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1. Introduction. Suppose x;, x,, -*-, X, are n independent identically distributed
observations on a random variable having distribution Fj, 6 € ®. Suppose it is
desired to test the null hypothesis § € ®, versus the alternative 8 € @, = ©—0,,.
Several different methods have been proposed to relate asymptotic performance
(as n > o) of two (or more) different sequences of tests. It may be said that these
methods fall into two broad categories.

First, there are “‘local”” methods such as Pitman efficiency and its generalizations,
see Noether (1955), Neyman (1959). In these approaches properties of tests are
compared at appropriately chosen sequences of points in the alternative hypothesis
(and perhaps also a sequence of points in the null hypothesis). A different alter-
native point is chosen for each sample size n, and properties are compared as
n — oo. Generally the sequences of points are chosen so that the probabilities of
type I error and type II error at the chosen points remain bounded away from zero
for at least one of the sequences of tests under comparison. The characteristic of
these methods which makes the name “local” appropriate is that the sequence of
points in the alternative hypothesis gets arbitrarily close to the null hypothesis.

On the other hand there are the ““non-local,” or “‘fixed alternative,”” methods. In
these methods the rate of exponential convergence to zero of the significance level
and/or of type II error at a particular point are examined. Denoting probabilities
of type I and type II error by «, and B,, respectively, one thus looks either at
lim,_, ,n~ " log ,(0) for fixed 6 € ©,, or'more usually lim,_, ,n™ ' 10g supy ¢ o, %(0)
and/or atlim,_, ,n~* log f,(0) for fixed 6 € ©,. (See Section 2 for explicit definitions
of these terms and others used in the introduction.)

While one might consider other measures of rate of approach of «, and/or B, to
0, the exponential measurement described above seems to be right for “non-local”
asymptotic properties. It is discriminating enough to provide non-trivial com-
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parisons between different sequences of tests, but not so discriminating that the
comparisons become essentially as difficult and possibly unrewarding as admis-
sibility comparisons for fixed sample sizes.

We shall show under appropriate regularity conditions that using this measure
of speed of approach to zero there exists a sequence of tests which is asymptotically
optimal.

To be more precise, in Section 2 we construct a test statistic 4,* which we prove
in Section 5 has properties described in the following paragraphs.

Let a,° = sups.e,2%,(0) and B,°(0) be the significance level and probability of
type II error of any sequence of tests of ®, versus ®,. Let a,’ and B,'(6) be the
significance level and probability of type II error of the tests which reject if

L¥>Cl i=1,2.
The following results are valid under appropriate regularity conditions which are

given in Theorems 2 and 3, Section 5.

MAIN RESULT 1. If lim sup,_, oo, < 1, then the constants C,' can be chosen so
that

(1.1) a, <,
and for all 0 € O,
(1.2) lim inf,, , (n~ "' log B,5(6)—n"" log B,'(6)) = 0.

For the purposes of discussion we give an alternate, closely related result

MAIN RESULT 2. Fix 0, € ©,. If lim sup,_ ., B,5(0,) < 1 then the constants C,*
can be chosen so that

(13) an(()l) é ﬂns(el)
and
(1.4) lim inf, , , (n™' log o, —n~ ' log &%) = 0.

There are several other possible alternate forms; they should be clear from the
proofs in Sections 4 and 5.

[It is to be emphasized that the central part of Main Result 2 from our present
point of view is the fact that the test statistic 4,* itself does not depend on the
choice of 8, or on the values of §,(0,). If this were not required to be the case then
this Result would take on a very different character, viz: “If lim sup,_ . f8,°(0,) < 1
then there exists a sequence of tests such that the appropriate versions of the
conclusions (1.3) and (1.4) are satisfied.”” In fact these tests can be based on the
likelihood ratio statistic for testing ©®, versus the simple alternative {6,}.
R. Bahadur who pointed out to us this observation (1969) also observed that if
lim inf,_, f,°(0,) > O then this latter result can be deduced by a relatively simple
argument under less stringent regularity conditions than we require in the present
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paper. We remark that even if lim inf,_,f,°(6,) = O this latter result can be
deduced from our Main Result 2 and the construction of A,*—subject of course
to the regularity conditions under which Main Result 2 is valid.]

When lim «, exists and 0 < lim «,* < 1, a type of comparison such as that in
Result 1 is used in Hodges and Lehmann (1956).

More interestingly, when lim f,%(0,) exists and 0 < lim 8,°(0;) < 1, Result 2
can be made into a statement about exact slopes. In that case Bahadur (1966) has
shown that the sequence of likelihood ratio tests of @, versus ®; having power

1—p,(0,) at 6, possesses the same optimal property as that described above for the
tests based on our statistic 1,*.

Hoeffding (1965) has studied rates of convergence of error probabilities in the
Multinomial Case. In that case (under appropriate mild assumptions on ©,) there
is a likelihood ratio test having error probabilities which satisfy the conclusions
of Result 1. Hoeffding has shown even more. Namely, if each of the tests in the
sequence S are appropriately different from the likelihood ratio test and if
(log n)~ ! log a,° - —oo then strict inequality holds in the analog of (1.2) (in
which B, is of course replaced by the error probabilities of the appropriate
likelihood ratio test, say B,“(0)) at “most” parameter points in ®, for which
B, (01) = 0.

Herr (1967) has studied a particular, common, family of problems involving the
multivariate normal distribution. Without completely proving that the appropriate
likelihood ratio tests satisfy the analog of Result 1, he has proved a result much
like the second quoted result of Hoeffding’s.

As must be expected, our statistic is equivalent to the likelihood ratio statistic
in the cases considered by Hoeffding and Herr. In general, 4,* is n~! times the log
of a likelihood ratio statistic for some statistical problem. However this statistical
problem may not be the same as the statistical problem under consideration. 4,*
will, in general, be the statistic for the “larger” problem of testing, ®,* versus
0,%, say, where ®, = O,* and ©®, = O,*. (More exactly, the set of distributions
{Foloco, satisfy {Folsco, © {Folocoo; €tc.) Usually ©y = Oy*, however often
0, # 0,*sothat 1,* is essentially different from the likelihood ratio statistic, say,
A, for testing ®, versus @, . Denote the error probabilities of this test by «,*, ,%(0),
etc. When ©, # O * it will often be true that, for example, when a,' = a,* there
exist many values of 6 € ©, such that

(1.5) lim inf, ., (n~" log B,(6)—n"" log B,'(6)) > O.

Thus the test based on A,* is asymptotically non-locally better than the test based
on 4,. It is even quite possible that the inequality in (1.5) will hold for all 6 € ©,.
Theorem 1(g) describes a condition which, if violated by ©,, will lead to in-
equality in (1.5). Further results are given in Section 6.
It is often the case that the reduction of an original alternative hypothesis—®, *—
to a smaller one—®;—results from some extra information about the alternative
hypothesis. If so, the result mentioned above leads to the following:
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HEURISTIC PRINCIPLE 1. If you have some ‘‘extra’’ information about the alternative
hypothesis, forget it! For a given significance level, to use this extra information in a
likelihood ratio test may quite likely result in a test with exponentially larger error
probabilities. Furthermore, the rate of exponential convergence to zero of the error
probabilities when using this extra information (in any sort of a test) cannot be smaller
than those of the best test which does not use this information.

We remark that the applicability of this principle may be somewhat restricted
since we have made some assumptions in Sections 2 and 4. In particular, the absolute
continuity requirements may restrict this principle. See Section 7.

It should be emphasized that the last sentence of the above principle does not
imply that nothing can ever be gained by utilizing “extra’ information; it only says
that the rate of exponential convergence to zero cannot be improved. (For an
example see Bahadur (1966) Remark 3b.) In fact, if the extra information is of a
very special type, all of the error probabilities can be somewhat decreased.

Let us also remind the reader that the above principle refers only to non-local
properties. We do not know in general whether “‘extra” information can only
improve local properties of likelihood ratio tests, or whether, as with non-local
properties, the converse is sometimes true.

The application of this principle is illustrated in the examples of Section 6.

It is most important to emphasize that this principle does not apply to “extra”
information about the null hypothesis. In fact the opposite result holds for extra
information about the null hypothesis, as the following principle indicates.

HEURISTIC PRINCIPLE 2. If you have any extra information about the nullhypothesis,
use it in forming the likelihood ratio test. For a given significance level it cannot
increase the rate of exponential convergence to zero of type 11 error, and it may
decrease it.

In principle, the results in Corollaries 1 and 2, Section 6, can be used to describe
when specific “extra” information about the alternative (null) hypothesis increases
(decreases) the rate of exponential convergence of probabilities of type II error.
In practice these results are sometimes easy and sometimes difficult to apply.

Roughly speaking this difference between information about the null hypothesis
and the alternative hypothesis is due to the following consideration: Information
about the alternative hypothesis is only used to alter the statistic in the testing
problem. For our purposes the likelihood ratio statistic which makes the least
limitations on the alternative hypothesis consistent with the general assumptions
of Theorem 1-3 turns out to be an optimal statistic. On the other hand limitation
of the null hypothesis performs two functions. First, it also alters the likelihood
ratio statistic. It is clear that a test based on such a modified statistic cannot have
better asymptotic non-local properties than the optimal test described above.
However, limitation of the null hypothesis at the same time decreases the family of
probabilities which contribute to defining the significance level of the test. More
precisely, after such a limitation the significance level is now the supremum over a
smaller family of error probabilities.
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The precise way in which such extra information about the null hypothesis acts
is not entirely clear without specific reference to Theorem 1. Consider, for example,
the problem of testing ©, versus ©, at level «, = e~ ", so that lim,_, ,n~ ! log a, =
-a. Let o,(0), 0 € ©, denote the probability of type I error at § € ©, of an “optimal
test” of ®@,. Then, a reduction of @, to @', say, (@, = ©,) which removes some,
but not all, of the points, 0, such that lim,_, ,n~! log a,(0) = —a may result in an
asymptotic exponential reduction of type II error for some, or all, points in ©,.
Perhaps more surprisingly, a removal from ® only of points, 6, for which
limn~'log () < —a—e¢, ¢ > 0, can sometimes result in an asymptotic expo-
nential reduction of type Il error for some or all points in @,. (We leave the detailed
proof based on Theorem 1 of this result to the interested reader.)

As to the appropriateness of using the rate of exponential convergence of error
probabilities to zero as a measure of non-local asymptotic performance we mention
that for each fixed 6, € ®, a statistic optimal in this sense has ‘“‘asymptotic relative
efficiency” at least 1 at 6,. This can be deduced directly from Result 1 or Result 2,
much as in Theorem 2 of Bahadur (1966). However, a more interesting conclusion
would be that an appropriate sequence of tests based on A,* has asymptotic
relative efficiency at least 1 (uniformly on ©)).

