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THE EXACT ERROR IN SPECTRUM ESTIMATES

By HENRY R. NEAVE
Nottingham University

Since the asymptotic expression for the variance of estimators of the
spectrum of a stationary time series was derived, it has often been used as an
approximation to the variance of estimators using finite samples. Little
attempt seems to have been made to investigate the nature of the con-
vergence to the asymptotic form. In this paper an exact expression for the
variance is derived on the additional assumption that the time series is a
normal process, and is used to study estimators of various different spectra.
A philosophy for choosing spectrum estimators is proposed which attempts
to place the two forms of error, bias and variance, in their true perspective.

1. Background. Let {X,; 7= - -2, —1,0, 1, 2, ---} be a real-valued, weakly
stationary, normally distributed, discrete stochastic process (time series) with zero
mean, covariance function R(v) = E[X,X,;,] = R(—v), and spectral density

(1.1) fAw) = iR(U)COS v (—t=w=n).
The relation
(1.2) R(v) = [* . f(w)cosvw dw

holds. Given a sample {X,; ¢ = 1, 2, --- T’} from the process, the almost universally
adopted form of spectrum estimator is

17-1
(1.3) fr¥(w) = - Y. ki*(v)Ry(v)cosvw (—r=w=n)
v=0
where Rp(v) is the sample covariance function
1T-v
(14) Ri(v) =7 ¥ XiXisn O=v=T),
-
and k1*(v) is the lag window, usually formed from a lag window generator k*(-) by
v
1.5 kr*(v) = k¥ — 0
(15) () (M> (v #0)
k+*@0) = 0.5,

where k*(-) is a nonnegative, bounded, even function satisfying k*(0) = 0 if
0 > 1, and where M is the fruncation point of the estimator. It is shown in Neave
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962 HENRY R. NEAVE

(1970) that asymptotically as 7 — oo and M;/T — A, a nonnegative constant, the
variance of f*(w) is given by

(1.6) limy., Var [f;* (w)] =2 % (1480 o+ 0 ) () Jok**(0)(1 — 20) db

where 0,,, = 1 if a = b and 0 otherwise. A better-known asymptotic result has
A= 01in (1.6).

It will be convenient subsequently to use the unbiased sample covariance
Sfunction

. 1 T-v
(L.7) Ri(v) = 77— Y X X4, (0<Sv<T)
T—v /=

in our spectrum estimators. Accordingly we define

. 17-1
(1.8) Fr(w) = - ZO k1(v)Ry(v)cos vo.
It is apparent that f;*(w) = fr() if and only if

kr(v) = (1=0/T)ks*(0).

Recalling that k;*(-) is generated from the function k*(-) by (1.5), clearly
kr(-) may be similarly generated from k(0) = (1—A0)k*(0) where 1 = My/T.
Assuming consistency of the estimator, which from (1.6) requires My/T — 0,
k*(-) and k(-) are asymptotically identical.

2. The exact expression for the variance. We shall be using the expression (1.8)

for the spectrum estimator. Since (1.3) is much more common, we shall assume
that (1.9) and (1.10) hold so that f(w) = fr*(w). Then

(2.1) E[fi(w)] = }IE:ZO k1(v)R(v) cos v,

22)  E[f¥o)] :;15 S8 by (0)lea () ELR 5 (6) Ry ()] c05 v c0s v,

v,u=0

Since Var [fr(»)] = E[fr*(®)]—{E[J1(®)]}?, we have

~ 1 Mt ~ ~
(2.3) Var[fy(w)] = = Y > kp(v)k(u) Cov [R(v), Rp(u)] cosvw cos uw

where
(24 Cov [Ry(v), Ry(w)] = E[R1(v)R1 ()]~ R(v)R(u).
Now

T-vT—u

(25) E[R;(v)R(u)] :(T'TUSI(_T———?),; Y E[X X, X X0l

1s5=1
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It is proved in Isserlis (1918) that for normally distributed variates 4, B, C, D,
having zero means,

(2.6) E[ABCD] = E[AB]E[CD]+ E[AC]E[BD]+ E[AD]E[BC].
Writing X,, X, X5, X540, for 4, B, C, D, (2.4), (2.5) and (2.6) lead to

T—vT—u
(2.7)  Cov[Ry(v), Ry(u)] = T=o)(T=u) v)(T 0,2 Z Zl {R(t—s)R(t—s+v—u)
+R(t—s—u)R(t—s+0)}.
Using the fact that R(-) is even, the change of variable x = 7—s produces

