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ON THE COMPARISON OF TWO EMPIRICAL DISTRIBUTION
FUNCTIONS'

By Lajos TAKACS

Case Western Reserve University

1. Introduction. Let &, &,, ---, £,, be mutually independent random variables
having a common distribution function F(x). Denote by F,(x) the empirical
distribution function of the sample (&,, &,, --+, £,,). The empirical distribution
function F,(x) is defined as the number of variables &, &,, ---, &, less than or
equal to x divided by m.

Furthermore, let #, 1,, -*+, #, be mutually independent random variables having
a common distribution function G(x), and denote by G,(x) the empirical distri-
bution function of the sample (17, 15, ***, 11,)-

For the purpose of testing the hypothesis that F(x) = G(x) in 1939 N. V.
Smirnov [6] introduced the statistic

(1) 5+(Wl,n) = Sup—oo<x<oo[Fm(x)_Gn(x)]

and showed that if F(x) and G(x) are two identical continuous distribution
functions, then the distribution of ¥ (m, n) does not depend on F(x) = G(x), and

mn \* s
(2) 1im,, - 0 nos o0 P{( > ot (m,n) £ x} =1—e %

m+n

for x = 0. In this case the distribution of the random variable 6* (m, n) for n = m
was found in 1951 by B. V. Gnedenko and V. S. Korolyuk [2], and for n = mp
where p is a positive integer in 1955 by V. S. Korolyuk [3]. (See also [7] and [8].)
Obviously 6*(m, n) and 6% (n, m) have the same distribution for all m = 1,2, -+
andn =1,2, ---.

We can express 0 " (m, n) also in a simpler way. Denote by n,*, n,*, ---, n,* the

random variables #,, #,, --+, 1, arranged in increasing order of magnitude. Then
we can write that
(3) 5+(”’1, I’I) = max, <r=n [Fm(r’r*) - Gn(’/’r* _O)]

Now let us introduce another statistic. For any a let us define n,(m, n) as the
number of subscripts r = 1, 2, ---, n for which

4 Gi(n,*=0) £ F,(n,*)+afn < G,(n,").
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1158 LAJOS TAKACS

If we suppose that F(x) and G(x) are two identical continuous distribution functions,
then we can easily see that the distribution of the random variable 5 ,(m, n) does
not depend on F(x) = G(x), and we have

() P{5%(m,n) < afn} = P{y,(m,n) =0}

fora = 0. Thus the problem of finding the distribution of 6 * (m, n) can be considered
as a particular case of the more general problem of finding the distribution of
Na(m, n).

In this paper we shall be concerned with the problem of finding the distribution
of n,(m, n). In the case when F(x) and G(x) are two identical continuous distribution
functions we shall find the distribution of the random variable 5,(m, n) for every a
if n = mp where p is a positive integer. In the particular case when n = m, the
distribution of #,(m, n) was found in 1952 by V. S. Mihalevi¢ [4]. He showed that
ifa=20,1, -, m, then

k+a Gy i

(6) P{n(m,m) <k} = P{5+(m,m) < __} o \mtktar1)

m (21:1’1)

fork =0,1,2, -, m—a.

2. The distribution of #,(m, n). Throughout this paper we suppose that F(x) and
G(x) are identical continuous distribution functions. For r = 1, 2, ---, n+1 let us
define v, as p times the number of variables &,, &,, -+, &, falling in the interval
(nx_ 1, n,*] where no* = —oo0 and n¥,, = 0. The random variables v, v,, -+,
v,+ are interchangeable. Set N, = v, + --- +v, for r = 1, 2, ---, n+ 1. Obviously
N, = mp. We have

ey

(7) P{Ni = Sp} = (m;n)

for] £i<nand0 = s £ m, and
(i‘f‘i"'l)(j‘f‘t_l)
) P{Ni:sp|Ni+j=(S+t)p}: (i+j+i+t—tl
s+t

forl si<i+j=nand0=s =< s+t = m.
By using this notation we have

o N . r N r—1
) Fan®) =300 G =5, Gn*=0) =——
forr = 1,2, ---, n and we can write that
(10) 0% (m,n) =maxl<,<,,[-1&—r———1:|.
M mp n