(To be precise, one would want to show that for any sequence, S, of tests there
is a sequence 7 of tests based on 4,* and a function m(n) satisfying

lim inf, , , n/m(n) 2 1
0(;{,(") é a”s
Buny(0) = B.(0) forall 0 € @,.

Since we have not been able to prove (or disprove) such a result, we do not pursue
this topic further here.)

Section 2 contains the definitions and assumptions used in the remainder of the
paper. Section 3 is devoted to several lemmas including Lemma 4, which is a stan-
dard type of result about probabilities of large deviations. The main mathematical
result is Theorem 1 in Section 4. This theorem is applied in Section 5 to prove the
Main Results quoted in this Introduction. These are Theorems 2 and 3 of Section 5.
Theorem 1 is also applied in Section 6—in Corollaries 1 and 2—to prove formal
versions of the Heuristic Principles described in this Introduction. The bulk of
Section 6 is devoted to examples which illustrate the application of Corollaries 1
and 2. The final section, Section 7, contains an example and some remarks con-
cerning the necessity of the absolute continuity assumptions used elsewhere in the
paper. Theorem 4 of Section 7 partially removes one of these assumptions. The
reader interested primarily in results and examples rather than proofs may proceed
directly from Section 2 to the statement of Theorem 1 and then to either Section 5
or Section 6.

2. Notation and assumptions. Let {F},.o be a family of probability distributions
on a probability space &, #. We assume throughout that the distributions are all
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dominated by a o-finite measure, v, and we denote their density by dF,/dv = f(-, 0).
We also assume 0, # 0, implies Fy, # F,,.

We suppose @ = O, U O, O, N O, = & and we are interested in testing the
null hypothesis 0 € ®, versus the alternative 6 € ®,. In order to describe the
assumptions to be made on the family of densities, we describe an imbedding of ©
into a (perhaps) larger space ®* and some related notational conventions. If 0,
0, € 0®, and f(-, 6,) and f(-, 0,) are not mutually singular densities, define for

0<éx<l
o(&, 00, 0,) = (§f' ~%(x, 00)S*(x, 0,)¥(dx))~"
(Note: ¢ < o), and define the density corresponding to the new parameter
(¢, b, 0,) by
(%, (& 00, 01)) = (&, 0, 0)f ~%(x, 00)f *(x, 0,).
See Lemma 2 for some properties of the function c. If f(-, 0,) and f(-, 8,) are not
mutually singular, define

(%, (0, 05, 0,)) = limgo f(x, (£ 00, 0,)) = ¢(0, B, 0,)1(x, 0o) sgn f(x, 0,)

where ¢(0, 0,, 0,) = (Jf(x, 0,) sgn f(x, 0,)v(dx))" ", and sgna=1ifa>0,=0
if a = 0. Similarly let

Sf(x, (1, 00, 0,)) = lim, ., f(x, (&, 05, 0,)) = (1, 06, 0,)1(x, 0,) sgn f(x, O).

Both limits exist. In fact, if f(-, 6,) and (-, 6,) are mutually absolutely continuous
f(x, (Oa 90’ 01)) = f(xa 00) andf(x, (la 00’ 91)) = f(x, 01)

We will assume there exists a locally compact second countable metric space ®*

with associated probability densities {f(-, 0)}5.+ Which satisfies:

(2.12) V0 e ©30' € ©* 5 f(-, 0) = f(-, 0) a.e. (v)

(2.1b) 6,€©y,0,€0,,0 < & <1=>30eO®* suchthat f(-,(¢, 0,,0,))
=f(-,0) ae. (v)

(2.1¢) 0, # 0, implies f(-,0,) #f(-,0,)ae.(v)

and some additional properties to be described later. (2.1b) is meant to contain the

assumption that for all 6, € ©,, 0, € O, f(-, 6,) and f(-, §,) are not mutually

singular. (This is explicitly well contained within Assumption 4.) In other words

the densities {f(-, 0)}4.o may be imbedded in a natural way into {f(-, 0)}se o+

where ©* satisfies (2.1b), (2.1c) and some additional properties.

A potentially awkward feature of ® and ©* as so far described is that there may
be many different parameter descriptions of the same probability distribution.
[e.g., if & =0, 1], v = Lebesgue measure on %, f(x,0,) = 1, f(x,0,) =3x?,
Sf(x, 0,) = 4x> then (3, 0,, 0,) and (4, 0,, 0,) both describe the density 2x.] To
overcome this notational difficulty we make the following convention, which is to
apply to ©® and ©%*, as well as all other parameter spaces defined in this paper:

CONVENTION. All parameter descriptions of the same probability distribution
are identified together.
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Thus we will write (&, 6y, 0,) = (£, 6,',0,’) if and only if f(-, (£, 0,, 0,)) =
S, (&, 0y,0,))a.e. (v). In the same spirit the statement (¢, 0,, 6,) € ©® means
that there is a 8 € O such that f(-, 6) = f(-, (§, 6,,0,)) a.e. (v). (Note that this
convention makes Assumption (2.1c) formally unnecessary, but is not implied by
that assumption.) Let ©,°, ®,°, ®° denote the closure of ©,, ©,, @, in O
respectively. Let ©y* = ©,°.

The assumptions we need to make are somewhat more restrictive but of a similar
nature to those in Bahadur (1966). That paper contains certain comments which
we will not reproduce here about such assumptions. In the main we have chosen
the form of the assumptions below on the basis of notational and conceptual
simplicity, rather than to give our results the greatest possible generality. However,
it is clear that assumptions as weak as those in Bahadur (1966) will not suffice for
our purposes. See Section 7 for one comment on this matter.

If ®* is compact define ® = ©* U {00} where oo is an isolated point of ®. If
©* is not compact define ® = @* U {00} the one-point compactification of @*.
(In the case where ©* is compact we could just as well have let ® = ©* but we
have pursued the above course in order not to have to separate arguments which
follow into two cases depending on whether co € ® or not.) We assume (for
convenience of symbolic presentation and without loss of generality) that the
metric p on ©* has been chosen so that lim,_, ,p(6, ") = oo for all 8’ € ©*.

Define f(x, o0) = 0. Note f(x, o) is not a probability density. Define ®, as the
closure of ©,* in ®. Thus @, = Oy* or ©* U {00}. Ford > 0and § # oo define

g(x, 0, d( = sup {f(x,0):0" € ©*, p(6, 0") < d}.
Fix a point y,, say, in ©* and define

g(x, 00, d) = sup {f(x, 0'): p(¥o, 0") > d~'}.

(In the sequel we will sometimes refer to the set {0: p(f, 0) > d~'} as the
neighborhood of infinity of “radius” d.)

Let %, denote the Borel field on ©*. Finally, let .# be the topological space of
a.e. (v) equivalence classes of # measurable functions on ' with the topology of
convergence in measure (v) on all sets of finite v measure. (Let n be any finite
measure equivalent to v. Then the above topology is equivalent to the topology of
convergence in measure (#).)

ASSUMPTION 1. There is a locally compact second countable metric space ©* with
metric p satisfying (2.1) and the following conditions.

(a) Thereexistsad' > 0 such that for0 < d < d'g(-,-,d)is B x B measurable.
Assume also f(-,-) is B X Be measurable.

(b) The 1-1 map m: ® — f(-, 0) is a homeomorphism of © onto m(®) c M,
such that 0, — 0 if and only if (-, 0)) = f(-, ) a.e. (v).

(c) Forall 0e®, g(-,0,d)\f(-,0) a.e. (v)asd— 0.
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We note that there is a crucial interrelationship between Assumption 1b and the
construction of © as the one-point compactification of ®*. To make this clear we
begin with an example:

Let & = (—o0, ), v = Lebesgue measure, and let N(y, 0?), 6> > 0, denote
the normal density with mean u and variance o2. Let N(y, 0) denote the prob-
ability distribution which gives mass one to the point u. Consider the problem of
testing ®, = {0 < 62 < 1} versus the alternative ®, = {I < o < oo}. It can
be shown after some computation that Assumption 1b is satisfied here if the metric
on O%* s chosen to be equivalent to the (weak) topology generated by neighbor-
hoods of the form

Ny, ={f(-,0):0€0" [|f(x, 0)—g(x)| h(x)dx < &}

where ¢ > 0, & is an arbitrary continuous function with compact support, and
g(:) = f(-, 0", 60 € ©* (This is the “natural” metric for @* in such situations.)
(If ®, is further restricted by u € K where K is compact then all the other assump-
tions of this section are also satified. With @, as in the example above it turns out
that Assumption 2b is not satisfied. Nevertheless the main conclusions of Theorems
1-3 are satisfied, but a few special minor changes are required in the proofs of these
theorems to verify that fact.) On the other hand suppose ©, consists of all densities
of the form aN(u,, 0,>)+(1 =Ny, 06,2)0 < 6%, < 1,0 < a < 1,and O, is as
before. The Assumption 1b is not satisfied because, for example, the sequence of
densities described by a; = %, u;; = 0, 6,; = 1, 0,; = 1/i tends (a.e.) to the limit
N(0, 1)/2 which is not in ®* and is also not identically 0.

We note that the ‘‘natural” compactification in the above situations is not the
one-point compactification we have used but rather contains {N(u, 62):0 <
0% < oo} in the first situation above and contains {aN(u,, o;2) +(1 —0)N(u,, 65%):
0 <a=<1,0= 0; < o0} in the second situation. From this point of view the two
situations may not seem so different, and also the use of a one-point compacti-
fication may seem artificial. The second situation appears to us to lead to compli-
cations similar to those encountered in the (simpler) example in Section 7, precisely
on account of the appearance of N(u, 0)/2 # 0, etc., in the a.e. pointwise limit
closure of ®,*. For this reason we are unable to obtain general results of the type
of Theorem 1 for such problems.

ASSUMPTION 2. (a) For each 0 € ©* there is a d, = d(0) > 0 such that

(2.2) f9(x,0,d,)v(dx) < o,
and ,

(b) For each 0 € ©* there is a d, = d,(0) > O such that
(2.3) Jg9(x, 00, dy)f(x, O)v(dx) < 0.

