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0. Introduction and summary. Since the appearance of P. Billingsley’s monograph
[2] on the large sample inference in Markov processes in which the weak consistency
and asymptotic normality of the maximum likelihood estimate was investigated,
there has been considerable interest in the further development of the
theory along other directions. Billingsley’s work was mainly concerned with
extending the results of H. Cramér ([4] page 500). Among more recent develop-
ments one might mention the proof of the almost sure consistency of the maximum
likelihood estimator following the ideas of A. Wald by G. Roussas [7], and the
results on asymptotic Bayes estimates obtained by Lorraine Schwartz [9].

In the present paper we extend to Markov processes one of the fundamental
results in the asymptotic theory of inference, viz., the approach of the posterior
density (in a sense to be made precise later) to the normal. When the observed
chance variables are independent and identically distributed, this result was
obtained by L. LeCam in [5] (page 309). The same author offers another derivation
of this result in [6]. Special cases of the theorem were first given by S. Bernstein
and R. von Mises (for reference see [5]).

The regularity conditions satisfied by the transition probability density of the
Markov process are given in Section 1. We prove in Theorem 2.4 of Section 2 those
properties of the maximum likelihood estimator that are needed for the proof of
the main result of the paper given in Section 3 (Theorem 3.1). Theorem 3.1 is
stated in a form which is general enough to include the Bernstein-von Mises
theorem as well as the somewhat sharper versions that are available when it is
known that the prior probability distribution has a finite absolute moment of
order m. Theorem 3.2 deduces these results as a consequence of Theorem 3.1. The
latter result also enables us to prove a theorem on the asymptotic behavior of
regular Bayes estimates. This is done in Theorem 4.1 of Section 4.

1. Notations and assumptions. Let X, X, X, --- be random variables forming
a strictly stationary ergodic Markov process and taking values in a measurable
space (S, %,). The stationary initial probability distribution and the transition
probability function of the process will be denoted by Py(4) and Py(y; A) (y€ S
and A € #,) respectively, where 0 is an unknown parameter belonging to a set ©,
assumed here to be an open set of the real line. We suppose that there exists a o-finite
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measure 4 on (.S, 4,) such that Po(A) and Py(y; A) are both absolutely continuous
with respect to u with densities f(z; 0) and f(y, z; 0) respectively. For € O, let P, de-
note the measure on the product measurable space determined by the initial prob-
ability distribution Py(-) and the transition probability function Py(-j-). The log
likelihood function of the process, given the observations x, X, ---, X, is defined
to be the function,

log L"(H; X) = Ing(xo > 0)+Z';;(1)f(xu xi+ 1 5 0)
where x = (x,, X, ‘-, x,). This definition is meaningful for almost all x(P,). Since
we are concerned only with the large sample theory, we may neglect log f(x,; 0) in

the above expression (see [2] page 4). We shall write L,(0) for L,(0; x) for
convenience.

AssUMPTION 1.1. The parameter space O is an open interval of the real line. A is
a prior probability measure on (0, %) where & is the o-field of Borel subsets of
®. A has a density A with respect to the Lebesgue measure.

ASSUMPTION 1.2. Let h(xq, x; 0) = logf(x;, x;;60). 0h(xq. x{;0)/00 and
0%h(xq, x; 0)/00% exist and are continuous in 6 for almost all pairs
(0, x1) (X ).

AssuMPTION 1.3. For each 0 € @, there corresponds n(6) > 0 such that

Eq[sup {|0*h(X o, X 1;0)/00%|: |0—0'| < n(0),0'€©}]
is finite where E, denotes the expectation when 6 is the true parameter.
AssUMPTION 1.4. Foreach § e ® and any¢ > 0,
— 00 < Eg[sup {h(Xo, X1;0")—h(Xo,X;0):]0'—0]| 2 ¢,0'€O}]
<0.
ASSUMPTION 1.5. Let
i(0) = —Eo[0*h(X o, X {3 0)/00%]
for 0 € ©. i(0) is finite for all 0 € ® by Assumption 1.2. We shall assume that i(0)
is continuous and nonzero for all § € ©.

