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THE TOPOLOGY OF DISTINGUISHABILITY'

By Lroyp FisHER AND JOHN W. VAN NESS
University of Washington

1. Introduction. Hoeffding and Wolfowitz [6] consider the following problem.
Independent identically distributed observations are sequentially taken on a random
vector X with distribution function F. All that is known is that F belongs to a given
family #. It is desired to eventually decide either Fe ¥ or F e 5#, where ¢ and
A are disjoint subsets of Z, in such a way that if fe @ U # the probability of
error is less than any preassigned number greater than zero.

Freedman [4] studies a modification of this problem which supposes that F is
known only to be a member of a countable family # and it is desired to eventually
decide with prescribed accuracy which member of ¢ is F. This same problem is
also considered in [2] and [3].

In this paper the framework is such that one would like to distinguish between
a countable number of families of probability distributions, thus including both
of the approaches mentioned above. Section 2 shows that under certain restrictions
there is an appropriate topology associated with this question. The results of
Section 2, although posed in a more general framework than Freedman’s work,
are essentially an easy extension of his paper. LeCam and Schwartz [8] consider
estimation problems which are relevant to distinguishability by appropriate
modifications.

Section 3 considers the problem of the metrizability of the topology considered.
Necessary and sufficient conditions (that are somewhat difficult to apply) are
given. An important example is given to show that often the topology may be
nonmetrizable. The remainders of Section 3 and Section 4 give cases where the
topology is metrizable and describe appropriate metrics.

2. The topology of distinguishability. Let Q be a set and &/, = &, ¢ &3 < -
be a non-decreasing sequence of o-fields on Q. Let o = | ;2 7, < & where &
is a o-field. Take .# to be a set of probability measures on (Q, %).

Let € = {C,, a € A} be a family of disjoint subsets of .#. A decision rule for ¥

written ®, is a collection of functions ¢,*, a € A, n = 1, 2, --- on Q with the follow-
ing properties:

(a) each ¢,%(-) is a real measurablefunction on (Q, <7,),
(b) é,* 2 0,

© ¢%er 2 b and

(d) ZaeA(ﬁna <l,n=12, -
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THE TOPOLOGY OF DISTINGUISHABILITY 1263

The quantity ¢,*(w) is interpreted as the probability given w that one decides on or
before the nth trial that the underlying measure is a point in C,. Thus if A4 is
denumerable 1-Y,.,¢,%(w) is the probability given w that we will have to
continue observing beyond time n. Condition (c) is a consistency condition. Denote
by R(%) the collection of all decision rules for %.

The distinguishability of € under @ is defined to be

D(®,%) =inf, 4inf, . ¢ lim, ., fo &, dp.
The distinguishability of € is defined to be:
D(%) = supo ¢ re) D(®,%).

We say ¥ is distinguishable if D(%) = 1.

THEOREM 2.1. Let ¥ = {C,, a € A} be such that A is countable and each C, is a
countable subset of M. Then the following are equivalent:

(i) ¥ is distinguishable.

(i) For every a € A and every pe C,, 2 = {{u}, \Up2.Cp} is distinguishable.

(iii) For every a€ A, 2 = {C,, U,,HC,;} is distinguishable.

(iv) For every a€ A, every pe C,, and every 0 < ¢ < 1 there exists a Ge o
such that {A: [MG)— (@) < 1=¢} 0 (Jp2.Cs = &.

PRrOOF. (i) implies (iii). Let ¢ > 0 be given. Choose @ such that D(®, €) > 1 —e.
Let ©%(2) = {¢,% ¢,"}-, where ¢,” = 3 ;... is measurable since the sum is
countable. Then

D((D*: @) ; min [infu €Cq limn—mo j ¢nad”: infue Up#aCB limn-mo jzp;ﬁa ¢nﬂ dﬂ]
= D(D,%)>1-¢
since
nevp£aCp 1imn—+oo j2ﬂ¢a (pnﬂ d:u g infﬂo#ainfueclgo limn-><zo j ¢nﬁo d.u

(iii) implies (ii). Note that u € C, implies lim,, ,[¢,*du = inf, . ¢, lim,_ ¢, dA.

inf,

(i) implies (iv). By (ii), choose ¢,' and ¢,%, n = 1, 2, --- such that
lim, ., [ ¢, du>1—¢/2.
inf, o, e iMoo | 6,2 di > 1-5/2.