Assumption 2 is sufficient (but much more than necessary) to guarantee that
given 7,0 < 7 < 1, 0 € O*, and ¢ > O there exists a d > 0 such that

§ Lg(x, 0, A)/£(x, 00)]Foy(dx) < 1+&
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for all 6, € ©,, which is Assumption 6 of Bahadur (1966); and also given 8 € ©*
and 0, € O, there exists a d > 0 such that

flog*[g(x, 0o, d)/f(x, 0)]F4(dx) < oo,

which is Assumption 5 of Bahadur’s paper.
An important element in all our considerations is the information number

K(0,0°) = [log(f(x,0)/f(x,0)) f(x,0) v(dx)

defined (0 < K < ) for all 6,0 € ®* Extend this definition by defining
K(o0, 6) = oo and K(0, c0) = oo for all § € O*.

ASSUMPTION 3. For all 6, 0 € ©* such that K(0,0) < o, there exists a
d=4d@0,0) > 0 such that

J log (%) g(x, 0, d)v(dx) < oo.

J(0) = inf, e, K(0, 0).

Except for some results in Section 7, we will generally have to assume

Define

ASSUMPTION 4. The probability distributions {Fg}g.es are mutually absolutely
continuous and for 0" € ©*, 0 € Oy*, Fy is absolutely continuous with respect to Fy.
Without any further loss of generality we then assume v is chosen so that f(-, 0) > 0
a.e. (v) for all 0 € ©,*.

Except where otherwise specifically noted we assume throughout this paper that
Assumptions 1-4 are satisfied.

Let (x,, x,, ---) be a sequence of independent identically distributed observations
on &, each having distribution Fj. Let T, be a test (possibly randomized), of ®,
versus ®, which depends only on x,, -+, x, = x™ and denote by T = T, T5, -
a sequence of such tests. Let

a,7(0) = Pry {the test T, rejects O}
anT = SUPg, e @ anr(eo)
and for 0 € O,

B,T(0) = Pr, {the test T, accepts O}

a,” and B,7(0) are the significance level and probability of type II error at 0 € ©,
of the test 7, respectively.

If 4 and B are any two sets of parameter points, define the associated likelihood
ratio statistic by

sup {[]¢=1 f(x:, 0):0 € B}

14, B) = sup {[[7=1/(x: 0):0 € A}’

Define

1
(A4, B) = —log 1, (4, B).
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For convenience we sometimes write 4,(0,, 0;) instead of 4,({6,}, {0,}), etc.
(Both I, and A, are of course functions of x,, ---, x,, but we do not explicitly display
this in the notation.) Generally we will take 4 to be the null hypothesis and B the
alternative and we will construct tests of the form: Reject ®, with probability 1
if 4, > C,. The constants C, are called critical constants. Temporarily denote the
level of such a test by «,°. The statement o, = a means C = inf {¢: @, < a}.
Note that «," = g implies o,° < a.

When no mention in the following is made of 4 and B it is understood that
A = Oy and B = ©,. Thus 4, = 4,(0y, O)).
Also define

¥ = 2(00% ©,%).

It should be noted that in at least one respect the above regularity conditions are
not as hard to verify as they may at first appear. In many practical situations, © is
naturally taken as a locally compact metric space and @ is closed in ©. If that is
the case then one can always take the family of densities {f(+, 6)}4 o to be exactly
{f(, 0}peo W {/(, (£, 0,01))}0<e<1.0c000.c0, and OF is naturally isomorphic to
a quotient space of ® U ([0, 1]x ©y x ©,). (The “quotient” results from the fact
that one must identify all points 0 and/or (&, 6,’, 6,) which represent the same
density. After the identification, ®, = ©,*.) Any of Assumptions 1, 2, 3, and 4
which are satisfied by ® and the family of densities {(-, 0)}4. Will also be satisfied
by the often much larger family {f(-, 0)}4 o+ as defined above. We leave the proof
to the reader.

3. Preparatory lemmas. In this section we prove several lemmas which are
needed in the proof of Theorem 1 and elsewhere in the paper. The following
properties of K and J which are implied by Assumptions 1 and 3 are used at several
points in the proof of Theorem 1.

LEMMA 1. Suppose Assumptions 1 to 3 are satisfied. Then K(-,-) is a lower-semi-
continuous extended real-valued function on ©* x ©. For each 0' € ©*, K(-,0") is a
continuous extended real-valued function on ©. J(-) is a continuous function on ©%*,

Proor. Let log* a = max (0, log @) and log™ @ = min (0, log a) < 0, etc.

f log™ (;g 0))) £(x, O)v(dx)

108" (157 6 00

< fg g)) ) f(x, 0)v(dx)

m

S(x,0)v(dx) =2 —1 (= -1 if 60O

(.1)

1\%
I

v
I
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Hence by Fatou’s Lemma and Assumption 1b if /; - € ®*, and 0, » 0 € ©.

o, | 1og (700 ) 165 v 2 [ e (Fa s e

Hence K(-,-) is a lower-semicontinuous function on ©* x ©.
Suppose 0" € ©*and 0; —» 0 € ©*. For any fixed, small, d > 0and all ; sufficiently

large
f(x, 0, g9(x, 0, d)
+[ S\ Vi) . +{ I\ T )
lOg (f(x, 0/) f(xa 0;) é 10g f(x, 0/) g(xa 0, d)
Hence Assumptions 3 and 1b imply that K(0;, 0") — K(0, 0").

Suppose ; — oo. Let S;; = % be the set such that jf(x, 0") < f(x, 0;). Assumption
1b guarantees that for all j lim,_, ,, [ S;;/(x, 0)v(dx) = 1.

J lo <f E ’o'g)f(x, 0,)v(dx)

>J ;E ’Ol;f(x 0;)v(dx)

> (log j) L“_f(x, 0:)v(dx)

— logj.
Observe from (3.1) that

J log—<§gz g;) F(x, 0)v(dx) = —1.

Since j in the preceding expression is arbitrary we thus have

K(0,0") = f (;E : 0;) £(x, 0)v(dx) - oo as i —» .

We have thus shown that K(-, 0') is continuous.
Use the previously established lower-semicontinuity of K(0,-) on ®. Since 9,
is closed, for each 0 € ®* there is a = () € ©, such that

(3.2) J(0) = K(0, y(0)).
In fact, there is no loss of generality in assuming y € ©,*. Let 0, - 0 € ©®*. Since
© is compact there is a subsequence, say {f,} such that y(0,) - ¥, € ®, and

lim inf;_, ,K(0;, ¥(0,)) = lim inf, _ ,K(0;, ¥(0;)). From the lower-semicontinuity
of K(-,-) we have

lim inf;_, ,, J(0;) = lim inf,_, ,, K(6;, ¥(0,))
= lim inf,_., K(0/, ¥(0,)) = K(0, o).
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On the other hand J(0,) < K(0;, ¥,) and K(-, Y,) is a continuous function. (If
o = 00, K(-, ¥,) = 00.) Hence

lim sup;_,, J(0;) < lim sup,_, , K(6;, ¥0) = K(0, ¥o).

This proves J(-) is a continuous function on @%,
The proof of the lemma is complete.
The following is another very useful result which is easily proved.

LEMMA 2. If 0, 0, € © and f(-, 0,) and f(-, 0,) are not mutually singular densities
then ¢~ (&, 0,, 0,) is a continuous strictly convex function of £ on 0 < & < 1. For
0<EZ1,1 ¢, 0,,0). If f(-, 00) and f(-, 0,) are mutually absolutely con-
tinuous then ¢(0, 04, 0,) = 1 = ¢(1, 0,, 0,). For 0 < & < 1 the defining expression
Jfor ¢ may be differentiated under the integral sign an arbitrary number of times.

PrOOF. Since 0 £ ¢ £ 1 implies a' ~¢b* £ max (a, b) we have

(3:3) 2= c7Y(& 00, 0,) = [ £1(x, 00)f(x, 0,)v(dx)
= Jexp <§ log%) £ (x,00)v(dx).

Thus ¢~ ! is a moment generating function which is finite for 0 < ¢ < 1. The
assertions in the lemma concerning continuity and differentiability follow directly
from this fact. The strict convexity of ¢ also follows from this fact since a direct
computation yields (d2/d&*)c™ (&, 0,, 0,) > 0. The values for ¢(0, 6,, 6;) and
(1, 0,, 0,) may be computed directly from the definition. The “proof” is complete.

We will need some other properties of K which follow directly from the above
two lemmas. In the discussion which follows we will use Assumptions 1-4 freely
and we also assume 0, € ®, and f(-, 0,) > 0 a.e. (v). This latter assumption will
appear again in Theorems 1-3. We assert that for any neighborhood N of infinity
K((y, 0, 0)), 0) is lower-semicontinuous on {(y, 0): 0 ©x*, 0 <y =1, 0¢ N or
(ya Oa 91) ¢ N}

In particular it follows that K((y, 0, 0,), 6) is a jointly lower-semicontinuous
function of 9,0 for 0 £y £ 1, 0 € ©,*. For any 0,€ O, K((y, 0, 0,),0,) is a
continuous function of y,0 for 0 < y £ 1, 0 € ©y*. To verify these assertions
begin by defining the map

(3.4) m':(y,0,0,) > /-, (v 0, 04))-

With m as defined in Assumption 1b it follows from Assumption 4 that m™" o m’
is a continuous map of {y,0;0 <y £ 1, 0 ©y*} into O*(m™'om'(y, 0) =
(y, 0, 6,) € ®*). The assertions then follow directly from Lemma 1.

Utilizing the differentiability properties in Lemma 2 and the definitions of K
and c, etc., we have

K((7,0,0,), 0) = log (c(y, 0, 0,))

1
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(3.5) +¢(7,0,0,)y Jlog (%%))f‘ “(x, 0)17(x, 0,)v(dx) -

d
= 10g C(% 0, 01)_7 d—')) (log C(}’, 09 01))

andfor0 <y < 1, K((y, 0, 0,), ) < . Differentiating (3.5 yieldsfor0 <y < 1

d d?
,77 K((y,0,0,),0) = —y o log (7, 0, 0,)

<f(x, 0,)

(3.6) = y[e(, 0, 0,) Jlogz 76.0) >f1_y(x, 0)f(x, 0,)v(dx)

—(c(y, 0, 0,) Jlog (If(();’—%z)fl"(x, 0)/7(x, 0,)

x v(dx))*]
f(x, 91))

=y Var(y,o,9[)<log '_f,(x—o)

> 0.

We have used Assumption 4 and f(-, 6,) > 0 a.e. (v) to guarantee that the variance
in (3.6) is not zero. Note also from (3.6) that (d/dy)K((y, 0, 6,), 0) < oo for
O0<y<l1.