(2.8) Cov [R(v),R;(u)] = L uZL {R(x)R(x+v—u)+R(u—x)R(x+0)}
2 T—-v

MCEDCEn e
“{R(x)R(x+v—u)+ R(x—u)R(x+v)},

taking v < w. The combination of (2.3) and (2.8) produces the result

. 2 [ Mr ki2(v)cos® vo (T—
Var[fr(w)] = Pl: ZO (T—0v)? {

v=

(T—v—x)

2(0)+ R*(v)]

+ :gr(T—v —x)[R*(x)+R(x—v)R(x +v)]}

kr(v)k (1) cos vw cos uw
Ogv<usMr (T—U)(T—LI)

(2.9) +2

{T_ L [R(x)R(x +v— 1)+ R(t—x)R(x +0)]
+ Z (T— v—x)[R(x)R(x+v—u)+R(x—u)R(x+ v)]}]

xX=u—v+

This expression enables us to compute the exact variance of the estimator of any
given spectrum corresponding to a normal stochastic process; the covariance
function R(-) is calculated from (1.2). The remainder of the paper discusses some
actual computations of this type, and leads to some suggested modes of thought
concerning the choices of spectrum estimators.

3. A computer study. A computer study was carried out to investigate the
properties of estimators of the four spectra illustrated in Figure 1 (a-d) referred
to in sequence by the letters 4, B, C, D. A program was written to compute the
variance, the expected value, the bias, and hence the mean square error, for each
spectrum, given sample lengths 7 of 30, 60, 90 and 120, at the frequencies

3.1) w:li;]—o, Jj=0,1,, 180
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and using the lag window generators

1—60%+60°, 0O=6<19
3.2 (1) Parzen kp*(0) =
2(1-0)3, GF=0=0.
(3.3) (2) Tukey k;*(0) = (1 + cos n0) ©O=0=<1
with ratios of truncation point to sample size:
M
(34 TT =.1,-2 and 1.

The results are summarized in Table 1 (a—-d) which give the averages of the squared
bias, the variance and the mean square error in each case. Throughout, the results
have been scaled as percentages relative to

w5170+ 3 1)+ 4°()
180 |° & \1so) T2 m
as 100 per cent, this being an approximation from the frequencies considered of

1/ {5 f*() do. This base was chosen because, by (1.6), the average variance of the
spectrum estimator is asymptotically proportional to it.

Fi1G. 1a. Spectrum A.



F1G. 1b. Spectrum B.

FiG. 1c. Spectrum C.
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Fic. 1d. Spectrum D.

TABLE 1(a)
Parzen Tukey
Sample M
T

i — 1 2 .1 2 1

size 7 3 1
Square Bias  22.91 17.25 15.14  19.41 16.09 12.99
30 Variance 8.66 14.04  20.19 10.89 17.76  25.98
M.S.E. 31.57 3130 3533 3031 33.85 38.97
Square Bias  17.09 13.30 6.46  15.96 9.60 3.21
60 Variance 7.29 12.24  18.78 9.26 16.12  24.89
M.S.E. 24.38 25.54 2524 2522 2572 28.10
Square Bias  15.48 7.53 240 13.80 3.70 1.02
90 Variance 6.62 11.74  18.32 8.60 15.68 2442
M.S.E. 2210 1927 2072 2240 19.39 2543
Square Bias  13.12 3.90 1.06 9.23 1.60 0.43
120 Variance 6.29 11.49 18.04 8.34  15.41 24.13
M.S.E. 19.40 15.39 19.11 17.57 17.01 24.56
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TABLE 1(b)
Parzen Tukey
Sample
M.
size == 1 2 1 1 2 1
T
Square Bias 15.58  10.15 7.13 11.84 9.10 4.48
30 Variance 8.89 1440 20.38 11.19 18.05 2594
M.S.E. 2447 2455 27.52  23.03 27.15 30.42
Square Bias  10.00 5.13 1.66 8.97 2.56 0.70
60 Variance 738  12.09 18.28 9.30 15.73 2421
M.S.E. 17.39 17.22 1993 1827 1829 2492
Square Bias  7.65 1.96 0.52 4.93 0.77 0.21
90 Variance 6.59 11.38 17.75 844 1515 23.78
M.S.E. 1424 1334 1827  13.37 15.92  24.00
Square Bias  4.93 0.86 0.22 2.31 0.31 0.09
120 Variance 6.17 11.08 17.53 8.07 1491  23.59
M.S.E. 11.09 1194 1774 1039 1522 23.68
TABLE 1(c)
Parzen Tukey
Saxpple M, 1 1
size - = 1 2 1 1 2 1
Square Bias  53.57  31.34  17.03 44.66 2247 10.64
30 Variance 9.76  18.35 2826 1324 2448  36.71
M.S.E. 63.34  49.69 4529 5790 4695 4735
Square Bias  30.60  11.90 4,55  21.59 6.62 222
60 Variance 9.72 17.63  26.15 13.06 2297 33.31
M.S.E. 40.32  29.53. 30.70 3465 29.59 3553
Square Bias 18.25 5.24 1.66 11.10 245 0.73
90 Variance 946  16.62 2427 12.54 21.38  30.86
M.S.E. 2771 21.85 2592 23.64 2383 31.59
Square Bias  11.33 2.60 0.75 6.07 1.09 0.32-
120 Variance 9.15 1574 2292 1199 20.17 29.27
M.S.E. 20.48 18.34 2367 18.06 21.25 29.59
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TABLE 1(d)
Parzen Tukey
Sample
M.
size _TT = 1 2 2 1 2 !

