

(2.13) E(n(1)| n(0) = m) = ¢%'m,

(2.14) E#(t) = Np,

(2.15)  Cov[(ns), n(s+1)|n(0) = m] = Y mupuu(s)(Pudt) = Pur(s+1)),
(2.16) Cov (fifs), fi(s+1)) = Np(pu(t)— pr).

All these results follow directly from Theorem 2.2.

3. Multivariate Ornstein-Uhlenbeck processes. In this section we shall analyze
a class of stochastic processes which includes all the limits (N — o0) of sequences
of processes of the type considered in the previous section.

The stationary, univariate Ornstein—Uhlenbeck (O.U.) process can be charac-
terized as the only stationary, continuous in probability, normal Markov process
with zero mean (see e.g., [3], page 350). We will use these properties to define
K-dimensional Q.U. processes.

DEFINITION 3.12. (a) A K-variate stationary O.U. process is a K-variate Markov
process {Y(t)} which is stationary, Gaussian, continuous in probability, and satisfies
EY() = 0.

(b) A K-variate O.U. process is a K-variate Markov process which has the same
transition probabilities as a stationary O.U. process.

The distribution of a Gaussian process with mean O is characterized uniquely
by the covariance structure. In particular, K-variate stationary O.U. processes have
a covariance structure which is very similar to that of the classical O.U. process:

THEOREM 3.2. Let {Y(t)} be a K-variate Gaussian process with EY(t) = 0. Then
{Y(t)} is a stationary O.U. process if and only if its covariance has the form

(3.1) EY(s)Y'(s+1) = Ce, t=0.

2 This definition is more general than that given by Iglehardt [5].
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PROOF. Necessity. Let EY(0)Y'(0) = C. Fix an A > 0 and let E[Y'(h) | Y(0)] =
Y'(0)M(h) for a suitable matrix M(k). This is always possible, since in a normal
family the conditional expectations are linear functions of the conditioning
variables. Then

(32)  EY(0)Y'(h) = E(E[Y(0)Y'(h)| Y(0)]) = EY(0)Y'(0)M(k) = CM(h).

Using again the smoothing properties of conditional expectations (e.g., [3], page
74), and stationarity we obtain

EY(0)Y'(2h) = E{Y (0)E[Y'(2h)| Y(W]} + E{Y(0)(¥'(2h)  E[Y'(2h)| Y(}])}
= EY(0)Y'(h)M(h)
+EE[Y (0)(Y'(2h)— ELY'(2h)| Y(W]) | ¥(0), ¥(h)]
— CM(hy+ E{Y(O)(ELY'(2h) | ¥(h)] ~ ELY'(2h)| Y(W)])}
= CM(h)*.
By induction we obtain
(3.3) EY(0)Y'(nh) = CM(h)".
We thus have a matrix function M(-) which satisfies
(34 M(nh) = M(h)" for all integers n, all A>0.

Since for normal families continuity in probability and continuity in quadratic
mean are equivalent, M(k) is continuous in A.
Now let s, 7 be arbitrary positive numbers, then

(3.5) M(s+1) =1im,_, , M([sn]/n +[tn]/n) = lim,_, , M(1/n)*"IM(1/n)""
= lim,, , M([sn]/n)lim,_, , M([tn]/n) = M(s)M(2),

where [u] = integral part of u.
Hence M(-) is a continuous semigroup of matrices. It therefore is of the form

(3.6) M(t) = €%, t=0,

where B is the infinitesimal generator of the semigroup (see e.g., [4], page 614).
Combining (3.6) and (3.2) we obtain (3.1).