We derive from the above facts that
(3.7) lim,,, K((y, 0, 91), 6) =0

lim),/,l K((y, 9, 01), 9) = K(el, 0)
and

(3.8) lim, o K((7 0, 0), 0,) = K(0, 6;)
lim, ,; K((7, 0, 6,), 0,) = 0.

There are various other closely related facts about K, ¢, f, etc., which we will use
without further proof when needed.

Before proceeding further we need some lemmas concerning probabilities of
large deviations of likelihood ratio statistics. Such results are of course the foun-
dation on which theorems on non-local asymptotic optimality are based. Much of
what follows is already known and the rest is a simple generalization of proofs in
the literature; see for example Chernoff (1952), Bahadur (1966), Rao (1962). For
the sake of clarity we begin by stating a result of Chernoff (1952) in the form we
will use it in this paper. We note that this result can be somewhat strengthened but
we have been unable to make use of stronger versions than the following.
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LEMMA 3. Let z,, z,, -+ be the values of a sequence of independent identically
distributed random variables. Let k, — k. Then

(3.9) lim sup,_, n~ ' log Pr {n= ' YI_, z; > k,} < inf,,, log E(¢”™*).

If the infimum on the right of (3.9) is attained for some t > 0 on the interior of the
region of convergence of the expectation in (3.9) then

(3.10) lim,.,, n~ ' log Pr{n ' Y4_, z; > k,} = inf,, log E(¢"™").
We will utilize this result, for example, when
7. = 10 f(xis 93)
=8 f(x,, 0,)

We then have
(3.11) lim sup,, o, n~" log Pre{4,(0,, 05) > k,}

) 93 '
< infis log Eo(‘f""(%) )

with the limit existing on the left and equality holding under the specified con-
ditions.

The main result we need is the following lemma. The lemma can clearly be
further generalized, but we do not need more generality for our purposes.

We assume throughout the remainder of this section that Assumptions 1-4 are
satisfied.

LEMMA 4. Let h,n = 1, 2, --- be a sequence of continuous real-valued functions on
O, such that h,(0) —» h(0) < oo uniformly for 0 € ®,. Suppose h and 0, € O,
satisfy f(-,0,) > Oa.e. (v) and —K(0, 0,) < h(0) < K(0,, 0) for all 0 € O,,.

Then
lim,_, , n™" log Pr, {infy. o,(4,(0, 6,)—h,(0)) < 0}
(3.12) = SUPy. o, lim,,,, n~ " log Pry {4,(6, 0,)—h,(0) < 0}

. f(x,0) Y
= SUPy. o, iNf;> log Eol<e‘h(9)(m .

Proor. Fix ¢ > 0. Using Assumption 2 and Assumption Ic, for 0 < ¢ < 1 and
0e®,

L

Let h(0, d) = sup {h(0"): 6(0’, 0) < d}. Define h(c0, d) analogously. Then for each
0 € ©, there is a d = d(0) > 0 such that

. g(x, 0, d)\'
(3.14) infy <, log Eo(‘*"’”’“(' ;(x, 01))> )

=< (1 +8) info <, <y log E0‘<eth(0)<fjf(§,(90l))>t>.
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Let Ny, N, ---, N, be a finite covering of ®, by neighborhoods of the points
0,’,0,, -, 0, having radii d; = d(0,"), d, = d(8,"), ---, d, = d(6,’), respectively.
Then, using Lemma 3 since 4,(0;, d;) —» h(0,, d;) we have

lim,_, , n~" log Pry {inf, . o,(4.(0, 6,)— h,(0)) < 0}

k n
(3.15) < lim,,, n 'log Y Prol{n < Y log=———+= S, 0,) > h(0/, d;) < 0}
i=1 g( p 01 ’ d)

=1

n x:, 0
= lim,, o, n "' log sup, <; <4 Prol{n_‘ > <log;(];£j,’0i,—,lzm>

_hn(gi,’ dl) = 0

' g(x, 0;, d))\
sup; <<k info<,<1 log Ey <éh(0 d)( Sf(x,0,) )>

Applying (3.14) and (3.15) we find
lim,_,,, n~ " log Pr, {inf, . 5,(4,(6, 6,)—h,(0)) < 0}
. g(x, 0, d(0))\
(3.16) < Supgea, iNfo< <1 lOg Eol<éh(9»d(9))<W
. f(x, 0\
< (1+¢) supyc oo+ info< < log Eol(e‘h(")(m ,
Let ¢ —» 0.

(3.17) lim,., n™" log Pr, {inf, . 5,(4.(0, 6,) — h,(0)) < 0}
) f(x,0)\
< SUpgc op+ iNfo << lOg E,,(e"‘“”(m
Trivially,

(3.18)  Pry,{infy. 5,(4x(6, 0,)—h,(0)) < 0}
> Supy s, Pro, {(A.(0, 6,)—h,(6)) < 0}.

IIA

For this paragraph fix 0 € ©, and let

(1) = log Em(e"'w)(%)')'

Note that e(?) is well defined and convex on 0 £ ¢ < 1. Since e*® is the well-defined
moment generating function of 4(6) + log (f(x, 6)/f(x, 8,)), e(t) can be differentiated
inside the integral for 0 < ¢ < 1 to give

(3.19) e(t) = h(9)+<ﬁog (,{((; :3)(}{((;‘ :3) £(x, Hl)v(dx)>

() s moved)
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Since by Assumption 4 both f(-, §) > 0 a.e. (v) and (-, 6,) > 0 a.e. (v) the second
factor in the product on the right of (3.19) is continuous for 0 < ¢ < 1, and tends
to one as 0 or 7 /1. (Note that this factor is exactly c(1—¢, 0, 0,).) Since
(f(x, 0)/f(x, 6,)) is continuous increasing (decreasing, resp.) in f for 0 < ¢t < 1
whenever log (f(x, 0)/f(x, 0,)) is positive (negative), it is true in similar fashion
that the first factor is also continuous on [0, 1]. Using the definition of K to
evaluate this factor at = 0 and # = 1 we have

lim, o €'(r) = h(0)—K(0,,0) < 0
lim, , €'(t) = h(0)+K(0, 6,) > 0.
It follows from the convexity of e(f) that inf,, 4e(f) occurs at some point ¢’ € (0, 1).
Hence, again using Lemma 3
(3.20) supy., lim,_, n™1 log Pr, {4,(0, 0,)—h,(0) < 0}

, J(x0)Y
= SUPy &, iNfy<,<; lOg E(,I(e”'(o)(m .

Combining (3.17), (3.18) and (3.20) proves that (3.12) is valid. This completes
the proof of the lemma.

Note that, since f(x,-) is continuous a.e. (v) on ©, the conclusion of the lemma
is unchanged if infy 5, is replaced by infy.g,.

Note also that if ,(0) = k, and k, - k with supy.g,(—K(0, 0,)) < k < J(0,)
the conclusion of the lemma can be specialized to

(3.21) lim,,, n™ ! log Prol{/l,,(G)O, 01) < k,}
. w (S 0)Y
= SUPg. g, iNfo<,<1 lOg Ey, | € f————(x, 01) .

Reversing the roles of ®, and ®, in Lemma 2 gives a formally different result.
Minor modifications are needed in the regularity conditions. Omitting these, the
analog of (3.21), for example, is

(3.22) lim,.,, n~" log Pre {1,(00, ©;) = k,}

) (% 0)Y
= SUPgco, lnf0<t< 1 IOg Eoo (e “ (f(X, 00)

where (supyco,K(0y, 0)) < k < infy. o, K(0, 0,). The condition k < infy .o, K(0,0,)
would normally be obnoxious in usual applications of (3.11); but other, nicer,
conditions can be substituted if inf, ., . ; is replaced by inf,., , and if this infimum is
attained in the interior of the region where E, (e~ *(f(x, 0)/f(x, 0,))") is finite. In
any case, without the necessity of making any such assumptions we certainly have

LEMMA 5. Let 0, € ©* and suppose f(-,0,) > Oa.e. (v). Let 0, € ®y*. Let
k, = k > 0. Then

(3.23) lim sup,.,,, n~* log Pry,{A,(0,, ©,) > k,}

' [ f(x0)\
é SUPg e 0O 1nf1>0 IOg E32 {e * (f(x, 00) ’
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PRrOOF. The proof of this result is similar to the verification of the validity of (3.17)
in the proof of Lemma 4. We omit the details.

4. Statement and proof of the fundamental theorem. This section contains the
statement and proof of the theorem which provides the bulk of the result claimed
in the Introduction. It is extended and amplified in the following sections of the
paper.

THEOREM 1. Suppose Assumptions 1 to 4 are satisfied. Let {o,:n = 1,2, -}
satisfy_lim,,_,oon_1 loga, = —a < 0. Let & = {S} be the set of all sequences of
tests of ©, versus ©, satisfying «,° < «,. Define f,(0) = infs_,B,5(0). Let 0, € O,
satisfy J(0,) > a, and f(-, 0,) > Oa.e. (v).

(@) Then, limn~'log B,(0,) = —B(0,) exists and © > B(0,) > 0. [See con-
clusion (b) for an explicit expression for f.]

For 0 € ©y* define {(0) by K(({(0), 0, 0,), ) = a.
(b) Then, {(0) is uniquely determined, and
(4.1) B(0,) = infy. o,» K(((6), 0, 6,), 0,).

Let Q* be the sequence of tests based on 1,* = 1,(0gy*, ©,*) with critical constants
C,* defined by 0,%" = a,.

(c) Then, C,* - a, and
(d) lim, ,n~" log B,%°(0;) = —B(0y).

Let Q be the sequence of tests based on A, with critical constants C, defined by
Q *
o, = o,

(e) Ifthereisa0 € ®, such that J(0') = aand f(-,0) > 0 a.e. (v), then C, — a.
(f) If C, — a, a sufficient condition for
(4.2) lim,., n™ " log $,%(0:) = —B(0)

is that there exist an & > 0 such that for each 0 € @, there exists a y = y(0),
0 <y < 1, satisfying

(4.3) K((v,0,0,),0) = a+(c—y)"
K((y,0,0,),0,) = B(6,), and (7,0,0,)€0®,.

() If C, > a, a necessary condition for (4.2) to hold is that for all 0 ©y*
satisfying

(4.4) K((¢(0). 0, 0,), 0,) = p(6,)
we have ({(0), 0, 0,) € ©,°. If this condition fails to hold then, in fact,
lim,, ,, inf n=" log 8,2(0,) > —B(0,).