Pick m, such that if m = mofd,'du > 1—¢/2 and let G = {w: ¢,,'(®) Z 1}, then
1—¢/2 < [¢,," du < (G°)/2+p(G) = 3+ u(G)/2 (where G is the complement of
G) or u(G) > 1—e. Since ¢,' +¢,> < 1, and since there exists an n(x) such that
for A€ (Jp2aCpo n 2 n(x) and 1—¢/2 < (¢, dA, we have

1—¢2 < [¢,2dA < AG)2+A(G°) =1-4(G)/2

or A(G) < ¢ if m = n, which can be done by taking m sufficiently large.
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(iv) implies (i). Order the measures in { J,.4C, to form the sequence {u,};.
Given ¢ > 0, choose 4; € o7, such that u(4;) > 1—¢/2"*" and pi(4,) < &/2'+",
for all y;el);+,Cp where p; € C,. Since the 7, are non-decreasing, we may
without loss of generality assume that n; < n;,,. Let Bi=A,-—Uj<iAj and
D(a,n) =) uecan <nBi. If @,% is the indicator function of D(«, n) then 0 < ¢,%
o, < 9%, and ¢,* is measurable (Q, o7,). Since the sets D(a, n) are disjoint
Ywead < 1. Take @ = {¢,,a€d,n=1,2,--}.If y;€C,

limn—*oo j ¢na d.ux 2 Hi(D(OC, ni))'
But, D(«, n;) contains 4;—|)j<;4; where ( Jj<;A; is the union of the 4; such that
u; ¢ C,. Thus,
wi(D(ot,n)) > 1—gf2 1 =3 u(A)) > 1—¢[2F —g[2 > 1 —e.
Thus D(®,%) = 1—e. ]
Most of the research in distinguishability published to date is primarily con-

cerned with observing independent identically distributed random variables which

are governed by some unknown probability distribution. This paper will also
follow this pattern.

Let .#, be a set of probability measures on the measurable space (S, %) and let
Q=8SxSxSx--. o, is the o-field of subsets of Q generated from & by the
first n-coordinates, and .# consists of the product measures on Q generated by the
product of each of the elements of .#, with itself. If u e .#,, denote its product
measure in .4 by p. Restrict # to be the smallest o-field containing .«7. We will
frequently use one of the following conditions.

AssumPTION I. The quantities .# and (Q, &) are generated in the above manner.

AssumPTION II. Assumption I is satisfied, .S is a Polish space, and & is the class
of Borel sets.

Let 7 be the topology on .# given by pointwise convergence on 7. A subbase
for 7 is given by sets of the form {i: 1€ .#, |AG)—u(G)| < ¢} where G € ./,
ue A and ¢ > 0 are fixed.

THEOREM 2.2. Let Assumption 1 hold and € = {C,, a € A} have A countable and
each C, countable, then the following statements are equivalent:

(i) € is distinguishable.
(ii) For every a € A and every pe C,, {p} and | ) s24Cp are separated (), that
is, {u} N UBHC‘, = . (G denotes the T closure of G.)
(iii) For every a€ A, C, and | ) p+2Cp are separated, that is
€, Uﬂaeacﬂ) v n Uﬂ#acﬂ) = .
PRrooF. (ii) iff (iii). This is clear from the equations
CanUp#aCp = Unee. (3 0 U2 Cs)

CanUpCp = Uie up #cﬁ( C.n {4}).

and
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(i) implies (ii). Condition (iv) of Theorem 2.1 gives a neighborhood of p e C,
which has empty intersection with  J;.,Cp.

(ii) implies (i). If (ii) holds and u € C,, we may find an ¢ > 0 and sets 4, ---, 4,
such that

(A |AA)—n(A)| <ei—1, - n}nUpzaCp =T
since sets of this type form a base for 7. Pick an m such that 4;€ 7, j = 1, -+, n.
By observing data in blocks of m and observing the proportion of points in each
A; we may find a set 4 € .27, for some k such that u(4) > 1—¢ and 0(4) < ¢ for
0 not in
{A:|M(A4)—n(A)| <&i=1,2,-,n}.

Thus (ii) implies (iv) of Theorem 2.1.

The proof of the following is contained in the above proof.

COROLLARY 2.3. Under Assumption 1, sets of the form {i: |}.(A)—;1(A)| < g},
Ae s, e>0, pe M form a base for 7.

