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NONCENTRAL DISTRIBUTION OF WILKS’ STATISTIC IN
MANOVA!

By A. K. Gupta
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1. Summary. In this paper, the exact distribution of Wilks’ likelihood ratio
criterion, A, for MANOVA in the noncentral linear case i.e. when the alternative
hypothesis is of unit rank, has been obtained and explicit expressions for the same
for p = 2, 3, 4 and 5, where p is the number of variables and for general f; and f,
are given. A general form of the distribution of A in this case, for any p, is also
given. It has been shown that the total integral of the series obtained by taking a
few terms only, rapidly approaches the theoretical value one as more terms are
taken into account. Further the accuracy of the approximation, suggested by
Posten and Bargmann [11], is examined numerically and it has been shown that
the approximation is excellent except when f; and f, are both small and the
noncentrality parameter A% is large.

2. Introduction. Let X,(p xf1)(f1 = p) and X,(p xf,) be distributed in the form
(2.1) (2r)~ U A|E| O Dexp [ — 1 tr 27 HX X+ (X, — p)(X,—p) '},

and let the nonzero roots of the determinantal equation IAZ —/'LA1| = 0, be denoted
by0 < 4y £ -+ £ A, < 0, where s = min (p, f3), and

A1(P X P) = XXy’
Az(p X p) = XZXZI.

The likelihood-ratio statistic for testing H,: u(p Xf,) = 0 against H;: u # 0 can

be expressed in terms of the following criterion suggested by Wilks [16], and
Pearson and Wilks [9]:

(22) A=A /|Ar+Aq| =TT=: {11+ A4)}

It may be noted that in the context of multivariate analysis of variance, A; and
A, are the sums of product matrices for error and hypothesis respectively, and
/1 and £, are the corresponding degrees of freedom.

We can write A; = CLC’, where C is a lower triangular matrix such that
A, +A, = CC'. When the rank of p = 1, i.e. in the linear case (Anderson [1],
Anderson and Girshick [2]), it has been shown (Kshirsagar [8]) that the density of
L is given by
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(2.3) /(L) = Kexp(—42%),F 1 {3(/y +/2) 3.5, 422 (L= L L7770
. |I_L|%(fz—p—1)’
where
(24) K =n"%0 O[T T/ +o+ 11— )T, +1 =)0 +1-0T

and A = w’L™ 'y is the single noncentrality parameter, /; is the element in the
top left corner of the matrix L, and ,F, denotes the confluent hypergeometric
function, defined below.

(2.5) Fi(a,b,Z)= Y

where (a), = a(a+1) --- (a+n—1).

Further, we can write L = TT’ where T is a lower triangle matrix [z;;] of order p.
Then it has been shown by Kshirsagar [8] that the diagonal elements ¢;; are
independently distributed and that t2 (i = 2, --- p) follows the distribution

(2:6) 2(1}) = BLAi—i+1L.125 18],
where
(2.7 Bla,b;x] =[1/B(4a,3b)]x* (1 —x)* 1, 0<x=1
while 2, is distributed as
exp(—14%)

(2‘8) "g(tfl) = (tfl)—%fl_l(l_tfl)%fz_llFl(%(fl +f2)5%f2’%2'2(1_l%1))5

B(%fl? %fl)

Observe that
(2.9) A=L| =TTt =TI=1 X: (say)

where the distribution of X, is the same as that of ¢, and is given by (2.8) and
L(x) = Blfi+1-0 1 X, i=2,,p.

For purposes of notational ease, the symbol A will be replaced by U, ,, ..
Then the above results can be restated in the following form.

THEOREM 2.1. In the noncentral linear case, U, ;, ;. is distributed like X, --- X,
where X is independently distributed as in (2.8) and X; (i = 2, ---, p) are independently
distributed as B[f, +1—1, f5; X;].

The connection between a beta variate and its square gives us the next theorem.

THEOREM 2.2. In the noncentral linear case, U, , is distributed like X,
Y% ... Y2 | X,, where X, is independently distributed as in (2.8), Y; (i = 1, 2,-+,
r—1) are independently distributed as B[2(f; —2i), 2f,; Y;] and X,, is independently
distributed as Pf +1—p, fo; X5,). And Usgyy . ;s distributed like X Y* -+ Y2,
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where X | is independently distributed asin (2.8)and Y;(i = 1, ---, ) are independently
distributed as B[2(f| —2i), 2f5; Y3
The method employed in the next section relies on Theorems 2.1 and 2.2.

3. Method of derivation. An immediate consequence of Theorem 2.1 is that, since
—log U, ;, ;, = 2 0-1(—log X)) = Y7, Y, (say), the distribution problem in
hand can be reduced to that of a sum of independently distributed random variables.
The latter distribution can be handled by taking successive convolutions provided
that the procedure yields expressions which can be easily integrated at each stage.
Schatzoff [14], [15], has proved that this is in fact the case, and the technique has
been used by Pillai and Gupta [10] and by Schatzoff [15] to derive the central
distribution of A. Consul, [3], applied operational calculus to obtain the exact
distribution in the central case for p = 1, 2, 3 and 4.