ProoF. We now proceed to establish part (€) of the theorem. The first goal is
to prove equation (4.12) below.
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Suppose 0" € ©, satisfies J(0') = a and f(-, ) > Oa.e. (v). Fix ¢ > 0. From
Lemma 4,

lim,, ., n™" log Pry{4,(®,, 0') < a—¢}

i S f(x0)\
SUPg e 0, lnf0<t< 1 lOg E9,<e'(” €) (fEx 6?)

SUPy .5, info<, <1 [H(a—e)—log c((1—1), 6, 0')].

From Assumptions Ic, 2b and f(-, co) = 0 it follows that there is a neighborhood
N’, say, of co and an ¢, > 0 such that inf,_,.[t(a—¢)—log c((1—1), 0, 0)] <
—&' <O0forfeN'.

From (3.5), for0 < ¢ < 1,

(4.5)

(4.6) :-—t[t(a—s)—log c((1-1),0,0)]

_ [a _8_1<((1 —1),0,0),0)—log c((1—1), 0, 0')]'

1—t

From previously established properties of K and c it follows that the derivative in
(4.6) is a continuous function of 7,0 for 0 < ¢t < 1, 6 € ©y*; and that for each
0 ¢ ©y* there is a 0 = 6(6) > 0 such that this derivative is negative for 0 < ¢ < 9.
It follows that there is a continuous function &,(-) on ©,* such that
infoo < [t(@a—e)—log c((1—1),0,0)] < —e,(6) < 0. It then follows from O,
compact and the above that for some &, > 0

(4.7) lim, ., n~ " log Pry{A,(0,,0) < a—¢} < —¢ < 0.

Temporarily denote the sequence of tests with rejection regions {1,(0,, 6') >
a—e} by U. Let y € O, satisfy K(0', ) = J(0') (¥ exists: See proof of Lemma 1.)
Consider the problem of finding the lowest significance level sequence of tests,
say V, of Hy: versus H,: 0’ satisfying 8,7(0") £ B,Y(9).

According to the Neyman-Pearson Lemma, V is of the form

Reject H, if Ay, 0) > k,.

0

(To be strictly correct, the possibility of randomization at &, should be included in
the above definition. However, it can easily be checked that the following reasoning
is correct, even allowing for that possibility.) By definition k, must satisfy

(4.8) lim sup,_,,, n~ " log Pry{4,(¢, 0') < k,} < —¢,.
Suppose
(4.9) lim sup,_, , k, = a.

Then for any ¢ > 0
lim sup,,., n~ " log Pry{4,(y, 0') < k,}
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(4.10) > lim,., , n ™" log Prg{4,(¢, 0') < a—¢}

-ty e 5o (L))
= q(e) (say).

From (4.5), (4.6) and properties of K and c it is easy to see that g(e) defined in
(4.10) satisfies lim,. oq(¢) = 0. (This follows for example from the fact that the
derivative in (4.6) is always = —e& and E,(e®“~ 2(f(x, ¥)/f(x, 0))°) = 1.) Hence
the assumption (4.9) leads to a contradiction of (4.8). We therefore have

lim inf,_,, n~" log Pr,{4,(y, 0) > k,}

(4.11) = lim inf,_, inft>0 log Ew<e_tk”<§((>;” ?;;)t)

> —a.
Since V" has a not larger significance level than U
lim inf,.,, supg. e, " log Pre{1,(®y, 0') > a—¢}
(4.12) 2 lim inf,_ , n~ " log Pr,{A,(¢, 0') > a—¢}
> —a.

On the other hand, Lemma 5 of Bahadur (1966) states that

(4.13) lim sup,_, SUPgc o, 1~ " log Pry{1,(®, ©;) > a+e}
< —(ate) < —a.

It follows from (4.12), (4.13) and lim,_, ,n~ ' log«, = —a that

a—e¢ < liminf,_ , C, < limsup,_ ., C, < a+e.

Since ¢ > 0 is arbitrary, C, — a. This proves part (e) of the theorem.

Choose any 0 € ©y*. Consider parameter points in ®* of the form (y, 0, 0,).
Since J is continuous and J(f) = 0 for 6 € @,* and J(0,) > a, there exists a y,,
say, such that 6, = (y,, 0, 0,) satisfies: 0, € ©*, J(0,) = a, hence 0, € ©* and
f(-,6,) > Oa.e. (v). It follows from part (e), established above, that C,* — a.
This proves part (c) of the theorem.

It is clear from (3.6) and (3.7) that {(0) is uniquely determined for each 6 € ©4*,
and 0 < { < 1. Define .

(4'/14) b = mfeeeo*K((C(G)’ 0, 01)’ 01)'

(We have yet to prove that f(0,) as defined in part (a) of the theorem satisfies
p(0,) = b.) From (3.5), b < 0. Since © is compact there is a convergent sequence
{(€6),0,,6):i=2,3,--} in © such that

(4.15) K((¢(6:), 6;, 0,),0,) > b
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and such that also {{(6,)} converges in [0, 1] and {0,} converges. Define
Bo = lim;., ,, 0;
ty = limy, ,(C(0), 0;, 0y)-

Since b < o0, py = oo is impossible. For, if §; — oo then K((((8)), 0,, 0,), 8,) — oo
unless {; — 1 in such a manner that u; # co. However, if that is the case then there
is a neighborhood N of o, N = ©, such that {({(9)), 0;, 0,), 0;} = (B—-N)xO.
From this it follows that lim inf K(({(0,), 6;, 0,), 0;) = K(u,, 00) = oo, a contra-
diction; hence, u, = oo is impossible.

Note that we now have u, € ®y* and

Hy = (‘:(ﬂo)’ Ho> 01)
(4.16) K(p> po) = a
K(ﬂla 01) = b.

Since K(0;, uo) > a = K(uy, o), 0 < L(ug) < 1, and b > 0.

[Incidentally, we have proved above that there is always a 0 € ®, such that
K((£(0), 0, 0,),0,) = b. After we show that B(0,) = b, it then follows trivially
that the necessary condition (g) of the theorem is never an empty condition.]

Next we prove

(4.17) lim sup,_,, n~ "' log B,2°(6,) < —b.

After proving (4.17), we then prove (4.27). From these inequalities the proof of
parts (a), (b), (d), and (f) of the theorem easily follows.

Define n(0) for 0 € ©y* by K((n(0), 0, 0,),0,) = b. 0 < (@) < 1 for 0 € Oy*.
Note that K((5(0), 0, 0,), 6) = a. Since K((y, 0, 0,), 0,) is a continuous function of
7, 0 for 0 <y £ 1, 0e Oy*, it follows that 7(0) and (7(0), 0, 0,) are continuous
functions of 0 for 6 € ®y*. Also 7(6) — 1 as 6 - co. Hence 5(0) is continuous on
O, and K((n(0), 0, 0,), 0) - © as 6 - oo.

Similarly to (3.5) we can write

(4.18) K((,6,0,),0,) =logc(y, 0, 0,)+(1 _y)diy (log c(y, 0, 0,)).

Adding (4.18) to (1—y)y~! times (3.5) and simplifying gives

(4.19) log ¢(y, 0, 0,) = 7K((», 0, 0,), 91)+(1_7)K((V’ 0,0,), 0).
Hence .
(4.20) log ¢(n(6), 0, 6,) = n(0)b+(1—n(6))a.

Now, let k,:n =1, 2, --- satisfy k, — a. (In the present application k, = C,*,
but the following results do not depend on that fact.) Using (4.20) we can write

Prfh{ln(go *’ G)1 *) = kn}
< Pry,{x:30 € ©* 3 2,(0, (n(0), 0, 6,)) < k,}
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(4.21) = Pr, {x:30 € ©,* 5 log ¢(1(0), 0, 0,)
+11(0)in(0, 0,) < k,}

lIA

- oo 10090000

i

IIA

Prol{supgeeo[ﬂn((i, 01)—(a—b)+g:—l—cf:| < 0}.
n(6)
Since #5(0)), being continuous on ©,, is bounded away from 0, and
—K((n6),0,0)),0,) = —-b<a-b<a=K((n®),0,0,),0)
we may apply Lemma 4, thus getting
(4.22) limsup,,, n~"'log Pry,{1,(0,* ©,*) < k,}

) o f(x 0\
< t(a—b)
< SUPgc e, iN 0<s<1 108 E91<e (f(X, 0,)) )
Using the definition of ¢ and (4.20) we have

(4.23) log Eol<e( 1= n(0))(a— b)< J{((;c, :)))(1 - n(e)))
(1—n(0))(a—b)—log c(n(0), 0, 0,)
—b.

This proves that (4.17) is valid. We now proceed to establish (4.27).
Consider the problem of testing the simple hypothesis y, versus the alternative
0,. The most powerful level o, test of u, versus 0, has rejection region defined by

lIA

Reject po  if 4,(no, 04) > k"

Since ug, pt; = M(uo), o> 01), and 0, form a monotone likelihood ratio family an
equivalent test is that given by

RejeCt Ho lf }'n(:uO’ :ul) > kn’

where k,’ (and k,"”) are chosen to give level a,. Since K(uq, o) = a part (e) of the
theorem (with Oy = {uo}, ®; = {y;}) proves k,” — a. Thus

lim,, , n™" log Pry, {4,(1o, 1) < k,'}

»' —log c(n(po), 1o, 01) _ 0}

k
4.24 = lim,_, n~ ! log Pry < A,(io, 0;)—
( ) g ol{ (ﬂo 1) 71(#0)

i (5]

= inf (t(a—b)—log c(1 -1, uo, 6,)).
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[Note: n(ug) = {(1o).] Using (3.5) and (4.19) we have

(425) 2 (ta—B)~Tog (1=t s 81 -
_ a_b_K((ﬂ(ﬂo)> Hos 01)? ”0)_10g C(ﬂ(#o)s Hos 01)
- o ’1(!10)

Hence
(4.26)  infy<,<q (la—b)—log (L —t, po, 0,)) = —b = —K(uy, 0,).
(4.24) and (4.26) prove that

(4.27) lim inf,_, ,, n~ " log B,(0,) = —».
Combining (4.27) and (4.17),
(4.28) lim,_,,, n~" log B,(0,) = lim,_,,, n~" log B,2°(0,) = —b.

This proves parts (a), (b), and (d) of the theorem.
To prove part (f), observe that for {(0) < & < 5(0) it follows from (4.19), that
log ¢(&,0,0,)—a 1-¢
¢ ¢

Let y = y(0) satisfy the assumption (4.3). For sufficiently large n, (so that
C, < a+¢/2) we have, as in (4.21)

Prol{in((‘ao, 91) é Cn}
(4.29) < Pry,{30 € ©45 4,(0, ((0), 0, 0,)) < C,}

Prol{supo . @0</1n(0, 0,)—(a—b) +a -C,+(1 _;2((;;))(8 —(0))* >

2|C,—
Prol{supg . @0(2,,(0, 0,)—(a— b)—%) < 0}.