Square Bias  6.98 3.74 2.26 4.90 2.90 1.51
30 Variance 893 14.07 20.14 11.12  17.67 2595

M.S.E. 15.91 17.81 2240  16.02  20.56  27.46
Square Bias  3.65 1.66 0.82 2.80 1.05 0.53
60 Variance 7.16 1196  18.32 9.04 1572 2436
M.S.E. 10.81 1363  19.14 11.84 16.77 24.88

Square Bias  2.40 0.90 0.42 1.56 0.57 0.24
90 Variance 6.42 11.36 17.82 8.35 1519 2390

M.S.E. 8.82 1226 18.24 9.91 1577 2414
Square Bias  1.60 0.57 0.24 0.99 0.34 0.12
120 Variance 6.08 11.10 17.59 8.04 1496  23.69
MS.E. 7.68 11.67 17.82 9.03 1530  23.81

4. General considerations. The average error of an estimator 0 of a value 0
has two components, its bias E[0]—0 and its variance E(0— E[0])*>. The mean
square error is one convenient combination of these two, given by

4.1) E(0—0)* = E*(0—0)+ E(0— E[0))?
= bias? + variance.

Recommendations are to be found in several publications (e.g. Granger and
Hatanaka (1964) page 61; Parzen (1964) page 942) for values of the ratio M/T.
Such an approach is in effect taking account only of the (asymptotic) variance of
the estimator (cf. (1.6)) and not of the bias. The bias depends essentially on M,
and only very slightly on T'; for by (2.1) and (1.10), the expected value of the stan-
dard type of estimator (1.3) is

(4.2) E[fr¥(w)] = 7—11 lg ko * </—\-/]v—><1 - U—AT/{—T> R(v)cos vw.

In contrast to the above, we submit that in fact one should concentrate
initially on how large M; needs to be in order that the bias be sufficiently small.
This approach is more allied to the discussions of bandwidth by e.g. Priestley
(1962), (1965) and Jenkins and Watts (1968) page 284. There is no point in advocat-
ing that the variance (and thus My /T) should be small if the estimator’s mean is not
close to the true value; one then has a precise estimator of the wrong quantity.
But even bandwidth cannot tell the complete story. We believe that a user of spectral
methods should familiarise himself with (4.2), computing and plotting E[f;*(w)]
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for various spectra and values of M,;—the factor (1 —vM/T) can be approxi-
mated to one without significant loss, thus making the expression independent of
T. Simple methods for doing this are suggested in Appendix 1. In particular, one
can then get a feeling for what values of My are needed in order that peaks of
various widths be present at least in the expected value curve—if they are not
adequately represented there, one cannot expect the estimator to have them.
Some typical graphs are shown in Figure 2 of expected value curves for estimators
of spectrum A with the Tukey generator (3.3). In this case clearly M, = 10 is of
no use, while the main characteristics are beginning to appear at M = 20, and the
fit is reasonably close with M; = 40. For spectra having more and/or narrower
peaks, larger values of M, would be necessary. Since k,*(0) damps down quicker
than A;*(0), use of the Parzen generator also requires higher values of M.

F1G. 2. Expected value curves.