Furthermore, y,(m, n) is equal to the number of subscripts r = 1,2, ---, n for
which

(11) —_—— <,
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If, in particular, » = mp where p is a positive integer, then 5,(m, n) can be
interpreted as the number of subscripts r = 1, 2, -+, n for which
(12) N,=r—[a]—1

where [a] is the greatest integer < a.
Thus if n = mp, then we have

(13) P{nm,n) =k} =P{n(m,n) =k}
for all @ and k = 0, 1, ---, m. Furthermore, we have also
(14) P{na(ma n) = k} = P{”—[a]— 1(”1’ n) = k}

forallaand k =0, 1, ---, m. For N, ., = mp and thus
P{n(m,n) = k} = P{N, = r—[a]—1 for k subscripts r=12,--,n}

(15) =P{N,,,—N, =n+1—r+[a] for k subscripts
r = 1’ 2’ ...’n}
=P{N; = i+[a] for k subscripts i=1,2,--,n}

which proves (14).

Accordingly, if » = mp and if we know the distribution of 4, (m, n) for
a=0,1,2, -, then by (13) and (14) we can find the distribution of #,(m, n) for all
a. Obviously n,(m,n) =0 if a =2 n. If a =0, 1, ---, n, then y,(m, n) is a discrete
random variable with possible values k = 0, 1, ---, [(mp—a)/p].

The following theorem is the main result of this paper.

THEOREM 1. If n = mp where p is a positive integer and a = 0, 1, ---, mp, then we
have

p* k(p+1)+a+1

16) P{n,(m,n) <k} =1=—mm .
( ) {}7( ) } ( p";l- )a/p<j§m—k(’yn_])(p+1)+a+1

L(m=j))(pt1)+at+1
m—j—k

(jp+jj—a— 1)

preriem o pt k(p+1)+a+1

=1- Tt T (mp
( p"‘:- ) ( pl'-:- )0<j<u/p(’n_1)(p+1)+a+1

(jp+jfll~1)

M

(m— j)(p+1)+a+1
m—j—k

Jor0 = k < (mp—a)/p. If, in particular, a = 0, then (16) reduces to

k+ 1( mp+m
m—k—1

(m pn-:- m)

(17) P{no(m,n) <k} =1—

for0 =k < m.
Proor. We shall determine the probability

(18) pk(’“! (1) = P{'la(’n’ 17) > k}
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forO0 = k < (mp—a)lpanda =0, 1, ---, mp. By (15) we have

19)
pu(m,a) = P{N, = i+a for more than k subscripts i= 1,2, -, mp}.
As we shall see, p,(m, a) can be expressed by the following probabilities:

(20) q(s) = P{N, =i for k subscripts i=1,2,-,5p|N,, = sp}

forl £k =s < mand

21) r(s,a) = P{N; = i+a for at least k subscriptsi=1,2, .-,

sp—a—1|N,,_, = sp}
forO0 = k < (sp—a)/p < (mp—a)/p. Obviously ry(s,a) = 1 for0 < a < sp < mp.

We shall need the following result: If 0 < v < j < n+1 and P{N; = r} > 0,
then

(22) P{N, < ifori= 1,2, j|N;=r}=1—r[j
This can easily be proved by mathematical induction. (See [8].)
Now we can write that

3 pima) = ax

k+a/[’z<s§m(l,n_s)p+a+IP{Nsp—a = Sp}l‘k(s, a)

for 0 £ k < (mp—a)/p and a = 0, 1, ---, n. For the event {N,; = i+a for more
than k subscripts i = 1, 2, ---, n} can occur in such a way that for some s where
a+kp < sp < mp we have N,_, = sp, further N; = i+a for at least k subscripts
i=1,2,---,sp—a—1and N; < i+a for sp < i = n. By using (22) and the fact

that NV, . = »n we obtain that
24 P{N i f | < N atl
(24) {N;<i+a for sp<i<n]| s"_“_sP}—n—sp+a+1

if a £ sp < mp. Hence (23) follows.