Since C, — a, we can proceed as in (4.22) and (4.23) to prove
(4.30) lim sup,_,,, n~" log B,2(0,) < —b.
(4.2) of (f) then follows from parts (a) and (b) of the theorem.

It remains only to prove part (g) of the theorem. To begin, we suppose 0, € O,
satisfies the condition (4.4), namely

K((£(05"), 00', 0,), 01) = b,

and that ({(6y), 0o, 6;) ¢ ©,°. In the following we use the fact C, — a.

Let (' =1{(0y), and 0 < {" < {(6,), and let 60 = ({(@B,), 0, 0,), and
0" = ({", 0y, 0,). We consider the problem of testing {0"} versus 6,. We compare
the properties of two different sequences of tests for this problem. These are T, :

(K((, 0, 0,), 0)—a).

=b—a+

I\

o

lIA

I\
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(4.31) Reject if  4,(0y', ©4) > C,
and T,:
(4.32) Reject if  4,(0,;0") > 1

where / is to be determined later (! = a).
We first consider the asymptotic behavior of «,”. Application of Lemma 5
yields

(4.33) limsup,., n~'loga,” = limsup,., n~"log Pry{4,(6y', ©,) > C,}

' f S 0) )‘}
< supg. e, inf;5 log Eg €™ 7
= SUPgeo t>0 108 Ly { <f(x,00)

_m f(x,0) Y
ale ()
,0) Y .
(4.34) — f <_f(§:_%))> (L7, 00, 0,1 (x, 06 )% (x, 0,)v(dx)

— e_m C(C” 00” 01)
S T((A=1), 047, 04)
S 0) (e (L1 =1, 64, 0,))v(dx).
If we let t = ¢ = ({'={")/{’, so that {"/(1—1") = {’, we have from (4.34)

b 0 '
inf,. o log Eo"{e w(%ﬂ

(4.35) < —t'a+logc(”, 04, 0,)—("10") log e(L', 04, 0,)
+ log [ £1(x, 0)S* =" (x, 0)v(dx).
Since 1 > ¢/ > 0 is independent of 0, and 0’ ¢ ©,°, and ©,° is compact in © the

integral which occurs on the right of (4.35) which is a continuous function of 6 is
uniformly less than one on ©,°. Hence there is an &; > 0 such that

: -1 T
lim sup,_, n~ " log o, *

: caf T 0) Y
< inf,5 , log Eei{e (f(x, 00,))}
—a({' =)L +1og ¢(L", 0o, 0)

—(C”/CI) log C(C/s 0o’ 91)—81
= —N—¢, (say)

IA

(4.36)

for all 0 € ©°.
Now we investigate «, 2. Let 0 = 0’ in (4.34).

log Ee,,{e—m< jj:((_;ch)) >t}
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(4.37) = —ta+log c(l”, 04, 0,)+tlogc(L, 0y, 6,)
—log (" +1L', 04, 0,).
Differentiating (4.37) with respect to ¢ and using (3.5) gives

’

{
—a+log c({’, 0., 01)+m (K(C”+ ', 6y, 01), 00’)
—log c({"+1(', 0, 0,))

which clearly has the value zero if (and only if) t = ¢'.
Substituting ¢ = ¢’ in (4.37),

H —ta f(x’ 01) )t} _
inf, . 4 log Eon{e (f__(x, 65) = —N.

From evident continuity properties, there is an / > a such that

(4.38) lim,,, n~"loga,™

’01 t
= inf,, o log Eg-qe ™" f(x_’) =2—N—¢/2> —N—g,.
S(x, 60")

Since 8, 6", 8, 8, form a monotone likelihood ratio family, the test T, is most
powerful among level < a, tests. But «,”* < «,”* for sufficiently large n. Hence

(4.39) Ba"(0:) = B,"*(0,)
for all sufficiently large n.
Note that

lim,, , n~" log B,72(6,)

- - nttos e (G5 )
> —p(0,).

(Compare (4.40) with (4.27).)
Combining (4.39) and (4.40)

lim inf,, , n™" log B,"(6,) = lim,_,, n~" log B,7%(6,)

> —p(6,).
Hence
lim,_,,, n™" log Pry, {4,(©,, ®,) < C,}
(4.41) 2 lim,,, n~" log Pre, {4,(6,', ©,) < C,}

= lim,_,, n~! log B,

> —p(0,).
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Since (4.41) contradicts (4.2), this proves that the condition in part (g) is necessary
for (4.2) to hold; and if this “necessary” condition is violated then, in fact, (4.41)
is satisfied. This completes the proof of part (g).

The proof of the theorem is complete.

5. Main results on asymptotic optimality: statements and proofs. In this section

we formally state and, using Theorem 1, prove the Main Results claimed in the
Introduction.

Main Result 1 is contained in

THEOREM 2. Suppose Assumptions 1-4 are satisfied. Let S be any sequence of tests
satisfying lim sup,_, ,a,° < 1. Define the sequence, Q', of tests by the rejection
regions:

Reject ©, if A,* > C,!

where the critical constants C, are determined by a,2" = o,5. Then, for each 0 €O,
satisfying (a) f(-, 0;) > 0 a.e. (v), and (b) K(0y, 0,) < oo for some 0, € O,

(5.1) lim inf,_,, (n~" log B,5(6,)—n"" log B.2'(0,)) = 0.

[We remark here to amplify some remarks following the statement of Heuristic
Principle 1 in Section 1 that it is possible for the equality to zero to hold in (5.1)
and yet 8,5(0,) < p,2'(0,) for all .]

Proor. For clarification, we remark that the conclusion of Theorem 2 is con-
tained verbatim in Theorem 1 in the special case where lim,_ ,n" ' loga,’ = —a
exists (in the sequel we sometimes allow @ = o) and satisfies co > a > 0 and
where J(0;) > a. For the case where J(0,) < a £ oo we proceed as follows:

For this paragraph suppose f(-, 6;) > O a.e. (v) and J(0,) < a. Define € ©,*
by K(0y, ¥) = J(0)). Fix e > 0. Consider the problem of testing the null hypothesis
{¥} versus the alternative {6} at a sequence of significance levels each of which
is at most a,(s) where n~' log a,(¢) > —(J(0,)—e¢). (For this paragraph only,
observe the convention, co—¢ = 1/e.) By Theorem 1(b) the most powerful such
sequence of tests, say T(e), satisfies

lim,, , n™" log B,"(0,) 2 —K((C(¥). ¥, 0,), 0,)

where K({, (), ¥, 0,), ) = J(8,)—e. From the properties of K given in the proof
of Theorem 1 it follows that lim, o{,() = I and thus

lim, o K((C.(¥), ¥, 6,), 0,) = 0.

Since for each & > 0, a,(¢) > o,° for sufficiently large n, it follows that
B.>(0;) = B,"®. Letting ¢ | 0 we have for the 0, of this paragraph

(5.2) lim, ., n~" log 8,5(6,) = 0.

Hence if 0 < a = lim,_, ,n~ " log a,% < oo, Theorem 2 follows either from (5.2)
if J(8,) < a or from Theorem 1 (a), (d) if J(9,) > a.
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Now suppose limn~ ' log «,5 = 0. Then Q' has smaller 8 than the sequence of
tests, Q*, corresponding to levels a, = e~ ", for any a > 0.

Hence, applying Theorem 1 (a), (b), (d) for fixed values of a satisfying 0 < a <
J(0,) gives
(5.3) lim sup,. , n~ ' log B,2'(0,) < —b,(0,)
where b, is defined by b,(0,) = infy, ce+K(("(8o), 0o, 01), 0,), and {* is defined by
K((Ca(OO)’ 00’ 01)’ 00) = a.
In the proof of Theorem 1 it is shown (following (4.16)) that b,(0,) < oo and there
is a 0y(a) € Oy* such that

K(0o(a), 0,) = b,(0,).
We can choose a; \ 0 such that 0y(a;) converges, say 0y(a;) = ¢, ¢ € ©,. Using
Lemma 1, K(0y(a;), 0,) = K(p, 0,). By construction, and the properties (3.7) and
(3.8) of K it follows that
K(g, 0,) = infy, . 6,+K(0o, 0;).

By Assumption (b) of the theorem K(¢, 0,) < co. Hence ¢ # oo. From (5.3) we
now have

(5.4) lim sup,., n~ " log B,2'(6,) < —K(e, 0,).

Consider the problem of testing (by, say, T) the null hypothesis ¢ against the
alternative 0, at a sequence of levels a, satisfying lim sup,_ o, < 1. By Rao (1962)
the probabilities of type II error, B8,7(0), of this test must satisfy

(5.5) lim inf,, , n~'log B,"(0,) = —K(o, 0).

(5.4) and (5.5) together prove (5.1) in the case where lim,n"" log o, = 0.
((5.5) is originally due to C. Stein, see Bahadur (1967) page 316-317; also Bahadur
(1969).)

To finish the proof of the theorem, suppose for some S and 6, satisfying (a) and
(b) (5.1) fails to hold. Then there is a subsequence n; such that

(5.6) lim inf;, o, (n;” ' log B5(0,)—n,” " log B,'(0,)) < O

and such that @’ = —lim,, ,n~" log «,, exists. (Possibly @’ = co.) There clearly
exists a sequence of tests, say S’, defined for every # such that

S S

an: = ocn.-
(5.7) Bak0:) = B2 (01)
lim,,, n 'loga,S = —a’

Since lim,_, ,n~ ! log a,% exists we have already established that (5.1) is true for
S’. But, from (5.6) and (5.7)

lim inf,, , (n~ " log B,5(6,)—n~" B2'(6,)) <0,

a contradiction. Hence (5.6) must be false, which proves that (5.1) is true in general.
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It should be clear from the proof given above how to prove that if J(0,) >
—lim inf,, ,n~ ! log &, then lim,_, »(C,' +1n~ ! log «,%) = 0; and also how to use
Theorem 1(b) to construct an asymptotic lower bound for n~! log ,5(9,) in terms
of n™! log o, using the formula (4.1). It is also clear that the “necessary condition”
of Theorem 1—Theorem 1(e), (g)—can be applied to the general situation by
considering separate subsequences {n;} such that 0 < lim,,n,” ' log a < .
The statement and proof of such a result follows directly from Theorem 1(e), (g)
and the simple fact that one can define a sequence, say S’, defined for every n,
which satisfies (5.7). We leave the details of the above remarks to the interested
reader.