AssuMPTION 1.6. Let 6, denote the true parameter and P, = Py,. Let K be a
nonnegative measurable function satisfying the following conditions:
There exists a number ¢, 0 < ¢ < iy (i; = i(f,)) such that

M(0) = (io/(2m))* =, K(t)exp {—[io—e]r*/2} dt

is finite.

AssuMPTION 1.7. Forevery 2 > Oand everyd > 0

e_é"f|,| >h K(n’*"“t)/l(@,,-!- t) dt—0

a.s. (Py,) as n — co, where 0, denotes a maximum likelihood estimator (MLE) as
defined in Section 2.
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AsSUMPTION 1.8. The prior density A is continuous and positive in an open neigh-
borhood of the true parameter 6,,.

2. Some preliminary results. Before we state our main theorem we shall prove
in Theorem 2.4 the properties of MLE’s which will prove useful to us in the next
section. Theorem 2.4, in turn, is based on results taken from Billingsley ([2], [3])
which were obtained by him in his own investigation of maximum likelihood
estimation in Markov chains. These results of Billingsley’s are stated here first for
convenience.

LemMA 2.1 [2]. Suppose {U,, n 2 1} is a sequence of random variables such that
U, >4 v where v is a probability measure on the real line. Suppose further that
{V,, n 2 1} is another sequence of random variables such that

|Un—' Vn| é gannI

where ¢, tends to zero in probability as n tends to infinity. Then V, — 4 v. (Here
V, =& v denotes that the distribution of U, converges weakly to v.)

THEOREM 2.1 [2]. Suppose that for each 0 € O, the stationary distribution exists
and is unique and has the property that for each y in the state space S, Py(y; ) is
absolutely continuous with respect to the stationary distribution Py(-). Then, for any
0 € ©, the Markov process {X,, n 2 0} is metrically transitive if the initial distribu-
tion is the stationary one. No matter what the initial distribution is, if g(xq, x,) is a
Borel measurable function of (x,, x,) such that Eg{|g(X,, X,)|} < o, then

lirnn—mo n- ! ZI'(’;(I) g(Xka Xk+ 1) = Ee[g(Xo, Xl)]
with probability one.

THEOREM 2.2 [3]. Let {&,,n = 1} be a strictly stationary ergodic process such
that E[¢,*] < oo and

E[énlélsaén-l] =09 E[él] =0.

Then the distribution of n~*Y i_, &, approaches the normal distribution with mean
zero and variance E[£,%]. The next result follows immediately from Theorem 2.2.

THEOREM 2.3. Let assumptions 1.1-1.5 be satisfied. Then for any 0 € © and for any
initial distribution,
n~ Y e 0logf(Xi Xt 13 0)/00 > 4 N(0,i(0)).

Let x,, x4, :*+, X, be a Markov sequenée of observations. Suppose there exists a
compact-neighborhood U(6,) of 0, and an estimator 6, = 0,(x, x4, *-+, X,) such
that

L,(0,) = max {L,(0):0e U(0,)}

then 6, is called a Maximum Likelihood Estimator (MLE) of 6. By the compactness
of U(f,) and the continuity of f(x,, x,; 6) the maximum is attained and we shall
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assume that 0, is measurable. We shall now state and prove a theorem which gives
the strong consistency and asymptotic normality of f,. The first two conclusions of
the theorem are similar to the theorem given by Bickel and Yahav [1] and LeCam [6]
for the case of independent observations. Since the assumptions we have made are
somewhat different from those usually imposed in proving the asymptotic normality
of 0, we give a complete proof here.