One can thus obtain an idea of the size of My which will satisfy one’s individual
requirements with respect to bias. Then if the sample has already been taken, the
variance of the resulting estimator can be roughly approximated by (1.6), or more
closely approximated by taking into account the findings of Section 5 with regard
to the exact behaviour of the variance. If this variance seems large enough to
destroy the degree of precision required, then it is unlikely that any estimator will
have satisfactory properties: to lower M, would result in the expected value curve
being too blurred, and to increase M, would result in even higher variance but
with little improvement to the bias. It is much more sensible to carry out this
investigation before the sample is taken, and then to choose 7 so that the variance
is sufficiently small for the desired region of values of M.
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5. Comments on the computer study. The ““desired region of values of M’ referred
to in the previous section obviously depends on the intricacy of the spectrum and
how much one is looking for. The figures of squared bias in Table I certainly do
not present a complete picture. For example the smallest proportionate bias is
for spectrum D, although the narrower peaks are only just beginning to show in
the expected value curve at M, = 40 for the Tukey generator. The reason for the
small bias is that the spectrum mainly consists of

(5.1) flw) = A(1+ cos w)

which is thus well approximated by just the first two terms of its Fourier series.

It is regrettably impractical to publish the many graphs actually plotted in the
computer study; but a complete set of graphs of the expected values and standard
deviations for each of the 24 estimators of spectrum A are given in Neave (1968).
As an example though, Figure 3 shows the graphs for the Tukey estimator with
M, = 12and T = 60.

The fact that the expected value curve is a smoothed version of the true spectrum
is well-known (i.e. the peaks are not so high as they should be, and the troughs not
so deep; further, the influence of narrow peaks and troughs spreads into neighbor-
ing frequencies). What is less well known, but is apparent from this study, is that,
away from w = 0 and 7, the same is true of the standard deviation, after the
application of a scale factor, which from (1.6) is asymptotically

My [t Moy *
(5.2) {2 —T—L k (0)(1—7 0) d()} .

Thus, away from the end-points, we verify the observation by Granger and Hughes
(1968) that the variance is more truly proportional to E*[f;*(w)] than to f*(w)
itself. The rise at the end-points indicated by (1.6) is visible in several cases, though
not usually by quite as much as the factor of 2* suggested by the asymptotic result.
However, instead of being restricted to the end-points, this rise is also seen to
contribute extensively to the standard deviation at neighboring frequencies, an
effect of the overall smoothing just mentioned. In fact the ‘“‘contamination’ or
“leakage” due to the standard deviation curve’s smoothing often appears to affect
at least as wide a frequency band as that of the expected value function (cf.
Figure 2). Its effect is shown impressively in the case of spectrum C which is of a
first-order autoregressive process. Table‘1 shows that the variance in this case is
proportionally much greater than in the other cases. This is almost entirely due
to the peak in the spectrum at o = 0 being reinforced by the factor of about
two, and the variance function being slow to throw off the effects of this factor as
w increases. To illustrate this effect, Figure 4 shows the standard deviation curve
for the Parzen estimator with M, = 12, T'= 120 and the asymptotic standard
deviation with M4/T = .1; it is apparent that for the low frequency range, the
true standard deviation is much greater than the approximation would indicate.
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FiG. 3. Properties of a particular estimator.

Actual

—_ _ Asymptotic

FI1G. 4. Standard deviation with T = 120, M, = 12 for spectrum C.
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Due to the normalisation referred to in Section 3, the figures for the average
variance in Table 1 should tend to limits of
M, (! M
(5.3) —Tj kz(a)(l - 0) dO x 100,
T Jo T

(but double at the end points), and these limits are shown in Table 2. For reference,
the classical approximations

1
(5.4) 2My J k2(0) d0 x 100%
T Jo
are also given. It is seen that invariably the actual average variance exceeds the
approximation, but for fixed M/T it decreases steadily as 7" increases. This is in
contrast to the conclusions of Granger and Hughes (op. cit.), but in Appendix 2
we offer evidence that their results are incorrect. It is worth noticing that the classical
approximations (5.4), which are larger than the more relevant (5.3), actually do

TABLE 2

My [ My [
L 22— | KROU-20d0 2= | KX0)d0
T 0 T 0

.1 5.301% 5.383%
Parzen .2 10.418 9%, 10.786 %,
1 16.953% 17.977%
.1 7.3289% 7.500 %
Tukey 2 14.310%; 15.000 %
1 23.083% 25.000%;

overestimate the figures for the higher values of 7. It is also interesting to observe
that, conversely to what might be expected, the larger the value of M,/T, the
quicker is the convergence to the limit. This is because several of the terms dis-
pensed with during the proof of (1.6) are of the order M~ ': in other words, for
fixed 7, the smaller the value of M;/T, the worse is the asymptotic formula as an
approximation.