Consider the density of X,, obtained from (2.8) by substituting X, for #7;.
Substitute for {F; from (2.5) and make the transformation ¥, = —log X;. Then
the density of Y, after binomial expansion, is given by

e @ (dv), (4A%) b k(b+ ]\ ,— (31 +h)Y >
1) B s R ), T e 20

k=0

where v = f1+f, and b = 1f, —1.
Further consider the beta random variable X; (i = 2, ---, p), when the density is
given by

(32) BLAi—i+1L/ X ] =KXF I -X)H7t 0 X, S 1,/ 2

where K; = [BO(f;—i+1), 3f2)]17" = T(fi —i+ 1+ VT (i —i+ DTG f)-
When f; is even, b = 3}(f,—2) is an integer, and using the binomial theorem and
transforming Y, = —log X, we get the density of Y; as

(33) Z(Y) =K Yo~ (Dexp[—4¥(/i+1+21=0)],  ¥;20,i=2,-p.
Similarly in the light of Theorem 2.2 we consider the random variable Z;=
X,;X,5:+1, then the density function of Z; is given by

(3.4) Cizivir(fl-Zi-Z)[l _(Zi)%]fz- 1,

where C; = [2B(f, —2i, />)] .

Now make the transformation Y, = —log Z,, and as before, from (3.4), we get
the density of Y, as

(3.5) 2(¥) = Gy () exp[—4Y (/i +1-20)], Y zo0.

Finally, following Schatzoff [15], consider the density of V = V,+V,, where
the density of ¥V is given by

(3.6) {a*"'T(k+1)}v,* ™, 0, >0, k = nonnegative integer,
and that of ¥, by
(3.7) be"2, v, > 0.
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Schatzoff [15] has shown that the density of ¥ takes the form

(3.8) b2 P kT (k +2), a=b
and
k! k—r+1
(9 (e ] 5 (-1 iy Gy | e 6o i
a#b.

The above results can be readily applied to obtain the distribution of U pofa.f1 iN
the noncentral linear case in the following section.

4. Exact distribution of U, ;, ., in the noncentral linear case. In this section, we
derive the density and cdf of o2 for p=2,3,4and 5. We also give general

form of the distribution for any p. We start with p = 2.
Case i, p = 2. We write Wilks’ statistic as a product of independent variables,

Uz,fl,fl = XIXZ’ al’ld hCnCC

(4.1) —lOg UZ,fz,fx = Y1+Y2

where Y, is distributed as in (3.1) and Y, as in (3.3) for i = 2. Then making use of
(3.8) and (3.9), we get the density of U, ,, ,, in the following form:

b+j b (_ )H"

(42) Kemryrns 1; {Z L @I=2k=T) 1)(b1")('1)(U"—U"*)}, 0sU=Ht,

where

(4~3) K = ZH 1 [1/B{z (fl —’+1)’ 301
and

(4.4) a; = [(3v),G2)1(3/2)7]-

The cdf of U, , ;, can be easily obtained by integrating (4.2) between (0, u),
0 < u = 1 (see Gupta [6]).

Case ii, p = 3. In this case, —log Us ;, ;,, = Y+ Y,’, where Y, is distributed
as in (3.1) and Y," as in (3.5) for i = 1. As in Case i, we obtain the density of
Us s, .5, in the following form:

b+j

(5) Kewruint $ oY Copgneryomy

5 b+j f2-1 ( 1)l+k fa Oy 1}
+ = U="4),,
emoass o 12k N )
where

(4.6) K =[2B(3/1,1/2)B(f1 —2,/2)]"".
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The cdf of U; 4, ,, can be obtained by straightforward integration (see Gupta [6]).

Case iii, p = 4. Forp =4, —log U, ;, ;,, = Y+ Y, + Y,, where Y, is distri-
buted as in (3.1), Y," as in (3.5) for i = 1 and Y, as in (3.3) for i = 4. As before
we obtain the density of U, ,, ,, as

(4.7) Ke U=y a (T ;+2T,))

where
1 k+n k 2Un—k—% 2 N
Z ((211 )2k 3)f(0 n, k){(Zk (m IOg U) {rz':} Uk 210g U}>

klla&zikq-z (l(jlz—:f)-f(l 0, ’*){Z%(”)(U" U~ 7)

( b -1 n—
nn#%(l+1)2n—l— ()(U% -v %)},
K =[B(f1=2,/2)1 [ [B&(/i - 3i43),4/,)]7 and /(L n, k) = (V2] NECE).

The cdf can be obtained from (4.7) by straightforward integration between O, u),
0 < u = 1 and is available in an unpublished report by Gupta [6].