Sufficiency. Stationarity and continuity in probability are obvious. We only have

to prove the Markov property.
For the moment we assume that C is nonsingular. Thus it follows from [1],

page 29 that, for t = 0,
(3.7 E[Y'(s+1)| Y(s)] = Y'(s)C'Ce” = Y'(s) €™
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Now let 1, < t, < -+ < t, < ty4;, and set U= Y(tp4)—E[Y(t,s)) | Y(1,)] =
Y(t,,1)—exp (B'(t,4+1—1t)) Y(t,). Then, for any 1 < k < n, we get
(3.8)  EY(t)U' = EY(t)Y (tns 1)~ E(Y(t)ELY (ts+ 1) | Y(2,)])

= Cexp(B(ty+1—1t))—Cexp(B(t,— ;) exp (B(t,+1—1,)) =0,
so that U is independent of all the Y(#,), k = 1, ---, n. Since
(3.9) Y(ths1) = Utexp (B (tyr 1 — 1) Y (1),

it is easy to see that the Markov property is satisfied for { Y(7)}.

We have used the nonsingularity of C only to evaluate (3.7). But even if C is
singular, the left-hand term of (3.7) is equal to the right-hand term, since Y'(s) e*
is that particular linear combination which makes Y’'(s+1)— Y'(s) ¢® independent
of Y’(s) (equation (3.8)). This completes the proof.

THEOREM 3.3. A K-variate Markov process {Y(t), t = 0} is an O.U. process if
and only if for every s, t = O the conditional distribution of Y(s+1), given Y(s) is
N(u, X) with moments of the form

(3.10) p=e""Y(s),
(3.11) T =C-e?"'Ce?,
where C is a covariance matrix.

PROOF. Necessity. Let {Y(¢)} be an O.U. process. Then there exists a stationary
0O.U. process { Y(¢)} with
(3.12) EY(t) =0, EY()Y'(s+t)=Ce*
which has the same transition probabilities as { Y(#)}. Since { ¥(¢)} is normal, the
transition probabilities are normal. In the previous proof we have seen that

(3.10) holds. Also in the previous proof setn = 1, ¢, = s, t, = s+1, then by (3.9)
the conditional covariance of Y(s+1¢) given Y(s) is that of U, which is

EUU" = B(T(s-+1)— % ) T(s+ 1)~ 7/()e™)
=C—-eP"Ce®.

Sufficiency. Let Y(0) ~ N(0, C). Then Y(¢) is also normal with mean 0. The
covariance is

(3.13)  EY(0)Y'(f) = EE[Y(0)Y'(1)| Y(0)]
= E(Y(O)E[Y'(t)| Y(0)]) = EY(0)Y’(0) €™ = C €™,
(3.14)  EY()Y'(t) = E((Y(0)+ Y(t)— Y(0)) Y'(r))
= Ce™+ E(E[(Y(1)-Y(0))Y'(1)| Y(0)])
= CeP+E(C—e®"'Ce®+eB'Y(0)Y'(0) ™) — EY(0)Y'(0)
=C.



WEAK CONVERGENCE FOR MULTIVARIATE MARKOV PROCESSES 457

Since the transition probabilities are stationary, we get from (3.13)
(3.15) EY(s)Y'(s+1) = Ce®.
By Theorem 3.2 { Y(#)} is a stationary O.U. process. []

REMARKS. (a) Among the nonstationary O.U. processes only the ones with
Y(0) = const. are of practical interest.

(b) Standard techniques for obtaining sample path continuity (e.g., [2],
Theorem 12.4) are applicable to each component of an O.U. process. Hence such
processes are sample-path continuous a.s.

(c) Markov processes of the O.U. type can also be characterized in terms of their
local mean B'Y(¢) and local variance-covariance —(B'C+ CB), just as in the
classical univariate case. But we will not need these local properties in the sequel.