THEOREM 2.4. Under the assumptions 1.1-1.5, there exists a compact neighborhood
U@B,) of 0, such that

(2.1) 0,-0, as.;

here

(22) dlogL(6,)/00 =0 or n=N,
where N depends on the sample of observations;

(2.3) n¥(6,—0,) > & N(0,i, "),

where N(0, 6) denotes the normal distribution with mean 0 and variance *.

PRrOOF. Let U(6,) = {0:|0—0,| = 27'n(6,)}, where 1(6,) is given by Assump-
tion 1.3. For any 6 € U(6,),

(24)  h(xg,xy1350)—h(x0,X1,00),
= (8—00) 0h(x0, 1 ; 0)/00
+(0—00)?J6 (1 —@)[0%h(x0, %1 560")/00*Tg ~ 0 + w(@—60) -
Fix any 6 # 0,in U(f,). Consider
(2.5)  g(x0,x150) = sup {h(x, X1, 7)—h(x0, %13 00): [1—0| < 8,7 U(0y)}.

Since A(xy, x;; 0) is a continuous function of 6 almost surely, g(x,, x;; ) tends
to h(xg, x;; 0)—h(xy, x,; 0,) almost surely as 6 approaches zero. We shall now
show that g(x,, x;;d) is uniformly bounded in § by an integrable function.
Choose § < 27 '5(8,). Now from (2.4), it follows that

(2.6) |g(x0,x138)| < |0h(x0,%1;00)/00] sup {|[t—0bo|: |1—0| < 6,7 U(6,)}
+sup {|t—0o|*: |t—0] < 8,7 U(6,)}
-sup {[§ [02h(xo,X150')/00* 1y =00+ w(z—00y| d0 : [T—0] < 6,
e U(0,)}
< |0h(xo, X1 ;0,)/00]n(6,)

+n%(0o) sup {|0%h(xo, x5 0")/06%|: |0"— 0,

<1(00)}

10/ 0] < |00 —<| < |0—0]+ |t —0]

< n(00)+6 < n(6o).

since
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The second term on the right-hand side of (2.6) has finite expectation by Assump-
tion 1.3. The first term is integrable with finite expectation by Assumptions 1.2 and
1.3. Hence g(X,, X,; 9) is bounded by an integrable function. It now follows by
the dominated convergence theorem that for any 0 € U(0,) different from 0,

(2.7) lim, ¢ Eoo[g(Xo, Xy 5)] = Eg,[h(X 0, X 130)—h(X,, X 1;00)]

which is less than zero by Assumption 1.4 since |0—00| > 0. Let us now consider
U(0,) as our new parameter space. U(0,) is compact and any 0 € U(0,) different
from 0, satisfies (2.7). Hence by using arguments similar to Wald’s on strong
consistency of MLE, we obtain that 8, — 0, a.s. which proves (2.1). Since 6, is an
interior point of © and since 0, — 0, a.s., 0, will also be an interior point of © for
large n and hence by Assumption 1.2, 0 log L,(0)/00 at 0 = 0, exists and is zero for
sufficiently large n > N, N possibly depending on the sample. This proves (2.2).
Since 8, is a solution of the likelihood equation for n > N, we get that

(2.8) olog L,(0,)/00
= 0log L,(0,)/00+(0,—0,) 0* log L,(6,")/06*
=0

where [0,"—0,| < |0,—0,| a.s. Rewriting (2.8), it is easy to see that

(2.9) Y, +W,Z,+¢Z,=0

where

(2.10) Y, =n"*0logL,(0,)/00,

(2.11) Z, =n*0,-0,),

(2.12) W, =n"'0%log L,(0,)/00%,

and

(2.13) &, =n~ {07 log L,(0")/06* — 6* logL,(0,)/00%}.

Itis clear from (2.9) that

(2.14) Y, +W,Z,| £ |e| |Z,].

