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MAXIMAL AVERAGE-REWARD POLICIES FOR
SEMI-MARKOV DECISION PROCESSES WITH
ARBITRARY STATE AND ACTION SPACE!

By STEVEN A. LIPPMAN
University of California, Los Angeles

We consider the problem of maximizing the long-run average (also
the long-run average expected) reward per unit time in a semi-Markov
decision processes with arbitrary state and action space. Our main result
states that we need only consider the set of stationary policies in that
for each ¢ > 0 there is a stationary policy which is g-optimal. This result
is derived under the assumptions that (roughly) (i) expected rewards and
expected transition times are uniformly bounded over all states and actions,
and that (ii) there is a state such that the expected length of time until
the system returns to this state is uniformly bounded over all policies. The
existence of an optimal stationary policy is established under the additional
assumption of countable state and finite action space. Applications to
queueing reward systems are given.

1. Introduction. We consider the problem of maximizing the long-run average
(also the long-run average expected) reward per unit time in a semi-Markov
decision process with arbitrary state and action space. Our main result states that
we need only consider the set of stationary policies in that for each ¢ > 0 there is a
stationary policy which is e-optimal. This result is derived under assumptions
slightly stronger than (i) expected rewards and expected transition times are
uniformly bounded over all states and actions, and (ii) there is a state O such that
the mean recurrence time until the system returns to state 0 is uniformly bounded
over all policies. The existence of an optimal stationary policy is established under
the additional assumption of countable state and finite action space. Our method
of proof utilizes the strong law of large numbers and a result in positive dynamic
programming due to Blackwell (1967).

2. Model description and notation. A semi-Markov decision process (SMDP) is
specified by five objects: a state space S, an action space 4, a law of motion ¢, a
transition time ¢, and a reward . Whenever (and however) the system is in state
s and you choose action a, three things happen: (i) the system moves to a new
state selected according to the probability distribution q(-[ s, a), (ii) conditional
on the event that the new state is s, the length of time it takes the system to move
to state s’ is a nonnegative random variable with probability distribution
t(-[ s, a, s"), and (iii) conditional on the event that the new state is s', immediately

Received October 21, 1970.
1 This research was partially supported by the National Science Foundation through Grants
GS 2041 and GP 26294.

1717

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. IMNOIS

d ®
www.jstor.org



1718 STEVEN A. LIPPMAN

after the transition is completed,? you receive a reward whose probability distri-
bution is r('l s, a, 8').3 To ensure the existence of a probability space, we assume
that S and A are each Borel subsets of a locally compact, separable, metric space.

A policy 7 is a sequence w, 75, --+, of decision rules where the nth decision rule
7, tells you how to select an action in A after completion of the n— Ist transition.
More precisely, =, is a conditional probability on (the Borel subsets of ) A given
the history A" = (81, @y, F1, t1s ***s Spye1s Qu—15 'u—15 Ls—15 §,) Of the system up to
and including the time of the n— 1st transition. So given that we have observed the
history A" up to the time of the n— 1st transition, we choose our nth action according
to the distribution (- | h"™). A policy = is said to be stationary if there is a (Borel
measurable) map f from S into 4 and if f(s,) is the action chosen by 7= when s,
is the state reached just after completion of the n— st transition. Thus, a stationary
policy m always chooses action f(s) whenever and however it reaches state s.

We shall assume throughout this paper, unless stated otherwise, that the initial
state is state 0. Given a policy m, we denote by r, and ¢, the nth reward received
and the length of the nth transition, and we define the following associated random
variables:

n(T) =max{n:t;+-+t, < T}, each T 2 0,

R,y=ri+-+r,

Tn = t1+“'+tn.
Finally, we define V,, the long-run average reward per unit time associated with
policy &, by

R,
(1) V, = limsupr., oo‘T(T')
Also, we define

R,
) V.* =liminfy_, , ——,}Q

Our goal is to find a policy n*, termed optimal, such that for each policy © we

have
VazV,ae.

Given ¢ > 0, n* is said to be e-optimal if for each policy = we have

Ve 2 V,—ea.e.

3. Optimality of stationary policies. If we make no further restrictions on our
SMDP, there may be no ¢ > 0 for which an g-optimal policy exists, or the return
of some policy might be infinite with probability 1 (see Ross (1971) and Examples 2
and 3 of Lippman (1970)).