3. Metrizability of 7. In this section we examine the question of metrizing the
topology .7. First, it is shown that J is not metrizable in many cases of interest.
Secondly, necessary and sufficient conditions on .# and % are given for metriz-
ability. Under I, let 97, be the topology on .# induced by the map u — p. It is
then seen that the topology 7, lies between the weak and strong topologies, and
conditions are considered which imply that the two topologies are the same, thus
giving the metrizability.

To show the nonmetrizability, we will use the following:

LeMMA 3.1. Let u be a probability measure on (S, F). Let u, be the random sample
measure obtained by sampling according to u independently n times. For any fixed
positive integer k and measure A on (S, F) let A be the kth product measure generated
by 1 on the product measurable space (S*, F*). Then for any A € F*

P{(u,)(4) > u(4)} = 1.

Proor. The random set function yu,*(-) is a function of Xy, ---, X,, (i.i.d. (S, &, n)
random variables); it puts mass 1/n* at each of the n* k-tuples with entries from
Xy, -, X,. (Note: If X; = X;,i #j we “bookkeep” these as separate entries.)
Single point sets may not be in #*, so strictly speaking we do not put mass 1/n*
at a point in general, but add 1/n* to the measure of each set in #* containing the
point.

We form a new sequence of random variables Y, Y,, --- as follows. As we
consider the n+ Ist sample point X, . (n+1 = k) we form the k!(}_,) k-tuples
containing X, ., that may be formed from X, ---, X, ; with no X, repeated in
the k-tuple. Order these k-tuples and add a new Y; for each one. For Y, corre-
sponding to (X, , ---, X,,),

Y, =1 if (X, X,)€ed,

=0 otherwisc.
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Let Z, = Y;—u*(4). Then E(Z;) = 0, and the Z,s have uniformly bounded
variances, since |Z;| < 1. Set S, = Y {-,Z,/n. We estimate |E(Z,S,)|. E(Z,S,) =
Y ' E(Z,Z,)/n. Let Z, occur in the block when the jth sample point was considered
so that

KI(3Y) < n < kI()).

Now k!(’¥) of the Z;, i < n correspond to k-tuples whose entries do not occur
in the k-tuple corresponding to Z,. For such Z;, E(Z,Z,) = E(Z)E(Z,) = 0. Thus,
|E(Z,S,)| = kU@~ C)in < LD -CEI0E") =l

for some ¢ > 0. Since n < k() < j*
E(Z,,S,,) < c/nt*,
Therefore the strong law of large numbers holds for S, (see Parzen [11], Theorem
2B, page 420), i.e. P(S,— 0) = 1.
The k-tuples which have different entries coming from the same sample point

can be neglected since k!(f)/n* — 1 as n — oo. The proof is completed by noting
that

L=k!()/n* +(k !(Z)/n")(Sk!(Z) + 14(4))
z 1, (4) 2 (k!(Z)/n")(Sk;(Dwk(A))‘ 0
The following shows that 7 is not metrizable in many cases of interest.

THEOREM 3.2. Assume that 11 holds and that M | is the set of all Borel probability
measures on S, then I is metrizable iff S is countable.

Proor. The if statement follows from the subsequent portions of this section.

Suppose 7 is metrizable and S is uncountable. Let p be a nonatomic measure
on (S, &) (such a y exists, see Parthasarathy [10], Theorem 8.1, page 53). Since 7
is metrizable, it is first countable and by Corollary 2.3 we may find a sequence of
sets A, A,, --+ in &7 such that if

D, = {A:|u(4,)— MA4,)| < 1/n}

then {D,} is a base for the neighborhood system of u with respect to ;. By
Lemma 3.1 we may find a discrete measure , € .4, such that |u,(4,)—pu(4,)| < 1/n.
Let s, be the support of g, (a finite set) and let 4 = U,‘,"’:ls,,. Then A is countable
and can be considered as a subset of .«7,. But |u(4) — u,(A)| = 1 so that u is not a
limit point of {u,} %, while each member of the local base contains a member of
{i,}2= 1, giving a contradiction. []

THEOREM 3.3. Let # be the o-field generated by o7, then (M, T) is a Tychonoff
space and the following statements are equivalent :
(1) T is metrizable.
(ii)  has a a-locally finite base.
(iii) J has a o-discrete base.
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Furthermore, the following two statements are equivalent:
(i) J is second countable.

(i) J is separable and metrizable.