Since E, [0 log f(Xo, X;; 00)/00]* < oo by Assumptions 1.2-1.5 it follows from
Theorem 2.3 that

(2.15) Y, = 4 N(0, i)

Suppose it is shown that ¢, — 0 in probability as n approaches infinity. Then it
follows that

(2.16) ~W,Z, = ¢ N(0, i)
by (2.14), (2.15) in view of Lemma 2.1. But
(2.17) W,— —ija.s.
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by Theorem 2.1 since E,[|0* logf(X,, Xy, 00)/00%|] < 0. Combining (2.16)
and (2.17), we obtain that

(2.18) Z,— £ N(0,1/i,)

by Slutsky’s Theorem (Cramér [4]). This proves (2.3).
We shall now show that ¢, — 0 a.s. as n approaches infinity. Choose an ¢ > 0.

It is easy to see from the continuity of 8%h(x,, x; 0)/00%, the lower semi-continuity
of

sup {|0%h(xo, x; 3 0)/00% — 0%h(xo, X1 ; 0,4)/06%|: |0 —0,| < &}
and from Assumption 1.3, that for sufficiently small 6 > 0 and less than #(0,),
(2.19)  E, [sup|0®h(X o, X ;0)/00% —0%h(X o, X 15 00)/00%|: |0—0,| < 6]

is less than &/2. Let us choose such a §. Since 0, — 0, a.s. there exists an integer

N, > 0 such that, forn > Ny, [6,—0,| < 8, N, possibly depending on the sample.
Now forn > Ny,

|e,| =n~"|0% log L,(0")/00% — 0> log L,(6,)/06?|
(2.20) S n U YRZ6|0%h(xk Xir 150)/00% — 2h(Xy, X 415 00)/002|]
n! Zz;(l) sup {|62h(xk, Xk+15 0)/602—02h(xk,xk+1 5 90)/592|
n~ 1Y R sup {|0%h(xp, Xir 13 0)/00% — 2 h(xy, X4 1 5 00)/00?]
:10—0,] < 8.

IA

IA

Since
Eg,[sup |0*h(X ¢, X 50)/00% —0*h(X o, X ;5 00)/06%|:|0—0,| < 6]
has finite expectation, it follows by Theorem 2.1 that
n~ Y ez gsup {|02h(Xp, X 150)/00% —*h( Xy, Xy4 15 00)/00%|:|0—0,| < 5}
converges almost surely to
Eg [sup {|0%h(X o, X 1;0)/00> —0*h(X o, X 13 0,)/00|: |0 —0,| < 8}].
Hence there exists an integer NV, such that forn > N,,
(2.21) n7 1 YRz osup {|0%h(xy, Xis 130)/00 — 0%h(x4, X4 15 00)/00%|: |0 — 0| < S}
< 2Eg,[sup {|0%h(X o, X 150)/00> —0*h(X 4, X ;5 00)/00*|: [0—0,| < 6},

N, possibly depending on the sample. Combining (2.19), (2.20), and (2.21), we

obtain that for n > max (N, N,), |8,,| < & which proves that ¢, tends to zero almost
surely. This completes the proof of this theorem.

3. The Bernstein—von Mises theorem. We shall now prove the main result of this
paper—Theorem 3.1, which may be regarded as a generalized version of the
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Bernstein-von Mises theorem for Markov chains. First, let us denote by
G | Xo, -+, X,) the posterior density based on the observations x,, ---, x, from the
chain and corresponding to the prior probability density 1. Let

L4t X005 %) = 0™ (0 | X0, 1 %,),
ie.f,*(t| xq, -+, x,) is the posterior density of n*(0—0,).
THEOREM 3.1. Under Assumptions 1.1-1.8.
(3.1) dim = K(0)| £, *(t | %0, X1, -+ Xn) — (i0/(27))* exp (— }it?)| dt = Oa.s. Py,

The proof of this result will be based on the following lemmas: Define

(3.2) vi(t) = exp [Y126 {h(xi Xis 15 00+ tn 73— h(x;, x;4 13 0,)}]
and
(3:3) Cp = 2 vi()A(0,+1tn"¥) dt.
Itis easy to see that
(34) St X0s X150 X,) = C~ (A0, + tnH).