2 Qur results still hold if the reward were received at the beginning of the transition (see proof
of Lemma 3).

3 The immediate reward and the transition time are not assumed to be independent random
variables, not even if S = {0}and 4 = {0}.
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In order to ensure the existence of e-optimal policies for all ¢ > 0 and to ensure
that P(V,* = —0) = P(V, = +0) =0 for all n, we make the following
assumptions:

AssuMPTION 1. (all inf’s and sup’s are over Sx 4 x S)
(i) inf{édr(¢|s,a,s) 2~ M,
(i) supfédr(¢|s,a,s') =M < oo,
(iii) inf[edu(¢|s,a,8') = L>0,
(iv) supf[é&de(é]s,a,s’) =B < oo, and
(v) sup[f&*dr(E]s,a,s)+[E2dn( s, a,5")] < o0.

ASSUMPTION 2. Let p(m, i) be the probability that policy x requires at least i transi-
tions until the first return to state 0, let N(x) be the number of transitions that
policy = requires until the first return to state 0, and define

pi* = sup, {p(m, i)}.
Then
b=y p*<o and p,=sup,Var(N(n)) < co.

Assumption 1 states that expectations and variances of rewards and transition
times are uniformly bounded with the lower bound on the expected transition time
being strictly positive. The first statement of Assumption 2 is slightly stronger than
requiring that the expected number of transitions until state O is re-entered is
uniformly bounded. Coupled with (iv) of Assumption 1, it implies that the expected
length of time until state O is re-entered is uniformly bounded over all policies.
Also, a uniform bound on the variance of the length of time until the first return to
state 0 can be obtained from (v) and u, < oo. In the context of a queueing reward
system in which the decision maker can control the arrival rate and/or the service
rate, these assumptions assert that the traffic intensity p is bounded away from 1 for
all policies. It appears that these assumptions will be easy to verify in practice.

We now present our main result whose proof is given in the next section. This
result is particularly useful in the study of queueing optimization problems since,
with ingenuity in formulation, Assumption 2 will often be satisfied even when
there is no recurrent state. (See Lippman (1970) for several applications of Theorem
1.)

THEOREM 1. If Assumptions 1 and 2 hold, then for each ¢ > 0 there is a stationary
policy which is e-optimal. Furthermore, there is a stationary policy which is optimal
if there is a best policy among the set of stationary policies.*

#1It can also be shown that if Assumptions 1 and 2 hold, if g(|s, @) has countable support for
each pair (s, a), and if there is a policy which maximizes the ratio of the expected reward earned
until the first return to state O to the expected time until the first return to state 0, then there is
a stationary policy which is optimal. The proof of this fact is an immediate consequence of
Proposition B of Ornstein (1969) and our Equation (9).
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Of course, if the process starts in some state s other than state 0 and if it must
return to state O in a finite expected amount of time during which a finite expected
reward is earned, then Theorem 1 remains true. Also, if we consider distributions
rather than random variables and if we say that policy n* is e¢-optimal if the
distribution of V_«+¢ is stochastically larger than that of ¥, for each =, then we
need only assume that S and A are each Borel subsets of a complete, separable,
metric space and that the reward distributions are point masses and form a Baire
function on Sx 4 x S.

Next, we define ¥, the long-run expected average reward per unit time associated
with policy =, by

_ R,
1) V, =limsup;_ . E (—}—T))
Also, we define )
_ R,
(2 V.* =liminfy., ., E(—;:T—)>

A policy n* is said to be L' optimal if VX = sup, V,. Similarly, n* is said to be
e-L! optimal if V.5 = sup, V, —e.

THEOREM 2. If Assumptions 1 and 2 hold and if the rewards received are uniformly
bounded random variables, then for each ¢ > 0 there is a stationary policy which is
e-L! optimal. Furthermore, there is a stationary policy which is L* optimal if there
is a best policy among the set of stationary policies.

Recently, Ross has obtained useful sufficient conditions (see Theorem 3 of Ross
(1970b)) which guarantees the optimality of stationary policies for a countable state,
finite action SMDP. In the context of queueing reward systems, his conditions
essentially require (Ross (1968) Theorem 1.4) that the mean recurrence time to go
from state s to state 0 is uniformly bounded over all states and all discount optimal
stationary policies. This condition will seldom be met in systems with an infinite
queue capacity.

THEOREM 3. Suppose S is countable and A is finite. Then under the hypotheses
of Theorem 1 [Theorem 2] there is a stationary policy which is optimal [L* optimal].

It is interesting to note that Theorem 3 does not hold if Assumption 2 is replaced
by the weaker condition that the mean return times are uniformly bounded
(see Fisher and Ross (1968)). Thus, in view of Fisher and Ross (1968), it would
appear that our conditions are nearly minimal.

The proofs of Theorems 2 and 3 utilize Theorem 1 and are given in Section 5.