PRrROOF. # is given the topology of pointwise convergence as a subset of the
unit cube [0, 1]¥, that is each coordinate corresponds to a set in /. The map is
one-to-one due to the assumption on #. By Kelley [7], Theorem 7, page 118,
(A, T) is a Tychonoff space. The space is thus 7| and completely regular and
hence regular. The first and second sets of equivalences thus follow respectively
from Theorems 18 and 17, Kelley [7] pages 125-127. []

COROLLARY 3.4. Under 1 if S is countable and every single point set is in & then
T is metrizable and separable.

PRroOF. The space obviously has a countable base.

THEOREM 3.4. Let 1 hold and I be second countable, then the following are
equivalent:
(i) € = {C,, a € A} is distinguishable.
(ii) For every a € A and every ue C,, {u} and Uﬁ¢aCﬂ are separated.
(iii) For every o € A, C, and | ) p#4Cp are separated.

Proor. The equivalence of (ii) and (iii) follows as in the proof of Theorem 2.2.

To show (ii) implies (i), we first note that J is second countable so that any
open cover of a set has a countable subcover.

Next we will show that 4 must be a countable set. Define D(a) = UI,MCI,.
Let d be a metric for (#, ) and H = {p;;i = 1,2, ---} be a dense set. Choose
u, € C,, then d(p,, D(x)) > 0. With each p, associate a p;,) € H such that
d(p,s 1) < d(p,, D(@))/2. Note that if B # a, then p;q) # p;4 and A is in a
one-to-one correspondence with a countable set.

For fixed o € 4, cover C, in the following manner. If y € C, then d(u, D(2)) > 0
and by Corollary 2.3 we may find a B € <, (for some m) and an ¢ > O such that

{A:|A(B)—p(B)| < e} = {A:d(p, &) < d(p, D(a))/2}.
If 4, = {4: |}L(B)—;t(B)] < ¢/2} then U”ECO‘AH covers C, and we pick a countable
subcovering. Do this for each C, and note that the coverings of C, and Cy, f # «,
are disjoint.

Order these countable subcoverings of a countable number of sets as 4, 45, -+,
where 4; = {A: [l(Bi)—;t,.(B,.)[ < ¢;/2}. By observing in blocks of m; and noting
the number of the resulting m-tuples which fall into B; we may find for e > 0 a
G, € &/ such that if

|A(B)—p(B)| < &2, then A(G)>1—g/2""!,
and if
[A(B)—p(B)| > &, then AG)<ef2"*".

The proof is completed similarly to the end of the proof of Theorem 2.1.
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To show that (i) implies (iii) we use the countability of 4 and proceed as in the
proof of Theorem 2.1. []

CoROLLARY. In Theorem 3.4, the statements imply A is a countable set.
Note that each C, may contain an uncountable number of elements.

DerINITION. Under II let ¥~ be the total variation topology on .#, and ¥ be
the weak topology on /.

More explicitly, 7~ is generated by metric v(u, 1) = sup,.s|u(4)—A(A)|. The
weak topology is generated by the Lévy—Prokhorov metric on .#,. Let d be a
metric which makes (S, &) complete and separable. Let x4 and A be Borel measures
on (S, &), then L(u, 4) is the infimum of those ¢ > 0 such that for each closed
set A,

1(A) < M(A%)+e
where 4° = {y: there is an x € 4 with d(x, y) < &}.
PROPOSITION 3.5. Under 11, ¥ = T, < 7.
PRroOF. This result is known. See for example, LeCam and Schwartz [8].

COROLLARY 3.6. Under 11 if & = ¥~ then T | () is metrizable and the Lévy-
Prokhorov or total variation metric may be used to give the topology.

The approach of Corollary 3.6 has been used in Fisher and Van Ness [2] to
metrize the topology of distinguishability. Another example is given by the follow-
ing theorem.

THEOREM 3.7. Assume that 11 holds with S a locally compact Abelian group having
a translation invariant metric p. If each p € M | has a density f, with respect to Haar
measure and if there exists a constant k > 0 such that for all pe #, and x, y € S,

'fu(x)_fu(y)l < kp(x7 y) then & = v .

ProoF. To show that & = ¥ it is sufficient to show that under the uniform
Lipschitz condition L(y,, @) — 0 iff v(u,, ) — 0 for sequences {y,}>_ , = 4, and
ne . Since v(u,, w) - 0 always implies L(u,, #) = 0 we need only show the
reverse implication.

Let F = sup {f(x): xe S, fis a density of some pe #,}. We first show that
F < . Define S(x,0) = {y:p(x,y) <0} and choose a ¢ such that ¢ =
jS(O,é) dx < oo (where dx is Haar measure and O is the identity of the group).
Then if ue A,

12 u(S(x,0)) = fscxanf () dy gl(f(x)— ko) s dy = (f (x) —kd)e

so that f(x) < kd+1/cand F < kdé+1/c.