4. Weak convergence. In this section we will show that processes of the type
considered in Section 2, if suitably normalized, converge to O.U. processes, as
N — oo. In other words, the O.U. processes are diffusion approximations to those
processes. Weak convergence of a sequence {Xy(t)}, N=1,2,--- to {X(?)}
implies that g(Xy(-)) =& g(X(-)) for any functional g which is continuous in a
certain function space topology. We use as our basic function space the K-fold
product of D[0, 1] spaces with the J,-topology of Skorokhod [10]. This topology
is large enough to make functionals like supg <, <1 Xwi(?), [& Xx(2) dt continuous.
For more details about the space D[0, 1], see [2], Chapter 3. If, for any 0 < #; <
t, < t,, we have

(4.1) (Xn(t), s Xa(ta) =2 (X(11), -+, X(8))

we say that the finite-dimensional distributions (f.d.d.) of {Xy(t)} converge to the
f.d.d. of {X(¢)}. Weak convergence is stronger than convergence of the f.d.d. It
requires, in addition, some compactness condition.

Let
(4.2) Xy(t) = N"}n™(t)—Np) and
(4.3) X\(t) = N"Ha™() - Np),

where {n™(¢)} is the original, nonstationary, process of Section 2, whereas
{a™(r)} is the corresponding stationary process. N is the total number of elements
in the system. Assume that

(4'4) n(N)(O) = Np+ Ntx,,
where x, is an arbitrary, nonrandom vector with
(4.5) lec(= 1 Xor = 0.

Let IT be a diagonal matrix with I, = p,.



458 SIEGFRIED SCHACH

Lemma 4.1. As N - oo the f.d.d. of {Xy(t)} converge to those of a K-variate
O.U. process {X(t)} with

(4.6) EX(t) = 2" x,, 120,
(4.7) EX()X'(t+5)—EX(t)EX'(t+s) = I1e2° — e2"T1 £2¢*" s, 12 0.
PRroOF. Using (2.12), (2.13) and (4.4) we get
EXy(t) = N"¥}e2(Np+ N*x,)— Np) = 2" x,.

Also, for the /th and /"th component of {X(¢)} we obtain from (2.15) and (4.4)
(4.8)  Cov(Xy(t), Xni(t+5)) = N1 3 (Npi+ Nxo)p(t)(puds) — piar(t +5))

= pipu8) = Dk PuPr()Pra(t +5), as N - 0.
Stated in matrix form, we have
(4.9)  limy., (EXN()XN (t+5)—EXN()EX N (t+5)) = I1e% — 2" 124+,

Using the representation of n(¢) given in (2.11), a straightforward application of the
Cramér-Wold technique yields asymptotic normality of {Xy(¢)} with the moments
given in (4.6) and (4.7). The X y-processes have stationary transition probabilities,
hence the result follows from Theorem (3.3).

For stationary processes we get

LEMMA 4.2. As N — oo the £.d.d. of {Xx(¢)} converge to those of a K-variate
stationary O.U. process {X(t); t = 0} with

(4.10) EX(1)X'(t+s) = (I1—pp') e, s=0.
PrOOF. Similar to that of Lemma 4.1.
From now on we restrict our time index to the compact interval 0 < ¢ < 1.
{Xni(?)} is the kth coordinate of the Nth process, and C is a generic constant,

independent of N, Xy, t, A. Before we prove our basic convergence result, we prove
a lemma.

LemMmA 43. Let 0 < t; £ t, £ 1,4 > 0. There exists a constant C such that
(4.11) P{IXN(tZ)_XN(tl)I 2 j'IXN(tl)} = A_Zc(tz—h)(l‘*‘|XN(t1)|+|XN(t1)|2)~

PROOF. Set sup,;supog,g; (Q'¢?"),;, = d < . Then by the mean value
theorem,

I(CXP (Q't;)—exp (Qltl))k,ll S d(t,—ty).

A straightforward application of the Chebychev inequality to the individual
coordinates X y,(¢) in conjunction with (2.13) and (2.15) thus yields the inequality.

REMARK. Since the X y-processes have the same transition probabilities as the
Xy-processes, inequality (4.11) holds for the X y-processes.
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THEOREM 4.4. As N — oo, the sequence {Xy(t); 0 £ t £ 1}, converges weakly
to the O.U. process {X(t); 0 < t < 1} with mean and covariance given by (4.6) and
(4.7), respectively.