Furthermore, we have
(25) rk(s’ a) = Zk§u<s—a/pP{Nup = Llp | Nspfa = Sp}qk(u)
forl sk <(sp—a)/panda=0,1, -, sp.

It follows immediately from the definition of ¢,(s) that

(26) 4i(s) = Y1 cues P{N,, = up | Ny, = sp}q(u)gi— (s —u)
for2 £ k £ sand

(27) ql(s):1—21§u<sP{Nup :up|Nsp =Sp}ql(u)
fors = 1.

In the above formulas we have

(up+':4— l)((s—u)(;;—l;}‘)—a— 1)

(28) P{N,, =up|N,_, =sp} =

(sp+s—a— 1)
s

which follows from (8).
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Accordingly the problem of finding p,(m, a) can be reduced to the problem of
finding r(s, a) for (a+kp)lp <s =m, q(s) for k < s <=m and ¢,(s) for
1 = s = m. These probabilities can be determined by (23), (25), (26) and (27). We
shall perform the necessary calculations in the following sections.

We note that p,(m, 0) can also be obtained by the following formula:

- (29) pi(m,0) = Z?=k+ 1 P{Nsp = sp}qy+1(5)

for 0 £ k < m. To prove (29) we take into consideration that the event {N; = i
for more than k subscripts i = 1,2, ---, n} can occur in such a way that the
k+1 st largest i = 1,2, ---, n for which N; = iisi{ = sp where k < s < m.

It will be convenient to use the following notation. Let

(30) Py(m,a) = (" ")pi(m, a),
(31) Ri(s,a) = ("7 s, a),
and

(32) Qu(s) = ("™ Nau(s)-

Then equations (23), (25), (26), (27) and (29) can also be expressed in the follow-
ing way

a+1
— -—  (tm=s)(pt1)ta
(33) Pk(m’a) k+a/pz<.s§m(m_s)p+a+1( m—s )Rk(s>a)
for0 < k < (mp—a)lpanda =0, 1, ---, mp,

(34) Rk(s’ a) = Zk §u<s—a/[l((s_u)([;t:4)_a_ l)Qk(u)

forl =k <(@p—a)panda=0,1, -, sp,
(35) Qk(s) = Zl§u<sQl(u)Qk—l(5—“)
for2 < k £ s and
(36) 01(s) = (77D = Y cues (T THO(u)
fors = 1.

Furthermore, by (29) we have
(37) P(m,0) = Z:":H 1 ((m_{:)y:r N0+ 1(s)

for0 = k < m.
In the following sections we shall determine Q,(s), R,(s, @) and P (m, a). We can
easily see that Q,(s) and R,(s, a) are independent of m whenever s < m.

3. Auxiliary theorems. In what follows we shall need certain generating functions
which we shall derive in this section. By using Rouché’s theorem we can prove that
if |z| < p?/(p+1)"*", then the equation

(38) L—w+zw?*! =0
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has a single root w = y(z) in the circle |w— 1| < 1/p and if g(w) is a regular function
of win this circle then by Lagrange’s expansion we obtain that

dr 1 /(l+x)(1+x)rp+r

() 0069 = o)+ $] LI
It follows immediately from (39) that

. T )1 4 x)r+ D+ D
(40) Q(V(Z))V’(Z)=;0,T![ il dJ;') Lo'

In particular, if a is any real number and & is a nonnegative integer, then by (39)
we have