The second Main Result mentioned in the Introduction is contained in

THEOREM 3. Suppose Assumptions 1-4 are satisfied. Let 0, € @, be any point such
that (a) f(-, 0;) > Oa.e. (v) and (b) J(0,) < co. Suppose S is any sequence of tests
satisfying lim sup,_,,,8,5(0,) < 1. Then there exists a sequence of tests, Q?, defined
by

Reject ©, if A,* > C?
which satisfies

(5-8) B.2(6,) = B,50,) Jor all n
and
(5.9) lim inf,, , (n™" log &,° —n~* log «,2%) = 0.

Proor. Since lim sup,_,,,,°(0;) < 1 it follows from Rao (1962) (see (5.5)) that
lim inf,,,n~" loga,® =2 —J(0,) > — 0. At first we suppose lim,_,,n" ' log o, =
—a,a > 0, (also a < ), exists. For 0 < ¢ < a let T, denote the sequence of tests
based on A,*, and having critical constants C,(¢) satisfying «,T® = ¢~ 7@~ Tt
follows from Theorem 1(b), (d) and the continuity properties of K (particularly
(3.7), (3.8)) that

(5.10) lim,,, n™" log 8,"(0,) < lim inf,_, , n~* log B,5(0,).

From (5.10) it is clear that for each ¢ there is an n(e) such that n > n(e) implies

BnTG(ol) < ﬁns(el)'

In the following we assume that n(g) is chosen to be the smallest possible integer for
which the above holds. From the definition of the tests 7, it is clear that C,(g) is a
non-increasing function of &. Hence B,7¢(6;) and n(e) are also non-increasing
functions of ¢. For each n, let

&(n) = inf {e:n(e) < n}.

&(n) is a non-increasing function of n. From the above we see that e(n) \ 0 as
n — oo. For the case at hand, define C,> = C,(e(n)). The test Q2 then satisfies both
(5.8) and (5.9).

If, instead of the above situation, we have lim,_ 7~ ! log a, = 0 the theorem
is trivial. For, C,” can certainly be chosen so that (5.8) is satisfied, and (5.9) will be
true simply because «,% < 1.
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Finally, suppose the theorem is false. Then there exists a subsequence n; such
that lim,_, ,n;” ' log &5 = —a’ exists and such that for any sequence of tests of the
form of Q2 satisfying (5.8),

lim inf,_, ,, (n,”! log o5, —n;” ! log a2) < 0.

Since lim sup,_,,,$,5(0,) < 1 it follows from Rao (1962) that a’ < J(0,). But then,
as in the proof of Theorem 2, we could construct a sequence of tests S satisfying
lim;, ,n~ ' loga,’ = a' and lim sup,_,,B,5(0,) < | and such that the theorem is
false for this sequence S’. This contradicts what we have established in the preceding
paragraphs of the proof.

This completes the proof of the theorem.

6. Theory and examples concerning the use of extra information. In this section
we give some examples to illustrate the general principles concerning extra
information which were mentioned at the end of the Introduction. All of the
results we use are essentially contained in Theorem 1. In order to emphasize them
we state them here as corollaries before beginning the examples.

For the statement of these results we suppose Assumptions 1-4 are satisfied;
except that we will relax the assumption ©,° = @,* in order to state the second
result below.

As the “‘basic” problem we consider a problem of testing ©,* versus ©,%*,
where these spaces satisfy the relevant parts of Assumptions 1-4. By “extra”
information we mean information which limits the parameter space to a set ©’,
smaller than ©* O’ « ©'° S O* Define ®,=0“NnO*,i=0,1.If0;° # O;*,
then we say we have ‘“‘extra” information about the null (; = 0) or alternative
(i = 1) hypothesis, respectively.

We state our results only for the situation

. _.1 —
lim,,,n" " loga, = —a.

They can be generalized to other situations by the methods of Section 5. We use
Q' as a generic symbol to denote any sequence of tests based on

Al =20y, 1) = 4(0,, ©,")

satisfying «,2" = «,, and where the nature of ®,’ and ®,’ should be clear from the
context. Q* denotes the sequence based on A,* satisfying o,2" = a,, and Q'*
denotes the test satisfying «,2 = a, based on 1,'* = 1,(©,'*, ©,'*) where ©,'*
and ©,’* are formed in the natural way from ©,° and ©,’“ as indicated at the
end of Section 2.

For fixed a (as above), and ©®, € ©,*,0 < a < J(0,), define (as in Section 4)
£(+) on ©¢* by K((((0), 6, 0,), 6) = a.

Let S, be defined by
(6.1) SO = {00: 00 € ®O *, K((C(Oo), 00, 01), 91) = infoe Oo* K((C(G), 0, 01), 01)}.
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In Example 3 we will emphasize the fact that S, depends on 0, by writing So(0;).
Define ¢(6) for 0 € ©,* by K((¢(9), 0, 0,), 0,) = infpc 0,+K((((6), 0, 0,), 0,) =
p(0,). If 6 € S, then @(8) = {(0).

COROLLARY 1. Extra informationabout the alternative. Assume f(-,0;) > Oa.e.(v).

(a) Extra information about the alternative can never increase the rate of expo-
nential convergence to 0 of f. That is

(6.2) lim,., n~* log ,2(0,) = lim,_,,, n~" log 8,2°(6,).

(b) If J(0,) > a > 0 and if there is a0’ € O, satisfying f(-,0) > 0a.e. (v) and
J(0') = a then there is equality in (6.2) if and only if 0, € S, implies (¢(8,),0,0,) € ©,".

Note. It can also be deduced from part (b), and from the obvious converse to
Theorem 1(e), that if equality holds in (6.2) then

lim,, n~ " log «,2(6,) = —a for all 0, € S,.

Also note that both sides of (6.2) are finite unless @ = 0 and K(0,, 8,) = co for all
0, € ©,, in which case both sides of (6.2) are co.

PROOF OF COROLLARY. If J(8,) < a, lim,,,n"!log B,2°(0;) = 0 so (6.2) is
trivial. If 0 < a < J(0,) part (a) is a restatement of Theorem 1(d). And, if 0 = a
part (a) is contained in Theorem 2.

Under the assumption we have made, namely 0 < a < J(0,), part (b) is contained
in Theorem 1(g). This completes the proof of the corollary.

Note. If a = 0 there may or may not be equality in (6.2). If S, ¢ ©,° then
presumably inequality always holds in (6.2). However in the interesting case when
S, € ©,° (as in Example 1, below) sometimes there is equality in (6.2) and sometimes
there is inequality in (6.2). We do not know precise conditions under which
equality holds.

The precise implication of Corollary 2, below, is clarified in Example 3 of this
section.

COROLLARY 2. Extra information about the null hypothesis. Assume f(-, 0;) > 0
a.e. (v).

(@) Extra information about the null hypothesis can never decrease the rate of
exponential convergence to zero of 5. That is,

(63) lilnn—'oo n_l lOg ﬁan*(Gl) é lirnn—mo n_l lOg ﬁnQ*(Gl)'

(b) IfJ(0,) > a > O there is equality in (6.3) if and only if there is a 0y € S, such
that 0y € Oy = Oy'*. (i.e. if and only if Sy N Oy'¢ # &.)

PrOOF OF COROLLARY. If a = J(0,) both sides of (6.3) are zero. Using Theorem
1(b), (d),if 0 < a < J(8,),

1irnn-voo n_l lOg :Ban*(el) = _infooe Qo'c K(@(Go), 009 01)9 01)

lim,_ , n~ ! log B,2°(0,) = —infp,c oor K((¢(00) 00, 01), 01)-

and
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Since 0, = ©,*, (6.3) follows. Part (b) also follows in this situation from the
definition of S, and continuity properties of K. This completes the proof of the
Corollary.

The techniques used in the proofs of Corollaries 1 and 2 can clearly be used to
give some sorts of results if the extra information is about both the null and alter-
native hypotheses simultaneously. However, the situation is more complicated, and
we have not been able to develop a statement of a result which adds anything to the
reasoning suggested by the relevant parts of Theorem 1.

We begin the examples with a simple, though slightly artificial example illustrat-
ing Corollary 1. This example is a particularly good one in that all the likelihood
ratio tests and the relevant limiting probabilities are easy to compute. It is the only
example presented here in which all these computations are carried out.

EXAMPLE 1. Let 2 = (0, 00)x (0, ) = {(x, y): x > 0,y > 0}; v = Lebesgue
measure; © = (0, c0); and f((x,¥),0) = e” ™77 Let ©, = {1} = {0o} and
0, = 0-0,.

We can take @* = (0, w0) x (0, ) = {(¢,, ®,): @, > 0, ¢, > 0}, and

f((xa ,V), (P) = (ply(pze—&plx—(pz,v‘

For algebraic and topological purposes we imbed ©* in E,. Clearly, 0 € ©
corresponds to the point (0,07 ') e ®* Also, it is easy to see that for
0,0, € ©*(y, 01, 03) = y0, +(1—=7)0,.

Since points (y, 0,, 0,) € ©* are on the straight line joining 0, and 0, in ©* and
since © is a strictly convex curve in ©*, none of the points (y, 0y, 0,),0 <7y <1,
0,€ 0O, is in O. It is clear (and we will compute explicitly below) that J(0) is
continuous on O so that for any a > 0 there is a 0’ € © such that J(0") = a. Hence
for 0 < a < J(0,) inequality holds in (6.2). That is to say, from our asymptotic
non-local point of view, 4,* is a strictly better statistic than 4,.

We illustrate the above remarks by describing how to compute the relevant
values of o and ff and give one numerical example. Direct computation gives

(6.32) K((¢1, 02); (01> 027)) = (01 — @)@ +(02' —@2) 02 +1og @1/,

Because of the logarithm which occurs on the right of (6.3a), it is awkward to solve
in general for {(0,) given an arbitrary value for 0, € ® and a.

For the specific values 0, = 4€ © (i.e. 0, = (4,2) € ©*) and a = log (3)—5 =~
.24 we have { = §. Hence (£, 0,, 0,) = (2, 2) € ©®*. Using (6.3a) and Theorem 1
we then have for the test QO* which rejects when 4,* > a,

n~'loga,? = —a
n~'log $,2°(0,) = —(3+log3) = —.74.