Proor. We use Theorem 15.6, page 128, Billingsley [2]. Billingsley proves the
result only for univariate processes, but it is easy to check that the argument goes
through in the K-variate case. In fact, a major portion of this generalization can
be found in [10]. We have already obtained the convergence of the f.d.d. to the
proper limit in Lemma 4.1. Obviously no ¢ is a fixed point of discontinuity for
{X(?), t = 0}. Therefore it suffices to show that

(412)  P{Xy(O)=Xy(1)|Z 2, [Xn(t2)— Xu(t)] 2 2} é’)%(tz_tl)‘m
for0<t <t<t, £1landall N.
Using well-known properties of Markov processes and Lemma (4.3) we obtain
P{|Xn(t)— X n(t,)| = 4, Xp(t)—Xn(1)] 2 2}
= E[P{|Xx(t) = Xn(t,)] 2 4, |Xn(t2)— Xp(1)] 2 2] X5(1)}]
= E[P{|Xy(t1) = Xx(t,)] 2 2| Xu()}P{| X y(t5)— Xn(1)| 2 2| Xn(1)}]

é%(tz—I)E[P{|XN(t)_XN(t1)| 2 ‘1|XN(t)}(1+|XN(')|+ |XN(I)|Z)]

C
= 72 (= DEPPH|X (1) - Xn(t)] 2 4| Xu(OIE 1+ [X (0] + | XN(0)PT,

by the Holder inequality.

A straightforward calculation shows that E[1+|Xy(#)|+|Xy(#)|*]* is bounded
uniformly in 0 < ¢ £ 1 and N. Hence, for a suitable constant C we get for the
L.h.s. of (4.12)

C

é?(tz_t)E*[P{|XN(I)_XN(t1)| = A | Xn()}]
C

=l—2(t2_t)P*{|XN(I)_XN(t1)| = A}

(2 —OEMP{|Xy(t)— Xp(t,)| = A| Xp(11)}]
g-ﬁ%ﬁ(tz—t)(t—tl)*E*[l +|Xn(t)| +|Xn()]?] (by Lemma 4.3)

<

FRUE (t;—1)¥(t—1t,)* (by above argument)

C
éW’(tz—H)Ms,

where, as always, C is a generic constant. This completes our proof.
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We also obtain the corresponding result for the sequence of stationary processes
X ().

THEOREM 4.5. As N — o, the sequence {Xy(t); 0 £ t < 1} converges weakly
to the Q.U. process {X(t);0 < t < 1} with mean 0 and covariance given by (4.10).

ProOOF. Same as that of Theorem 4.4, except that Lemma 4.1 is replaced by
Lemma 4.2.

5. Extension of weak convergence results to a class of discrete-time processes.
In this section we use a random change of time argument to obtain weak
convergence results for a class of urn models with a discrete time-parameter.
They can be described as follows: N balls are distributed among K urns. If at time §
the distribution of the N balls over the K urns is given by the vector (ny, -+, ng),
then the distribution at time i+ 1 is obtained by removing a single ball from the
kth urn with probability #,/N and placing it into the /th urn with probability
Py, Where P = (p,,) is a probability matrix. We assume that p,, < 1 for each k,
and that P is irreducible. Take an arbitrary initial distribution and let M y(i) be
the state of the chain at time ;. Let {W(¢), ¢t = 0} be an independent Poisson process
with intensity 1.

Set

(5.1) n™M(t) = My(W(N1)),

then it is easy to see that n™)(¢) is a continuous-time Markov process with total
intensity out of state (ny, -+, ng) given by

k

ny_ Nk _ _
N<1 —Fpu - _'N'PKK> = Z ni(1 = P ),
and transition probabilities for a ball to move from the kth to the /th urn given by

p .
(5.2) Pu =1—_—%— if k#l,

kk

=0 if k=1

Hence, n'™(¢) is a process of the type considered in Section 2 with p,, given by
(5.2) and

(53) ' A = 1= P
Before we exploit the relationship (5.1) we prove a useful lemma.