6. Conclusions. In conclusion, we reemphasize the need for awareness of just
how much it is possible to learn from spectrum estimators with different truncation
points; and to use this awareness to decide upon an adequate sample size. One
should also be aware of the increased variability in quite substantial neighborhoods
of both peaks and of the end-point frequencies. It appears further from this study
and from Neave (1970) that the more relevant asymptotic approximation (1.6) for
the variance is, on average, an underestimate of the true variance. In fact the true
variance is usually only less than the approximation in the centre of spectral peaks:
this is little comfort, seeing that the bias is comparatively large in these regions.
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The results of this study tend to favor prewhitening (Blackman and Tukey
(1958)), which would reduce the effect of the “double leakage’” from peaks in both
expected value and variability.

APPENDIX 1

Spectrum elements. The study of expected value functions suggested in
Section 4 may be easily carried out using an idea from the computer study
described. Basically this consists of specifying a few simple forms of spectrum,
which we call spectrum elements, and then forming more complicated spectra by
superposition of such spectrum elements. It is easy to see from (1.2) that the ele-

mentary covariances sum to give the covariance structure of the final spectrum,
thus

YiRw) = [_EY; fi{w) cos v dw.
For the purpose of this study, four spectrum elements were used. Two of these are
important as spectra in their own right, the other two are unlikely to occur
individually in practice. However it is possible to closely approximate many spectra

of interest by a sum of a fairly small number of these elements. The four elements
(defined over (0, 7)) and their covariance functions were

(a) Constant (white noise process). f(w) = c,
R(0) = 27nc; \
R() =0 (v #0).
(b) First order autoregressive. This has the covariance function:
R(v) = R(O)"!
for some « on 0 < o < I; it stems from the generating process
X, =o0X,_(+¢
where ¢, is a white noise process. Then
RO)  1-d?
2 14+a?—20cosw

(¢c) Half peak cosine wave. This is defined by the spectrum

fw) = 14 <1+cos 3") ( < a)
a
= 0, (w = a)
. 2 T
R(l)) = A sin Da'm)’ <|v| # 0, 5>,

R(0) = Aa,

T . T .
R <—> = 1+A4a if - isan integer.
a a
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(d) Whole peak cosine wave. This is defined by the spectrum
flw) =34 [1+COS-Z(w—wo)], (wop—a = w £ wo+a,)

= 0, (elsewhere),

where 0 £ wo—a < wy+a £ n. Then

2A7? . T
R(v) = o cOs vwy, sin va, o] # 0, =)
R(0) = 2A4a,

n T . T .
R <—> = Aa cos (— a)()) if - is an integer.
a a a

These results are all proved in Neave (1968).

A referee has pointed out that in order to detect strict harmonics, one needs to
use high truncation points. To examine such situations, one should include among
the study of expected value functions some spectra with very high and narrow peaks,
if it is at all possible that processes being studied may have deterministic com-
ponents. In practice, one should test for this possibility by periodogram analysis
(Fisher (1929)).

APPENDIX 2

The white noise case. In the white noise case, i.e. where R(v) = 0 for all non-
zero v, (2.9) reduces to

1 1 Mr 1
vy o 2 — —_— 2 2
Var[f(0)] = 2R (O){2T+v;1 T, kr (v)cos vw}.
Making use of (1.9) to obtain the variance of the usual estimator (1.3), we have
Var[ /()] = RZ(O){2T+T Z k *2(v)<1—T> cos vw}
which by (1.5) gives
1 v
It is then easy to show that as T — oo with MT/T - 2,
Var[fr¥(w)] ~ 57 RZ(O) = J k*(0)(1— 26) d6

for w # 0 or m, and double this at the exceptional points. Since in the white noise
case f(w) = (2n) ' R(0), the asymptotic formula (1.6) is obtained.
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Various numerical illustrations of the above formula are given in Neave (1970),
and again it is interesting to check how far the doubling effect at the end-points
leaks into neighboring frequencies; for example the effect is still apparent at
o = 7/6 in the case of the Parzen generator with M7 = 10 and T = 50. In every
case the true variance exceeds the relevant asymptotic approximation—which is
consistent with the observations made in Section 5.

It is thus somewhat disturbing to find that Granger and Hughes (1968) report
simulation results indicating that the asymptotic formula over- estimates the true
variance by over 50 % in the central frequencies (in the case of the Parzen estimator
with M7 = 10, T = 30). We investigate these results in detail in a forthcoming
paper (Neave, 1971), and are forced to the conclusion, from theoretical and
empirical evidence, that their results are in considerable error. Their paper goes
on to consider various cross-spectral quantities, but in view of these initial mistakes,
their results and conclusions must be regarded with some suspicion.
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