LEMMA 3.1. Let Assumptions 1.1-1.5 be satisfied. Then the following conclusions
hold. For every ¢(0 < ¢ < i) there existsad, > 0 and an integer N such that

(3.5) v(t) S exp[—32(ip—¢)],

for |t| < don* and n = N; for every & > O there exists a positive & and an integer N
such that

(3.6) SUP|| > ont/2 V(1) < exp (—4ne)
forn = N; for every fixed t
(3.7) lim,, ,, v,(t) = exp [ —%iot*]
a.s. Pg.
PROOF.
(3.8) logv,(t) = Y128 [h(xs, X4 130, + tn ™) = h(x;, %1415 0,)]
_, "C1Oh(x Xy 130,) 1202 10%h(x;, X4 430,)

where [0, —0,| < ™+,

The first term on the right-hand side of (3.8) equals zero a.s. for n = N, (say) by
(2.3) of Theorem 2.4. For the second term we have

2n—1 n2

(3.9) Ei;()aoﬁh(xi, xi+1;0n,)
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t2n=1 9% 12 [n=1 (02
=5 .Zomh(xi’ xi+1;00)+5 D {5-0—2 h(x;, X;4130,")
i=

i=0
82
~20? h(xia Xi+1 290)}]'

Since the first term on the right side of (3.9) converges a.s. (P,) to —4i,t?, it follows
that for a positive ¢, (¢ < i)

tz n—1 62 tz . &
(3.10) z_ﬁigoé'o_'ﬂh(xi,xi+l;90)<5"(‘—10“'5)

for n = N, where we may take N, = N,. Now choose a positive d less than #(6,)
where 1(0,) is the number defined in Assumption 1.3. From (2.1) of Theorem 2.4
we have [§,—0o| < dand |0, —0,| < m™* < dforn = N, (say). Hence, if n 2 N,
|6,’—0o| < 26 and

_1n—1 62 , az
(3'11) n Z __Zh(xi’xi+1;9n)__Zh(xiaxi+1;00)
o |00 a0

n—1 62 02
<n’! Z SUP|g—-00| <26 ) 702 h(xi’xi+1;0)___zh(xi,xi+1;00)
= 00 a0

which tends (a.s. P,) to

0? 0?
Eqsupjo_g|<26| 772 h(Xo,X1;9)—'_z h(XOaX1§90)
00 00

by Assumption 1.3 and Theorem 2.1. From condition 1.2 the quantity inside the
expectation tends to zero as 6 — 0 for each (X, X,) and is, furthermore, bounded
above by the integrable function 2supjq_g,| <y0) 0%/(00%)h(xo, X1, 0). Hence there
existsa dy(0 < & < in(0,)) such that

62 62
(3.12) E{Sup|9_90|§260 [6—0-2 h(Xo, X y; 0)_672 h(Xo, X1 90)]} <éef4.

Combining (3.8), (3.10) and (3.11), we get
(3.13) logv,(t) < —4*(ig—e),  |t| S n*de,n > N (say)
which proves (3.5). To prove (3.6), we have
(3.14) n~'logv,()=n"1Y"Z8 [h(x;, Xi 130, +m ) —h(x;, X4 1500)]
+n7 Y20 [h(xis Xix 13 00) — h(xi %1415 0,)]-

If|6,— 0| < 8/2forn = N,, then |tn~*| > & implies that 0, +m= =0, > §/2.
Hence (n = N,)

n~! Z'E;é [h(xi Xt s 0,+ tn_%)_ h(xia Xi+1300)]
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(3.15) Samtynzd SUP|g—go|>5/2 [A(xi, x4 150)— h(x;, x4 15 00)]
- E[SUP|0—00| >8/2 {h(XOa X1, 0)— h(XOa X 90)}]
< 0.