=0

» kp+k+a
(41) [T -1 =24 3 LT ey
and by (40)
(42) (@1 [(2) = 1149/ (2) = T (T g )2

for |z| < p?/(p+1)P+L.
Finally, we note that

P ) O B
@) g1(2) = lim, o LD L = § Z e
and hence
(@) —11  pxy'(2) dlogv(A e
(44) —E-11- ) ~F = e

for |z| < pP/(p+1)P* L If z > p?)(p+1)"*1, then y(z) — p/(p+1).
4. The determination of Q,(s). We can find Q,(s) for I < k = s by (35) and (36).
THEOREM 2. If' | < k = s, then

(43) 04(s) = (‘"“ .

Proor. If we form the generating function of (36), then we obtain that

oc y (sp+x—1)zs

(46) =1 Q (S)Z = 1+Zw sp+§—1)2s = P[y(z)_l]

for |z| < p?/(p+1)P*!. The extreme right member can be obtained by (44).
If we form the generating function of (35), then we obtain that

(47) 2= Q)" = (U521 Q4(s)2°) = p[o(2) - 1]
for k = 1,2, --- . Hence (45) follows by (41).
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5. The determination of R,(s, a). We can find Ry(s, a) for 1 < k < (sp—a)/p
by (34).

THEOREM 3. If'| £ k < (sp—a)/p, then we have

((s SJ)J({H))(JPH a— 1)

48 R,(s,a) = kp*
“8) s ) b a/p<jgs—k(S_J)

=pk(sp+ss_—:—1)_kp Z (S j)((ésj)](li"'l))(lﬂ"ﬂ a— 1)

0<j=<a

ProOF. By (34) we obtain that

(49) Zk+a/p<s Ri(s,a)z* = (Z 2 Qu(u)z" )(Za/p<j(1p+j “=1)zl)
for |z < p?/(p+1)?*!. Hence by (45) we obtain the first expression on the right-
hand side of (48). Since by (42)

(50) Lo PN = [3(2)] 73y (2),
it follows from (49) that
(51 Ykvap<s Rils,0)2° = p[p(2)] 777 2[3(2) — 11%'(2)
_(Z Zi Q(u)" )(Zo<; <a/p(jp+! “=hz).

If we form the coefficient of z* in (51), then we obtain the second expression on the
right-hand side of (48).
We note that

(52) Ry(s,0) = p** 122 i)
for I < k < s. This follows from (48) or from (45) if we take into consideration that
(53) Ry(s,0) = Zz=k+l Qu(u)

forl = k <.
By our definition we have

(54) Ro(s,a) = (547
for 0 = a < sp.

6. The determination of P,(m, a). Finally, we can find P(m, a) for 0 < k <
(mp—a)/p by (33).
THEOREM 4. If 0 < k < (mp—a)/p, then we have
k(p+1)+a+1 (p+iza=Lym=Dipt1)rat 1
a/p<j§m—k(m_j)(p+1)+a+1\ "

_pk(mp+m) p k(p+1)+a+1
o< Zap(M—j)p+1)+a+1

(35)  Pym,a) =p*

(J‘P+J"—a—1).

((m j)(p+l)+a+1
m—j—k
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Proor. By (33) we obtain that

(56) > Pk(m,a)z"’=< y Rk(s,a)zs>(S§0$+IH(SP+Ss+a)ZS>

k+a/p<m k+a/p<s
for |z| < pP/(p+1)"*". Here by (49)
(57) Zk+a/p<st(S’a)Zs = pk[y(z)_l]k Za/p<j(jp+jj_a_ 1)Zj
fork = 1,2, . If k = 0, then (57) is trivially true. Furthermore, by (41)
©  a+1 » a+1
. sptstay,s _ sptstay,s _ at+1
(8) Y o (TS =1 Y (R = )

s=0

Thus, finally
(539)  YkvapemPilma)z" = p ()] [(2) = 11 Eajp s (75472

for |z| < p?/(p+1)P*1. If we make use of (41) and form the coefficient of z" in
(59), then we obtain the first expression in (55). If in (59) we write

(60) Za/p<j(jp+j;a_1)zj = [V(Z)]_a_p_ZV'(Z)_Zogjga/p(ijj_a_I)Zj,
which follows from (50), then we can obtain the second expression in (55).