LEMMA 5.1. The stationary distribution of {My(i); i =0, 1, ---} is the same as that
of {n'™(t); t Z 0}.
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ProoF. In Section 2 we obtained the result that the stationary distribution of
n™(z) is multinomial with parameters N, p, where p is the left eigenvector of ¢2,
corresponding to the eigenvalue 1, i.e.,

(5.4) pe?=p.
By (2.4) Q = A(P—1). Using (5.2) and (5.3) we obtain
(5.5) Q=P-1

A vector p satisfies (5.4) if and only if
(5.6) p'0 =0,
by the spectral mapping theorem. But this is then equivalent to
(5.7) pP=yp.

Now let
(5.8) En(u, m) = u ™™
Then the generating function  y(u, i) is given by
(5.9) Yn(u, i) = E&y(u, My(i)).

The assumptions on the probability structure of My(i) imply that for i, # 0,
all &,

E[En(u, My(i+1)) | M (i) = m]

my
5.10 =) Cy(u, m)—=pu—
( ) IZJQN( )]\4 pkluk

0én(u, m) _
NZ Nu Dty

k

If M y(7) has a multinomial distribution with parameters N, p, then we obtain

(5.11) Un(u, i+1) = E[E(éN(u, My(i+1)) | My(i) = m)]
oWn(u, i
Z w@l(zk )szuz,
and also
Oy (u, i . B
(5.12) ll/_al(l';“)"=N(Zsz“z)N Dy

Combining (5.11), (5.12) and (5.7) yields
Un(u, i+1) = (Zth“z)N_ 1(Zl Zk Dibat) = YUn(u, i),

which ends our proof.
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We now use the relationship (5.1) to obtain weak convergence results for the
M y-processes. If we include all the w’s, where w is an element of the basic prob-
ability space, (5.1) has to be written as

(5.13) n®™(t, ) = My(W(N1, »), ©).

The sample functions of the W-process are monotone increasing step functions,
and therefore there exists an inverse process {¥(¢), t = 0} defined by

(5.14) V(t, ) =inf{s: W(s, w) = t}.

Using this process we may write (5.13) as

(5.15) n™ (1}\} V(t, o), w) = My(t, o),

where now the sample paths of the process { M y(t), t = 0} are step functions which
are constant over intervals (i — 1, ], and the distribution of {My(¢),t = 1,2, 3, ---}
is the same as that of the discrete-time chain {My(i), i = 1, 2, ---}. Obviously the
proper standardization of the M y(¢)-process is

(5.16)  Xy'(t) = N"*(My(Nt)—Np) = N‘*<n‘”)<% V(N:))—Np>, 0=st=1,

where p is given by (5.6) or, equivalently, by (5.7). In the previous section
(Theorem 4.4) it was shown that Xy(z), given by (4.2), converges weakly to an
O.U. process. Now X/(¢) differs from Xy(¢) only by the random change of time

1
(5.17) Dy 1=y V(Nt).

By the definition of V(), V(Nt) = S;yq+1, Where S, = Y7, U; and the U, are
i.i.d. exponential with mean 1. Hence, by the strong law of large numbers the
random perturbation caused by @ should be negligible as N — co. This argument
is used in the proof of the following theorem. Assume that

(5.18) My(0) = Np+N*x,,.

THEOREM 5.2. As N — o0, the sequence {Xy'(t); 0 < t < 1}, converges weakly
to the O.U. process {X(t); 0 < t < 1} with mean and covariance given by (4.6) and
(4.7), respectively.

Proor. We follow the arguments given by Billingsby [2], pages 144-150. In
Section 3 we obtained the result that the process {X(¢)} has continuous sample
paths. The well-known invariance principle (2], page 137) implies that

(5.19) Ty = N¥supo<,< | On(1)—1
has a limiting distribution. Therefore

(5.20) Supoétél |®N(t)—t| _)PO'
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The function ®: ¢t — ¢ lies in CI[0, 1]. Set Xy(¢) = N~*(n™(t)— Np). Then by
Theorem 4.4 above and by [2], page 27,

(5.21) Xy, Dy) =p (X, D),

where — |, stands for weak convergence.