T2j=

Case iv, p = 5. In this case, —log Us , ;, = Y+ Y,'+ Y,’, and the density of
Us ;,,r, is given by

(4.8) Ke U=ty e g (T, +4T,;+8Ty,),

where

Ty; =24 (= U)f(2k+2,0, k){ fi+4)(log U)?

( 1) QUI—k=2_»
+4nn#22k+4n 2k — 4( m—logU ,

(-U)*

Tj= Y T/ (L0 k) log U{(25" ) U1 — (= 1)(450)}
Lk 1#2k+2

R Y R ST Ly

lkl¢2k+21_2k n#2k+

-2 eSS )

K =[8B(3/1,3/2)17 ' [1-: [B(f1=2,/2)]7" and f(L n, k) = (727 )2 ().
The cdf can be obtained from (4.8) by integrating between (0, u), 0 <u =1, and

is available in an unpublished report by Gupta [6]. For p > 5, the density function
and the corresponding cdf become too involved for presentation.
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Case v, general p. The techniques of this section enable us to give the form of the
noncentral distribution of U, ,, ,, in the linear case for any p and any f,.

THEOREM 4.1. The probability density function of U, ;, ,, in the noncentral linear
case is of the form

R € 1) T ¢ 2o - R

i=1 j=0(7f2)j J' o
where K; is defined in (3.2) and the constants Cj, and integers m;, b, and d are
determined from p, f, and f,.

The theorem can be proved easily by induction. For example, when p = 1, this
is readily seen to be of the required form where m; = Lf,—1+4j, b, = 2—2k,
d, = 0and C;, = (—1)(¥/271*).

The Theorem 4.1 does not indicate explicitly how to find the values of the con-
stants m;, Cj;, b, and d,, a task which is by no means easy for large values of p or
f>. However, the theorem provides a basis for a recursive algorithm for deriving
the density and the distribution function at successive stages of the convolution
process. Schatzoff, [14], spelled out an algorithm for computation of the co-
efficients in the central case. An analogous algorithm can be derived in the present
case. Indeed, the present noncentral development essentially parallels the central
derivation.

The mathematical simplicity of the density function (4.9) makes possible the
derivation of the corresponding cdf by straightforward integration which is
simplified to a double summation, given by

(4.10) F(u) =<]_£[ K,)e_ﬂz i ((l%;),) g%_j?l Aﬁ {a,,,(j—(,—i—b)m"yh_bh)
(—log u)s"},

where the constants M, a,;, b,, r, and s, can be determined from p, f; and f;.

5. Numerical feasibility of the cdf’s obtained and the validity of Posten—
Bargmann approximation. It is well known (see Ghosh [5], Kiefer and Schwartz [7])
that Wilks’ A is unbiased, consistent and admissible and its power function is a
monotonic-increasing function of each of the noncentrality parameters (see
Dasgupta, Anderson and Mudholkar [4]). Very little is known, however, about the
actual magnitude of the power and this is due to the fact that the noncentral
distribution of the test criterion has not been expressed in a numerically feasible
form. A number of asymptotic approximations has been given. Roy, [12], obtained
gamma-series expansion for the power function of Wilks’ test, which is convenient
to use when the error df'is larger and the noncentrality parameter is small. Roy, [13]
also obtained exact expression for p = 2 and suggested two more approximations
for p > 2. Posten and Bargmann [11] obtained an approximation to the power of
the likelihood ratio test of the multivariate general linear hypothesis.
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From a practical standpoint, the results of Section 4 make possible for the first
time the calculation of exact percentage points for p = 2, 3, 4 and 5 and any f;
and f,. It has been verified for p = 2, 3, 4 and 5 that the total integral of the series
obtained by taking a few terms only, rapidly approaches the theoretical value one
as more terms are taken into account. The results also provide the check for the
validity of Posten-Bargmann approximation. In particular, the comparisons are
made for p = 2, 3 and for selected values of A%, f; and f,, by computing the
percentage points. The results are presented in Table 1.

TABLE 1

Exact, E, and approximate, A, percentage points when a = 0.95

p=2 p=3

f2 i A E A E A

2 2 05 571752 .572598
1.0 .541292 543222
4.0  .385821  .398234
8 0.5 .898552  .898554  .775704  .775729
1.0  .886876  .886881  .760957  .761017
4.0 .802938  .803031 .670107  .676552
20 0.5 .959648  .959648 910887  .910897
1.0 954656  .954656  .904028  .904040
4.0 915845 915839  .857452  .857602

The approximate percentage points were computed using (2.4) of Posten and
Bargmann [11], neglecting terms of order O(m™?) where m = f;+4(f,—p—1).
As is shown by the table, even when we neglect terms of order O(m ™~ *) the approxi-
mation suggested by Posten and Bargmann is not so good when f; and f, are
small i.e. m is small, and A% is large. However, for large values of m, the agreement
between the exact results as derived by the methods of the present paper and by the
approximate method of Posten and Bargmann is excellent. The computations in
Table 1 were carried on CDC 6400 of the University of Arizona’s Computer
Center.
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