By (55) we obtain (16) and this completes the proof of Theorem 1.

7. Limit Distributions. First we shall find the limit distribution of n,,(m, mp)
when a is a nonnegative real number and p — 0.

THEOREM 5. If a = 0 and n = mp, then

, (a+k)m! (j—a)Y(m—j+a)y"i7k1
61) lim,,  P{p,,(mn)<k}=1——n-="——
(61) P {nap(m, n) = k} M e E i m—j—k)!
m! (a+k)m!

=1

_(m—k)!m"+ m"
(J=aY(m—j+ay=i

0<j<a J(m—j—k)!

for 0 £ k < m—a. If, in particular, a = 0, then (61) reduces to

(62) lim,_, , P{no(m, mp) < k} = lz(m_—kf%w
Jor0 = k < m. 4

Proor. Since
(63) P{ng(m,n) < k} =P{ng,(m,n) < k},

the results can be obtained immediately from (16) and (17) if we replace a by [ap]
and let p —» 0.
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By using (61) we can find the solution of another problem too.

Denote by a(m, a) the number of intersections of G(x) with F,(x)+a/m for
—o0 = x £ 0. More precisely o(m, a) = k if the set S = {x:G(x) = F,(x)+a/m
and —oo £ x < o0} is the union of k separated intervals or points. Since

(64) P{lim,_ ,, SUP_ , <1< [G,(X)—G(x)| =0} =1,
we can conclude that
(65) P{o(m,a) < k} =lim,_  P{n,,(m, mp) < k}

for 0 = k < m—a and 0 < a < m. The right-hand side of (65) is given by (61).
For a = 0 we have

m!

(66) Plo(m,0) = k} =1 =5

if | £ k < m. This can be seen as follows: If we suppose that ¢ > 0 and let
a — 0, then x = o0 becomes a point of S whenever ¢ = 0. Thus we can write that

(67) P{a(m,0) < k} = lim,_ o P{a(m,a) < k—1}
for I £ &k =< m whence (66) follows.

The probability P{o(m, a) < k} for 0 < a < m was given without proof in
1960 by D. A. Darling [1] and for @ = 0, I, ---, m—1 it was found in 1964 by
W. Nef [5].

Evidently a(m, @) and o(m, —a) have the same distribution.

Now let us consider the asymptotic distribution of #,(m, mp) in the case when
a = y(mp(p+1)* and m - oo.

THEOREM 6. If a = y(mp(p+1))* where y = 0 and k = [x(mp/(p+1))*] where
x = 0, then

(68) lim,,_ . P{n,(m, mp) < k} = 1 —e 3+ 207,
PROOF. Now
(69) P{n(m, mp) < k} =P{n (m, mp) £ k}

is given explicitly by (16). If in the first formula on the right-hand side of (16)
we put a = [y(mp(p+ 1)), k = [x(mp/(p+1))*], j = mu and let m — oo, then
we obtain that

! (x+y)2 2
(.\"*‘y) ! C_"{[ 1-u +7]

i <kl=1- 1 —

(70) lim,, . P{n.(m,mp) <k} =1 G |, e

which is equal to the right-hand side of (68).

For an arbitrary p > 0O the limiting distribution (68) was found in 1939 by
N. V. Smirnov [6]. In testing the hypothesis that F(x) and G(x) are two identical
continuous distribution functions N. V. Smirnov [6] used the asymptotic distri-

du
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bution (68). The results of this paper make it possible to replace the asymptotic
distribution in Smirnov’s test by an exact distribution if one sample size is an
integral multiple of the other.
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