This implies

(5.22) XN(@n(1) = Xy' () »p X(1). [

If {M (i)} is stationary, then set
Xy(1) = N"*(M,[Ni]-Np).
Carrying out the same steps as in the proof of Theorem 5.2 one obtains

THEOREM 5.3. As N — o0, {X'(t)} converges weakly to {X(t)}, where {X(t)}
is the O.U. process with mean 0 and covariance given by (4.10).

6. Examples.

Traffic model. Suppose that N vehicles are travelling on a K-lane uni-directional
freeway with n, vehicles on lane k at time ¢, and that each vehicle in lane k has
probability 1,At+o0(At) of shifting lanes during (¢, £+ At). Assume furthermore
that a shifting vehicle from lane k£ moves into lane k—1 or k+1 with probability
qx> 1—g, respectively, that the probability of more than one change by a vehicle
during (¢, 1+ At) is of order o(At), and that the vehicles act independently. Then
n(t) = (ny(2), ---, ng(t)), the numbers of vehicles on the K lanes, is a stochastic
process of the type considered in Section 2. The matrix Q has elements

G = Adx if I=k-1,

(6.1) = -1 if I=k,
=L(1—qy) if I=k+1,

=0 -otherwise;

where 0 < g, <1 for 1 <k <K, g, =0, g¢, = 1. Such a Q has K different
real characteristic roots y,, the largest one being 0 ([8], page 333). Let p be the
left eigenvector of Q corresponding to y; = 0 and such that ), p, = 1, and IT
be the diagonal matrix with elements IT,, = p,. Then there exists a matrix M with

the properties
(6.2) M~'QM =D, MTl =M1,

where D is diagonal (see [8], page 326). Let n‘™(0) = Np+N*x,. Thus by
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Theorem 4.4 the sequence of stochastic processes Xy(t) = N *n®™(t)— Np)

converges weakly to an O.U. process X(¢) with

(6.3) EX(1) = 2"

(6.4) EX(NX'()=T—e?"Me® =T—(M"') e” M IIM > M~*
=T1—TIIM > M'TI.

It follows from these formulas, that, after a disturbance of the system, exp (u,?)
is the rate of return to equilibrium, where y, is the largest characteristic root < 0.

Iglehardt’s urn model. Iglehardt [5] obtained a weak convergence theorem for
the particular discrete time urn model, in which each ball has the same probability
of being drawn, and it is then placed into the kth urn with probability p, , irrespective
of what urn it came from. This model is then a special case of our discrete-time
chain {My(i)} with

(6.5) P =Dy
The vector p, of equilibrium probabilities is the solution of
(6.6) o' P=po,

and its solution is p,’ = p’, where p' = (p;, -+, px). Let My(0) = Np+Nix,,
Y Xox = 0; thus, by Theorem 5.2 the sequence N ~*(My([Nt])—Np), 0 < t < 1,
converges weakly to the O.U. process {X(¢); 0 < ¢ < 1} with mean and covariance
given by (4.6) and (4.7). Hence

6.7) EX(t) = exp(Q't)xo = exp((P—1)t)x, = exp(—1)x,,
since P* = P for all positive integers k,
exp(Pt) =(I—P)+exp(t)P, and  P'x,=0.
Also
(6.8) CovX(t) =M—exp((P'—I)t)[Texp((P—1)t) = (1 —exp(—2))[I(I - P),

which follows easily from the fact that P'TIP = P'pp’ = pp’ = IIP. (Il is the
diagonal matrix with elements IT,, = p,.) The moments (6.7) and (6.8) are those
obtained by Iglehardt.

Theorem 5.3 gives us a similar result for the corresponding sequence of stationary
chains. The limit process has moments

(6.9) EX(t) =0, EX(t)X(t+s) = exp(—s)(I1—pp’).
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