4. Proof of Theorem 1. In view of the length of the proof, we shall break it into
several parts.

Part 1. Let & = U, %, be a family of sequences of random variables indexed
by A with probability space (Q,, %, P;) such that (i) the random variables are
mutually independent and (ii) for each fixed A € A, &, is a sequence of identically
distributed random variables with mean y; and variance ;2.
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We will iteratively select a sequence from A as follows. Given the first j selections
Ay, -+, Aj from A and the observed values yy, -, y; of the associated random
Varlables from the sequences %, -+, &, , we refer to h = (A, y1, 5 Ajy y)) as
the history of the system up to the Jth stage Associated with each hlstory K is
a random variable D;,, with probability space (Q,, #,, P,) and values in A.
Thus, given the history 4/ up to the jth stage, the j+1st index in A is chosen
according to the distribution of D}, ; and the next random variable in the sequence
Z,,,, is selected. This random variable is labeled Y, ;. In the following lemma,
a.e. refers to the probability space (Q, %, P) where Q = Q; xQ, and &# and P
are the product field and product measure.

LemMMA 1.
If sup, sy = M < 0,inf, s pt; = M = — o0, and sup; . ,0,> < o, then
, Y+ +Y,
lim SUPpoee ™= M a.e.,
and
lim mf,,_,w—;— =M ae.

Proor. If X, ; is the jth member of %, define X, = X —Hy SO that
Y, = X“ wif ¥y = X4 Slmllarly, define S, = Y+ -+ +Y,and S, = ¥, +

- + ¥,. (Note that we may not have S, = S,— E(S,).) Now Var (¥) < sup;.,0,2
for each 7, and for i < j,

E(Y.¥;) = E{E(Y;| V) ¥} =E{0- ¥} =0
so that Y) are uncorrelated. Consequently we can conclude from the strong law
of large numbers (see Chung (1968) page 97) that S,/n — 0 a.e.

Because S, = S,—T, where the random variable T, satisfies nM < T, < nM,
we obtain

. Sy S, T\ _ . So . n
limsup,, o= limsup,, ( " + -n—> < lim sup,,_,w7+ lim sup,_, » -
<M.
Similarly, _
i Sn : Sy . I,
liminf,, , o = liminf,, ;—+hm1nf,,_,00 =M.

Part I1. On the path towards establishing our main result, we temporarily make
the assumption that there is but one state, that is, S = {0}. With this assumption,
we refer to our SMDP as a sequence of identical, time variable games (SITVG).?
Here, we seek to maximize the average reward per unit time when we repeatedly
play the same game, the duration of which depends on our action in each game.

5 MacQueen (1962) investigated the more subtle situation wherein the games are not identical.
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To facilitate the use of the SITVG in our treatment of the SMDP, we will adopt
a slightly different notation. We have state space {0}, action space &, and we
denote by r, and ¢, the reward and the transition time associated with action
a € o/. Rather than policies = = (=, ), we speak of strategies ¢ = (o, ) where each
o, is a distribution on /.

In establishing our next lemma, we shall need the following assumption:

AssuMPTION 3. The expectation and variance of both r, and ¢, are uniformly
bounded above by U < oo; the expectation of ¢, is uniformly bounded below by
L > 0; and E(r,) = —M for all a € of.

Now define

E(r,)
* —_—
(3) L* = SUP, ¢ .ME(ta) s

SO |L*| < oo by Assumption 3. It follows from the strong law of large numbers
that the stationary strategy o, which always chooses action « has long-run average
reward V, = E(r,))/E(t,) a.e. (Of course, V,* = V_ a.e.if oisstationary.) Moreover,
we can choose a sequence {a,y from &/ with the property that E(r, ) E(t, )TL*
so the strategy o* which chooses the action «, after the n— Ist transition has
Vo = L* a.e. We now show that L* is the optimal return so that there is an
g-optimal stationary strategy for each ¢ > 0 and there is an optimal stationary
strategy if there is a best strategy among the set of stationary strategies.

LemMA 2. If Assumption 3 holds, then for every strategy o, we have V, < L* a.e.

Proor. Fix ¢ and let r, and ¢, be the nth reward received and the duration of
the nth transition. Now 7T,,1y/T — 1 a.e., for T, 1y+1/Tycry = 1 a.e. implies that

I _jim . To Tunss
T ~ Mree T

limg,, =1ae.