Let fand g be densities of measures in .# . Suppose f(x) > g(x)+¢ for some x.
Choose 6 and y such that

N 0<d<y,

(ii) & < ¢/8k,

(iii) Jse0.5dx < o0,

(iv) jS(O,y)—-S(O,é)dx < (8/4F)§5(0,a)dx~
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By the translation invariance of Haar measure, (i), (ii), (iii), (iv), and the Lipschitz
condition we see that if 4 has density fand A has density g,

K(S(x,8))— A(S(x,7))
= Jsea (0= 9()) dy = f56.0)-scem 9(y) dy
Z [sea) (f(x) =0k —(g(x) +0k))dy — F [s(x,5)- 5001y 4¥
2 (8—25k) 55(0,6) dy—FjS(O,y)—S(O,&) dy
2 (¢/2) 50,5y > O.

Thus L(u, A) = min (y—39, (¢/2)fs0.5dy) > 0 for any pair u,Ae.#,; whose
densities differ by more than g, so that L(u,, ) - 0 implies that the densities
converge everywhere which in turn implies v(u,, ) = O by Scheffé’s Theorem
(Parthasarathy [10], page 206). []

COROLLARY 3.8. Under 11 if S is R" and the measures in M, have densities with
Jirst partial derivatives which are uniformly bounded then £ = V"

It should be noted that under II the set of all Borel probability measures on S
is a complete separable metric space under the weak topology and thus if ./, is a
subset such that & = ¥~, then J is separable.

The following is useful in proving the metrizability of in specific cases.

PROPOSITION 3.9. Under 11, let M| = )7y N,. Let L restricted to n, be 2,
similarly for ¥ and v ,. If £, = ¥ , for each n and if {p,}ne1 © {U} < A and
L(u,, p) — 0 implies there exists an m and N such that for all n =z N, p, €n,, and
WE Ny, then & = V",

Proor. Let L(u,, p) - 0 with u,; n = N and u in u,, where &£, = ¥',, then
(i ) = 0. 1

4. Examples for which .7 is metrizable. The preceding results describe special
cases for which J is metrizable. It is of interest to exhibit some possible ‘‘metrics
for distinguishability’” in other cases involving common families of probability
measures.

4.1. Stable distributions. Suppose .#, consists of all stable distributions on the
real line. Then the distributions in .#, have characteristic functions ¥ which can
be parametrized by four parameters («, f, 7, %) with parameter space

QE {(“,ﬁ,7,02)30<0€§2, Iﬂl §2—‘a, — 00 <y< 00,0'2 >0}

and with log ¥ writtenforO < a < land 1 < a < 2,

log‘I’(t)—lt(y+ = a)> 02|t|a{1+iﬁ(-2£—_a)tanga};

log¥(t) = ity—%—[t]{1+1-|-—|—~10g| |} for a=1; and



1270 LLOYD FISHER AND JOHN W. VAN NESS

2
ag
log\¥(t) = ity— E-tz for o=2.

This parametrization has the useful property that the weak topology on .Z, is
equivalent to the Euclidean topology Z on Q.
Let r correspond to the ordinary Euclidean metric on R, i.e.

r(ie i) = [(ag = 92) >+ (By = B2)* + (11 =72)* +(01* —0,%)*]*
where y; has parameters (&, Bj, 7;» 0;%)-

THEOREM 4.1. Let 1 hold with M| a collection of stable distributions. Then
P =R=T =Y.

PrOOF. Since # = £, all that need be shown is that r(u,, u) > O implies

o(yy 1) = 0. If r(,, 1) — 0 then W, (t) - ¥(#) uniformly on any finite interval. If
F,’ is the density function of yu, then

Fi() = 5 rw e~ (1) df
1 (* —a 1 .
=2—J_ke “W(t)dt+5- ok (1) dt.
However
|§i>xe” ™ W) dt| £ Jig>i] Wal)] dt < 2, vexp(—o?|t]*[2) dr.