We know no general method for computing f8,2 for tests based on 4,, however
for this specific problem we may compute as follows: A straightforward maxi-
mization gives A, = (§,F —%,%)> where

= __ -1 n = __ -1 n
Xp =N Zi=1xb)’n—" zi=1yi‘
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(Also, one can compute
/ln* = (fﬁ‘fn—z)_l()g Jzn.)_)m

so it is clear that A,* = A, with equality only if ¥ = y = 1.) Using Lemma 3 we
compute

(6.4) n~!log Pry {y, < c} = 1—(c/4)+log (c/4)
and
(6.5) n~!log Pry {X, > d} - 1—4d+log 4d

for } < d, ¢ < 4. It is not hard to then see that n~* log Pr, {7,*—x,* < 4*} has
the limiting value determined by finding the infimum over ¢, d satisfying

(6.6) ct—dt=a* L1<dc<4
of the maximum of (6.4) and (6.5). This, ““inf max”, occurs when
(6.7) 1 — c/4+log (c/4) = 1—4d +log 4d.

Solving (6.6) and (6.7) graphically for the above value of a gives ¢ = .94, d ~ .671

and n~ ' log B,%(0,) ~ —.69 as compared to the best value, —.74, given above.
In many situations Corollary 1 can be applied when the extra information

concerns the variance in normal testing problems. A simple example follows.

EXAMPLE 2. Let & = (— o0, 0); v = Lebesgue measure; the parameter space
O = {(4,0): u = o, u > 0}; and let f(-, (4, 6)) be the normal density with mean
u and variance o2, Let ©," = {(u,0): u = 1, (u, 0) € ®'} = {(1, D}.

We have written ®' instead of ©, etc., to facilitate the discussion in the next
example. ® may be imbedded directly in ®* = {(u, 0): ¢ > 0} and we take
0,* = {1, 1} = ©,. (Note: The natural parameter space, in which the points of ®
can be properly geometrically visualized, of course actually has coordinates
(ufa*, 1/a%).)

The statistic 4, can be expressed directly in terms of X and 5,2 = n~'Z(x; —X)?,
however the expression is a little messy and we omit it. The main point is that for
forming likelihood ratio statistics it is (asymptotically non-locally) strictly better
to ignore the information that ¢ = u. From this point of view, rather than using
2., one should use 4,'* which is easily determined to be

¥ =[(x—1)*+s,2—log s,>—1]/2.

For example, a test Q'* based on A,’* satisfying lim n~ ! log , = —a has rejection
region:

Reject if A,* > a.

ExaMPLE 3. Suppose the original parameter space is @ = ©@* where ©'* is as
in Example 2, except suppose that the null hypothesis is

O ={(wo):p=1 or =1},



OPTIMALITY OF LIKELIHOOD RATIO TESTS 1237

and ©,; = ®—0,,. Since we also want to consider two other related problems
we use the subscript one in the above, and we use «,, ,;, etc. to denote the error
probabilities for this problem. The other two problems have ® as above, but have
null hypothesis @y, = {(4, 6): u = 1} and Oy = {(n, 0): ¢ = 1}, respectively.
For testing ©,, versus ®,, = ® —0,, we have the optimal statistic

5 =27 log [1+67's/7]
which is equivalent to the usual z-statistic. For testing ®,; we have

X = (s> —log s,z —1)/2.

For testing ®y; = ©,, U O, the optimal statistic is 4% = min (4,5, 4)5). The
tests which reject when these statistics are > a have levels satisfying
n~'loga,; = —a,i =1, 2,3, for their respective problems.

To illustrate Corollary 2, suppose one is provided with “extra” information
that in fact the null hypothesis is ®," as defined in Example 2. Let So;(+),i = 1, 2, 3,
be defined by (6.1) for their respective problems. In theory it is possible to find
So:» explicitly, but the algebra is difficult. However, without carrying the compu-
tation far it is easy tosee that there are novaluesof 0, € ®,"* such that (1, 1) €.Sy,(6,)
and very few (if any (?)) values of 6, € ®,"* such that (1, 1) € Sy;(0,), i = 2, 3.
Corollary 2 says that, except for these few (if any) values of 6,, B, defined by the
test of Example 2 satisfies

lim,,, n™" log B,/(6;) < lim,, n™" log B,(0,) i=1,2,3,

and thus is asymptotically non-locally better than the three tests of the preceding
paragraph.

For the tests based on 4,5 and 4,% there is[nothing more to add since these tests
are obviously similar over their respective null hypothesis. However the test
defined above based on A); is not similar. In fact, o,; = Pr, {4} > a} x
Pro {4% > a| A% > a}, so that

lim,,, n~'loga,, = —a—a(e’—1)/2 = —a(e"+1)/2.
Hence, a test based on A} satisfying lim,_ ,n~* log a,;((1, 1)) = —a is actually
Reject if A5 > b

where b(e®+1) = 2a (b < a). Corollary 2 does not answer the question whether
this test has the same asymptotic non-local properties for testing ®,’ as the optimal
test defined in Example 2. We do not know the answer to this question, though we
suspect it to be “No”. ‘

Example 2 illustrates (among other things) how a convenient non-local asymp-
totically optimal test may be found by imbedding the original problem in a larger
problem. It is to be noted that even where the likelihood ratio test for the original
problem is optimal it may still be more convenient to use a more easily computed
optimalstatisticforalarger problem. This ideacan beused, for example, tomotivate
using appropriate MANOVA tests for non-standard or standard model II
ANOVA situations.
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In this regard, Example 3 then illustrates that in this imbedding process only the
alternative hypothesis should be enlarged.

7. On weakening the absolute continuity assumption. It was briefly mentioned
in Section 1, that the regularity assumptions under which Theorems 1-3 are
proved are somewhat restrictive. In particular, it would be desirable to relax the

assumption that f(-, 0,) > Oa.e. (v) and, further, to also remove Assumption 4
entirely.

However, if either of these assumptions is removed entirely then the conclusion
of Theorem 1b is not always true. We deal mainly with the case where Assumption
4 is satisfied. Consider the following extended example.

ExaMPLE 4. Let v be Lebesgue measure on & = (—0, o0) and O, = {0,},
0, = {0}
where

fx,00) =%  0=x=2;
=0 otherwise.

f(x,0,) =2x 0<sx=1;
=0 otherwise.

Assumptions 1-4 are clearly satisfied.
K(0,,0,) = |5 (log 2x +1log 2)2x dx
=2log2—1
K((y, 09, 0,), 0) = log 2(L+7y)—y/(1+7)
K((7, 09, 0,), 0,) = (1=9)/(1+7)+1og ((1+7)/2).

(It is immediately clear that the relations (3.7) and (3.8), which are fundamental in
the proof of Theorem 1, are not valid here.)

Consider the problem of testing ©, versus ©, at a sequence of levels o, satisfying
lim,_, ,n 'loga, = —a.
Suppose a = log 2, for that is the case which causes the most difficulty. To be

more precise, suppose «, = e " = (2)7". Then ¢(0,) = 0 and (4.1) of Theorem
1(b) predicts $(0,) = 1 —log 2. However, it is evident that since

Pro {0 < x; < 11i = 1,2, -+, n} = (3),

the most powerful level «, test rejects on the basis of n-observations whenever
O0=x;=1,i=1,2,-,n; and this test has probability zero of type II error,

rather than approximately e "! = 1¢2) a5 apparently predicted by the conclusion in
Theorem 1(b).

Note that if «, = k(n)27" where lim sup,_, ,k(n) < 1 and lim inf,_, ,k(n) > 0
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we may apply the previously used result of Rao (1962) to the problem of testing
at significance level k(n) the distribution

f(x,00)=1 0=x=1;
=0 otherwise;

versus f(-, 0,). (f(-, 85') is the conditional density of X given 8, and 0 < x < 1.)
We derive that the most powerful level o, = k(n)27" test of {6y} versus {0,} has a
probability f,7 of type II error satisfying lim,_ ,n" ' log 8,7 = —(1—log?2), as
predicted by Theorem 1(b).

In general, we see that if K(0,,0) > a > 1—log2 = K((0, 6y, 6,), 0,) then
@(0,) > 0 and the value of B, for the best level a, test satisfies lim,_ ,n~"-
log B, = —p(0,) as in Theorem 1(b). If a < 1—1log 2 then ¢(0,) fails to exist and
B,T =0 for sufficiently large n. But, if a = 1—log2 then ¢(6,) = 0 and
lim,_, ,n~ ' log B, may or may not exist, depending on the precise values of o,
(In this case it will be true that

—o0 £ liminf,,, n~!log,” < limsup,., n” 'logB,” <
—K((O, 00, 91)90) = '—(1 —lOg 2))

A rather lengthy, though straightforward, revision using the above ideas of
Lemma 2 and the proof of Theorem 1 gives the result below. The result is of more
limited applicability than Theorem 1 because of the special additional hypothesis
that @(u,) > 0 (see below). We omit the proof.

THEOREM 4. Suppose the hypotheses of Theorem 1 are satisfied except that
f(+,0,) *+ 0a.e. (v). Suppose also that there is a 0, € O such that K((0, 0,, 6,),
0,) < a. Let

P ={0e0©,*: K((0,0,0,),0) < a}.

For 0 € P define {(0) as in Theorem 1(b) [i.e. K(({(8), 6, 0,), 0) = a.] Define

b(0,) = inf,_p K((£(9), 0, 6,), 0,).
Suppose there exists a p, € Og* such that {(uy) > 0 and K(({(1o), po, 01), 0y) =
b(0,). Then
(@) lim,,n""'log B,(0,) = —p(0,) exists;
(b) B0, = b(0,);
() CF > a;
and

(d) lim,,,n~ " log B,2(0;) = —p(0,).

Note that, by Lemma 1, P is closed. Easily established continuity properties of K
then prove the existence of a u, € P such that K(({(uo), o, 01), 0;) = b. However,
as in Example 4, it is quite possible that {(u,) = 0.
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Before proceeding further we point out that Theorem 4 can be used to obtain
analogs of Theorems 2 and 3 valid under appropriate added restrictions. Also, we
point out that to adequately handle the case where {(u,) = 0 would require

estimates on probabilities of large deviations of a different nature than those used
elsewhere in this paper.

In the cases where Assumption 4 is violated, it is easy to see again that Theorem
1(b) must be modified. The distributions of Example 4 can, in fact, demonstrate
this if we let the null hypothesis, ®,’, say, be defined by 0, = {6,} and let
®," = {0,}. Since the null hypothesis is simple in this situation, Theorem 4 can
be applied directly to this problem by reversing the roles of ®, and ©,.

However, in the general case, where the null hypothesis is not simple, the situation
may be much more complicated. The reason is that for fixed 6, € ®, K((0, 0,,0,), 6,)
may take on a continuum of values as 6, varies in ®,. Thus, a direct extension of
Theorem 4 often fails to yield any positive results.
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