T;I(T)

Verifying that T,y 41/Tyr) — 1 a.e. is equivalent to verifying that ¢,, /T, — 0
a.e. which, in turn, follows from the Borel-Cantelli Lemma as shown in the proof
of Lemma 3. Therefore,

. Ryry . Ruyry Toery . Ryr
V, =limsupy_ o ;f )=11msupT_,wT—”((T-)).—L)=11msupT_.w-fnfﬁ
n n

. R,
= lim sup,_, , = a.e.
T,

If we do not have ¥V, < L* a.e., then thereisan & > Oand ad > 0 such that

E(ra)+e) >,

. R,
4 P (llm SUPy-s o 7 > SUPye B1)=s

Now partition & = (Jf—; P, in such a way that if « is in the kth subset
k=1,2,--, K < o0, then there is an oy, in this subset such that

E(r,) £ E(r,)+%¢ and E(t,)—3%e < E(t,).



REWARD POLICIES FOR A CLASS OF SEMI-MARKOV DECISION PROCESSES 1723

Let K, be the number of i < n such that the observed value of o, is in the kth
subset of & (so that K is a random function of »), so

R Zk 1Z¢,epk"¢, Zk 1Kk(1/Kk agEPkra.)
Zk 1 Zai € Py ag Zk 1 Kk(]'/Kk Za; € Py ta;)

Hence, we can conclude from Lemma 1 that

. Rn . Zl{(= 1 Kk(E(rak) + 8) E(ra) +é
(5) limsup,., T < limsup, ., S K(E()—0) = SUP, c o B(i)—s a.e.,

since, by induction,

L=t KilE(ra)+8) _ {E(r«k)+8 } {E(r )+8}
k=1,2,---,K¢ < sup,.
S KlB()—) = "\ Bl e PP (1)
But (5) contradicts (4). []
LEmMA 3. If our SMDP satisfies Assumptions 1 and 2, then there is a SITVG such

that it satisfies Assumption 3 and there is a 1—1 correspondence between policies
n and strategies ¢ so that V, = V_a.e. if & corresponds to o.

Proor. We will define o7 to be the set of actions such that each action « in o/
is a Borel measurable rule for deciding what actions in A4 to select as the system
moves in time among the states in .S until state 0 is finally reached; the action o
can only make use of the history of the SMDP since state 0 was last entered. More
precisely, let o7, be the set of probability distributions on A given histories 4’ with
s; # 0 for 1 <j < i We define o to be the set of sequences a = (&;) where
@; € ; for each i.

Now a strategy o is a sequence {o,y where g, is a distribution on & (not on 4)
given the history of the SMDP up to and including the time of the (n—1)st
transition into state 0. It is clear upon reflection that there is a 1 — 1 correspondence
between policies for the SMDP and strategies for the SITVG. Furthermore,
defining r, and ¢, to be the total reward received and transition time until state O is
re-entered when action o is selected, it is obvious that if 7 corresponds to o, then
V.=V, ae. To show V, < V, ae., let ¢, be the length of time between the
n—1st and nth entry into state 0, and let r, be the associated reward received so
that

R, +7,+ R, Frt1

V, < limsup,_, T < limsup,_ o = T, 2+ lim sup,_, , —— T

= V,+limsup,_, Tfl ,

where 7, is the sum of the absolute values of the rewards earned rather than simply
the sum of the rewards earned between the time of the n— Ist and sth entry into
state 0. Now by Lemma 1 and (iii) of Assumption 1,

Fnt 1/" Prt1
limsup,, , ——— TIn 11m SUPy -0 = A-C-
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Since we have a uniform bound on the second moment of the 7,’s, Chebyshev’s
inequality together with the Borel-Cantelli Lemma implies that 7,/n — 0 a.e.

In verifying that Assumption 3 holds, it suffices to produce a uniform bound on
E(t()?) where t(n) is the length of time until the first return to state 0 using policy
n. Let N be the number of transitions required by policy = to reach state 0, so

E(t(n)?) = E[(XiZ 1 il v>1)*]
Y21 Bt | Lvzn)P(N 2 0)+2 102 351 E(tit | 1wz ) P(N 2 J)
SQYR PNz i)+2B* Y2, Y e P(N 2 )
= QE(N)+ B*[E(N*)—E(N)]

where Q = sup [ £2dt(¢ | s, a,5"). ]

Part 111. Let ¢ > 0 be given. Since Assumptions 1 and 2 are satisfied, we can
use Lemma 3 to find the equivalent SITVG which satisfies Assumption 3. There-
fore, Lemma 2 yields the existence of a stationary strategy which is e-optimal.
The long-run average return of the stationary strategy o which always chooses
action a is E(r,)/E(t4). Thus, we seek an a* € &/ such that

E(re:) E(r.)