from Assumption 1.4 and Theorem 2.1.
Moreover,

(3.16) - z {h(xi %14 1500) = (x5 Xi4150,)}

n—1 al
O)Z ﬂoh(xl,x,+1,0)+( ) Zaozh(x,,x,ﬂ,o ),
which (by arguments given in (3.8) through (3.11) and the fact that 0, — 0, a.s. P,)
converges to zero a.s. P,. Now choose ¢ such that
0 <e< —E[supg_g, {h( X0, X1;0)—h(X, X300)}]-

Combining (3.15) and (3.16), it follows that for |f| > n*é and n = N =
max (NlaNZa N3’ N4)

(3.17) logv,(f) £ —ine,

which proves (3.6). Next, for a fixed 7 and &¢ > 0 choose an &, such that
0 < (t3/2)e; < &. By (3.8),(3.9), (3.10), and (3.11),

(3.18) [log v,(1)+3%io| < %1%, <&  forn = max(N,1*/5,°).
(3.7) is thus proved.

LEMMA 3.2. Under the Assumptions 1.1-1.8, there exists a positive d, such that
(3.19)  1im, ., ,, 1) <som/2 K(0)]va(O)A(0,+ 1, ) — A(0) exp (— 4iot?)| dt = O(a.s. Py).

PROOF.
(3:20) [y <sonivz K(1)|[vu(£)A(0,+ tn™ %) — 4(0,) exp (—$iot?) | dt

< S s oz K(OA(00)[vi(1) —exp(—%iot?)| dt
+ 111 200m72 K()va()|2(06) = 40, + tn™?)| d1.

Choose an ¢ > 0such that | K(r) exp (—4(io—€)1?) dt < oo.

This is possible because of Assumption 1.6. Then there exists a §; and an N such
that

v(t) Sexp[—(io—e)tt*] |t £ 6yn?, nx=N

by Lemma 3.1. Hence, using (3.17), we have, by the dominated convergence
theorem

(321) J‘|f|§51”‘/z K(t)l(@o)lv,,(t)—exp(—-%lotz)l dt—-0 as n- o0, a.s. PO'
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Again,
Tt sounrr K(O(0)|(00) =A@, + tn™ )] d
= SUP|g-gy| <5, |Al(0)—/1(00)l jltl <oz K(t)exp [—(io—e)bt*]dt.
For a given 5, choose 5, < 4, such that
(322)  supp—py|<s |A(0) = 2(66)] J 11 <som /2 K()exp [—(io—e)3t*]dt <.
Combining (3.21) and (3.22), we get (3.19).
LEMMA 3.3. Under Assumptions 1.1-1.8, for everyd > 0,
(3.23)  1imy e i g2 K(O)|va(1) (0, + tn™4) — A(0p) exp ( —4igt2)| dt = Oas. Py,
ProOF.
Jie15amr2 KO )40, + tn™ )= 4(0) exp ( — 3iot?)| dt
=< 1> anr2 K(8)vo()A(0, + tn %) dt=+ 01> on1s2 K(1)A(0o) exp (— Liot?) dt
S e s o K(OA(0,+ 1™ 4) 4+ A(00) [ 111> omis2 K(t) exp (—}iot?) dt by (3.6)
-0 as n - oo, by Assumptions 1.7 and 1.6.
PROOF OF THEOREM 3.1. From Lemmas 3.2 and 3.3 we obtain
(3.24)  lim,_, [ K(0)[v,()A(0,+ tn™*) = 2(8o) exp (— igt2)| dt = 0 (a.s. Py).
Putting K(¢) = 1, which satisfies the assumptions on the function K trivially, we get
(3.25) C = V(A0 + tn™*) dt > X(8,) [ exp (—%iot?) dt
= H00)((2n) i)

Hence
TR £, %0+ %) (il (27)) exp (— i) s
< JK(O|Co™ 40, + tn™*)v,(1)— C, ™ L 4(0) exp (—4igt?)| dt
+J K(1)] €™ 2(86) — (io/(27))* | exp (= 3iot?) di
- 0 (a.s. Py) by (3.24) and (3.25).