There is an ¢ > 0 and an integer N(¢) such that for all m > N(e), a,,> 0 —¢ > ¢
and 6,2/2 > ¢*/2—¢ > 0. Thus for m > N(e) the above is

<2frexp[—(c%2—¢e)*"*]dt >0 as k- oo.
Hence for any ¢ > 0 there is a number M(e) such that for m > M(e)

|F/(x)—F'(x)| <e.
By Scheffé’s theorem [10]

[t2|F,/(x)—F'(x)|dx >0 as n- oo,
which implies v(u,, #) = 0 as n — 0. []

4.2. Exponential families. For a background on exponential families refer to
Ferguson [1] and Lehmann [9]. We will consider exponential families with the
natural parametrization and in as low a dimensional parameter set as possible.
That is, we will work with the following assumption.

AssuMPTION III. Let € = {u,} be a family of probability measures on the Borel
sigma field in Euclidean /-space, R'. Let each probability measure have a density
with respect to a fixed sigma-finite measure A. The densities are indexed by 0, a
k-dimensional real vector where the densities are

f(x]6) = C(0)exp (3o 0:t(x)).



THE TOPOLOGY OF DISTINGUISHABILITY 1271

Let ©® = {0: | exp[Y ¥ ,0,1(x)]A(dx) < 00}. @O is necessarily a convex subset of R¥.
We assume that @ — u, is a one-to-one map from ® onto ¥ and that ® has non-
empty interior. We also assume that each #;(x) is continuous, except possibly on a
set of A measure zero.

Let r"(ug,, tp,) be the Euclidean distance between 6, and 68, (for 6,, 0,, € ©).
Let £” be the topology induced by r” on €.

THEOREM 4.2. Under Assumption 1, & = R" =V = T ;.

PROOF. Suppose that L(yy,, ps) — 0, we will show that r"(u,, 1) — 0. Suppose,
to the contrary, that @, does not converge to 8. No subsequence can converge to a
point @’ € ® where 6’ # 0. (Since this would imply that L(yg-, ) = 0, which would
imply that py = p,, contradicting Assumption III.) By taking subsequences of
subsequences we may assume that 0,(” is monotone for each i = 1, ---, k. In fact
we may assume that each 0, is monotone non-decreasing (by redefining #; as
—t, if necessary.)

Define fi(x) = €“® and n(h, 0) = [*2 h(x)[]i= /¥ (x)A(dx), where A(x) is any
continuous, bounded function. Let 8’ = (lim, 6,, ---, lim, 0,). We will divide
the proof into two separate cases.

(a) Suppose that @’ has finite entries. Since 6’ ¢ O, n(1, ") = + 0. By Fatou’s
lemma, n(1, 0,) > +00 as n — o0.

Choose x a continuity point of all the f;. Then choose ¢ an open set containing x
such that all the f; are bounded in @ then

. l;= io.-(n) AMd
1g,(0) =j el ;J(rl 0()x 4 x)—»O contradicting

lim,, inf py (0) = pe(0) which is required for weak convergence.

(b) Suppose that 6,/ = + oo for one or more i. We may add or subtract constants
to the 0,’s (by redefining A). Thus without loss of generality we may assume that ®
contains the origin as an interior point.

By taking subsequences of subsequences and possibly relabeling the index i we
may assume without loss of generality that 6, > 6,™ > ... = 6, for all n and
that 6,7/, - 1,0 < [; £ 1,i = 1,2, ---, k. Since © contains the origin we may
choose 0* € @ such that 0,*/6,* = I, We may find points x, and x, in the support
of A and also continuity points of all the f; such that

i=1/i"(x0) > T Ti= 1 /i (xy).

(If this were not so, then both pg and u, would be proportional to 4 and hence
equal, since both are probability measures.)
Now we note that

( f()>’ ( Lm'(xo))““"
— > 1.

i“: 1fi0i<")(x1) 5“= oJi ei*(x 1)

Thus, [[T5 o f %" () Y[TTE2 1 f " (x,)] > + o0 uniformly for x," and x,’ in
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some neighborhoods N, of x, and N, of x, of finite A measure. Taking a function
g,; nonzero at x; and zero outside N; it follows that

n(gm on) N ”(go, 0)
n(1,0,) ~ n(1,0)’
implying (g4, 0,)/7(1, 0,) = 0, which contradicts n(g,, 8)/n(l,8) > 0. Thus
0,— 0.
But 6, — 6 implies f(x | 8,") — f(x | 6) for all x which implies v(u,,, 1t5) — O by
Scheffé’s Theorem [10].
The proof is complete since v(uy,, 1y) — 0 always implies L(p,,, pg] = 0.

5. Acknowledgment. The authors wish to thank the referee for several corrections
and suggestions and for pointing out the existence of the parametrization used in
Section 4.1.
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