(6) E(ta*)+ ¢> L* =sup, ¢ g5 E(t,)’

To do so, consider an associated (positive dynamic programming) problem which
is such that the process ends whenever it returns to state 0, and p(s, a, s”), the reward
associated with choosing action a from state s and going to state s’, is defined by

p(s,a,s') =[Edr(E]s,a,s")—L* [Edy¢ |s,a,s).

A plan a is a sequence of decision rules where the nth decision rule tells you how
to select an action on the nth day as a function of the previous history of the system.
Starting from state 0, a plan « induces an expected nth period reward p,(c) and an
expected total reward

() I(o) = 351 ().

If I(a*) = v—e, where v = sup, . ,I(«), then we say that o is e-optimal.

By a result due to Blackwell (1967) page 416, we need only consider stationary
plans if p is a bounded nonnegative function and v is finite. That p is bounded
follows from L* finite together with (i) through (iv) of Assumption 1, while we
can conclude that v is finite from the boundedness of p, Assumption 2, and the fact
that the process ends when it returns to state 0. But it is not true that p is non-
negative. However, if we add p,,*(L*B+M) to p,(), then we can still use Black-
well’s result—as Y =, p,*(L*B+M) is finite by Assumption 2—to conclude that
there is a stationary plan a* such that

(8) I(*) = sup, ¢ o I(2t)—eL.
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This fact coupled with
Q) I(«) = E(r,)— L*E(t,), west,
and sup,. s E(t,) < oo yields the desired result. []

5, Proof of Theorems 2 and 3. Fix n, and denote by r, and ¢, the nth reward
received and the length of the nth transition. Also, set n(T) = max {n:t;+---
+1t, < T}. We claim that

(10) Ve < E(V).
Since the rewards are uniformly bounded, say by M, R,,/T < M((T)/T), and
hence (using V= —M/L)

R R, ‘ R
E< n(T) V) f ('—(D—V,,)dP+f < m—V,,)dP
' iRniry =i <o\ T (Rucry/T)~Vrze\ 1
R
+J ( n(T)—V,,)dP
(Rn(Ty/T) Vo< —¢ T

T, )dP

(an/T)—V">e< T

confoliprn) [ ]

As P((R,ny/T)—V, = ¢ — 0 as T — oo, our claim is justified upon establishing
that the second moment of n(T) is O(T?).

From (iii) and (v) of Assumption 1, we can conclude that there isan e > Oand a
8 > 0 such that P(t; > &) = J for each fe SxA4 xS where #; has distribution
t(: | s, a,s") if B = (s, a,s’). Using this fact, a standard argument (see Lippman
(1970) and Chung (1968), page 127 or Ross (1970a), page 88) shows that the second
moment of n(T) is O(T?). This justifies our claim.

Theorem 1 ensures that given ¢ > 0, there is a stationary policy =* with

(11) VizV,—cae.

Because the stationarity of n* implies that VX = V% a.e.,, we can combine (10)
and (11) to yield the desired result. []

To prove Theorem 3, we utilize (8) to assert that for each & there is a stationary
plan f, such that
(12) I(fi) > sup, e o I(2)—1/k.
Without loss of generality, assume that S = {0, 1, 2, ---} and let {f; ;) be a subse-
quence of {f;) such that the action chosen at state 0 is the same for each plan
Sou; such a subsequence exists since A is finite. Similarly, we continue defining
subsequences {f; ;) of {f;—; ) such that the action chosen from state j is the same
for each plan f; ;.

Now consider the stationary plan f which selects the same action at state j
(labeled f(j)) as does the plan f; ;. We claim that f is optimal. To see this, let

<e+M
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e>0 be given and define K= M+ BL* <o and Iy(a)=Yn-1 pa(@).
Assumptions 1 and 2 imply that

(13) |pn(“)| é Kpn*’ “Eﬂ,n = 1’2’ cee,

Hence, Zp,* finite together with (13) implies that the convergence of Iy(a) to I(«)
is uniform on &/, so that there is an integer N satisfying

(14) [1() — I(«)| < e for allw and n 2 N.

In view of (12) and (14), it sufficies to exhibit a plan f; , with Iy(f) = Iy(fi ) —%e
and k > 4/e; for given a, we have

1(f)—1(2)) = I(f) = I(fies) + 1(fiese) — 1()
= I(f)_I(fk,k)—%8 Z IN(f)—I&(ﬁc,k)—?’B/"f-

We now exhibit a plan f , with Iy(f) = Iy(fi ) —%e. To start, pick 6 > 0 so
that 2KN$ < le, and let Ky be sufficiently large so that the probability that the set
{0, 1, 2, ---, Ky} of states is left by time N is less than 6. It now follows immediately
from (13) that

I(fxwkn) —IN(f) <(2KN)3 < de. 1[I
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