As a corollary to Theorem 3.1 we give below a result which includes, besides the
more traditional form of the theorem of Bernstein and von Mises, other interesting
variations.

THEOREM 3.2. Let Assumptions 1.1-1.5 be satisfied. Let the prior density A satisfy
Assumption 1.8 and

(3.26) jfw |9|'"l(0) df <
Jfor some nonnegative integer m. Then

(3:27) tim, o, [, 1]"] £, *(t ] X0, -+, x,) = (io/(27))* ™o dt = 0 (a.s. Py).



BERNSTEIN—-VON MISES THEOREM FOR MARKOV PROCESSES 1251

PrOOF. For m 2 1set K(0) = |0]|™ in Theorem 3.1. From the elementary identity
la+b|" < 2™ '(|a|™+ |b|™) we have (for positive numbers & and J)

e [ >0 K(n*1)A(0,+ 1) dt
=n"2e™ [ g5 n A1)t =0, " dt
< 2" 2 e g n A" A+ 00| 1o 5 A1) d1]
S2amtame [ |t|mA(t)dt+|0,]"]

which tends to zero a.s. P, from (2.1) of Theorem 2.4 and assumption (3.26). Hence
condition 1.7 holds. Condition 1.6 is easily verified for K(t) = |t|'". For m = 0,
the verification of Assumptions. 1.6 and 1.7 follows even more simply. The con-
clusion (3.27) now follows immediately from Theorem 3.1.

For m = 0 the assertion of Theorem 3.2 is the classical form of the Bernstein—
von Mises result, while Theorem 3.2 itself is an extension to Markov chains of the
corresponding result for the case of independent random variables due to Bickel
and Yahav ([1], Theorem 2.2. Note that Theorem 2.2 is given for 6 a vector
parameter. The extension to a vector parameter of Theorems 3.1 and 3.2 can be

carried out without difficulty).

4. Some asymptotic properties of regular Bayes estimates. In this section we shall
be concerned with showing one application of Theorem 3.1 in the theory of
asymptotic Bayesian inference for Markov chains. We shall derive results similar
to thosein [1].

Following LeCam [5], we define a regular Bayes estimate 7, = T,(Xq, -+, X,,)
as an estimate which minimizes B,(f) = [1(0,8) f,(0 | X, -**s X,) d0 for all
(x> X5 *+*5 x,) and all n, where /(0, B) is a loss function defined on ® x ©. In the
sequel we shall assume that a measurable, regular Bayes estimate 7}, exists. We now
prove the main result of this section.

THEOREM 4.1. Let a Markov chain {X,, n = 0} satisfy the assumptions of Section 1.
Let T, be a measurable regular Bayes estimate of 0 with respect to a loss function
1(0, B) which satisfies the following conditions:

(1) 10.5) = 1(0-$) 2 0

(4.2) (1) 2 I(1;) ift,>t,=20o0rift;<t, <0.
There exist constants {a,} and functions K(t), and G(t) such that

(4.3) a, 2 0.

(4.4) G(1) satisfies Assumptions 1.6-1.7 and  a,l(t/n*)< G(t) for all n.

(4.5) a,l(t/n*) - K(t) uniformly on compact sets.

(4.6)  [K(t+m)exp(—3iot®)dt has a strict minimum at m=0.
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Then

4.7 T, — 0, a.s. P,.
(4.8) n*(0—T,) - 4 N(0,i, ).

(4.9) a,B,(T,) - (io/(2m))* | K(t) exp (— Liot?) dt asn — oo (a.s. Py).

ProoF. We shall show that n*@,—T,) » 0 as. P, and that a,B,(0,) —
(io/2m))* | K(t) exp (—Liot?) dt, from which (4.7)-(4.9) follow easily, due to
Theorem 2.4. First note that

_ limsup, a,B,(T,) < limsup, a,B,(d,)
= limsup, [ a,I(0—0,)£,(0 | xo, -+, x,) dO
= limsup, [ a,(t/n*) £, *(t | xo, -+, x,) dt
(4.10) < limsup,  |a,l(t/n*)— K (1) || /,*(?)
—exp(—1%iot?)(io/(2n))| dt
+limsup, (io/(27))* [ |a,l(tn~*)— K(¢) | exp (— Liot?) dt
+limsup, [ K(£)£,*(t| xo, -+, X,) dt.
The first term on the right-hand side of (4.10) is < lim sup, [ 2G()|f, (1) -
(io/(2m))* exp (—1iot?)| df — 0 by Theorem 3.1.

The second term on the right-hand side of (4.10) converges to zero by the
dominated convergence theorem, whereas the last term converges to
(io/(27))* [ K(t) exp (—3}iot?) dt. Thus
(4.11) limsup, a,B,(T,) < (io/(27))* [ K(r)exp (—%iot?) dt.

Next, we show that n*(,—T,) = U, < o a.s. For, if not, for every M > 0,
there exists a set 4, with Py(4,) > 0 such that |U,(x)| > M infinitely often for

x in 4,. Without loss of generality assume that U,(x) > M infinitely often. Then,
for the subsequence {#;} for which the inequality holds,

i t+U,,
anjBn,(T;tj) = a'ljl( n EY J)fn";(tixo’ "'axnj)dt
J

a
t+U,,
|r|<Ma"jl<? ,:':(tlxo, -~-,x,,j)dt
< J

v

LY

v

[ 1+M _
a,,J.l(—n—%—)f,,"j.(t,[xo, %, )dt (since t+U, 2 t+M 2 0)
i

le| <M

= [ =m K(t+M)(io/(27))* exp (— Liot?) dt.
Since K(t +M)I[|,| < is a non-decreasing function of M for each fixed ¢,
limy,, o 1oy < K(t4+M)(io/(27))* exp (—Liot?) dt = K(0)
> (io/(2m))* [ K(f)exp (—Liot?)dt.
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Hence for a large enough M, for a set of positive probability
(4.12) liminf, a,B,(T;) > (io/(2n))* | K(t)exp (—%iot?)
> lim sup, a,B,(0,)

which contradicts the definition of 7,. Thus lim sup, |U,| < o a.s. P,.

Let, for an arbitrary ¢ > 0, B, be the set such that for x in By, |U,,(x)| < M for
every nand P(B,,) > 1—¢. For a fixed x in By, U,(x) is a bounded sequence, hence
has a limit point m. Suppose m # 0. Then, for the subsequence {n;} for which
U, ,(x) - m, we have
To

liminf;a, B, (T,,)  liminf jJ

t+U,,
0t

To t+U,
> J lim inf; a,,jl( j)f,,”;(t | X055 X,,) dt

3
—To nj

= (io/(27))* [Tor, K(t+ M) exp (—4t%io) dt (dueto(4.5)).
Thus, by choosing a large enough 7', we get
(4.13)  liminf;a, B, (T,,) > (io/(2n))* [, K(t)exp(—}t%io) dt—¢ (due to (4.6)).
Since (4.13) holds for every ¢, we have
(4.14) liminf, a, B, (T,,) 2 (io/(27))* {2, K(¢)exp(—4t2io) dt
> limsup, a,B,(T,)

which is impossible. Hence m = 0 and n*(T,—0,) — 0. Moreover, (4.12) and
(4.14) give

lim a,B,(T,) = lima,B,(0,) = (io/(27))*| K(t) exp (—4iot*)dt.
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