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NONCOOPERATIVE STOCHASTIC GAMES!

By MATTHEW J. SOBEL
Yale University

1. Summary. We introduce a sequential competitive decision process that is a
generalization of noncooperative finite games and of two-person zero-sum sto-
chastic games (hence, of Markovian decision processes). We prove the existence of
equilibrium points under criteria of discounted gain and of average gain.

Two person zero-sum stochastic games and noncooperative finite games were
introduced in elegant papers by Shapley [22] and Nash [16], [17]. Shapley’s work
prompted a series of papers [1], [4], [5], [10], [11], [12], [14], [18], [26] concerned with
the existence of minimax solutions and algorithms for their computation. Even for
the two-person zero-sum case, no finite algorithm yet exists. Nash’s papers led to a
sizeable literature in both mathematics and economics. Mills’[15] work, for example,
isrelated to our characterization of equilibrium points in Section 4.

Noncooperative stochastic games may yield fruitful models for several phen-
omena in the social sciences. Theories of economic markets, for example, have
increasingly sought to encompass sequential economic decision processes. Some
recent research in social psychology has taken an analogous direction [19], [25].

I became aware of recent work by Rogers [20] shortly after completing this paper.
His results and ours nearly coincide with our Theorem 2 being slightly stronger
than the comparable results in his paper. The basic difference between the papers
is that Rogers relies on the Kakutani fixed point theorem whereas we use Brouwer’s
theorem. Our arguments are somewhat simpler as a consequence.

2. Preliminaries. A noncooperative stochastic game I' is a sequence 7;, 5, ***,
where, for each ¢, y, e {I'y, ---, I,}. We call S = {1, ---, n} the state space. For each
state s € S, I’y is the following N-person non-zero-sum noncooperative game. The
set of actions available to the ith player is 4, = {1, ---, K’} with K;’ = 1. A non-
cooperative stochastic game is finite if ¥ ;.5 ;e K, < 0o where Q = {1, -+, N}.
The reward to player i is r,’(a) when the actions of the players is given by a =
(a;, -, ay) € By = XycoAS*. The assumption K, = K so A = A and B, = B for
all s and i entails no loss of generality and is henceforth made.

The conditional probability that y,,; is I'; given that y, is I';, that actions a € B
were taken in y,, and given the observed states and actions taken at y;, --+, y,_4, is
assumed to be a function g ;(a) depending only on s, j, and a. Shapley [22] has
distinguished the “‘terminating” case (i) ).; ¢,;(a) < 1 for each s and g, from the
“non-terminating” case (i) ) ; ¢, (@) = 1 for each s and a. Probabilistically, (i) is
a special case of (ii) having an absorbing state which, with probability one, is
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entered finitely whatever the initial state and actions. Thus, we assume (ii) and use
the following means to separate the terminating and non-terminating cases.

Let f,(a) satisfy 0 < B,'(a) < 1 for all ae B, se S, i €Q. Then B,'(a) can be
interpreted as the present value to player i of receiving a unit reward in the subse-
quent state occupied if the present state is s in which the players take actions a.
Ordinarily, for each i € Q, B,(a) will be constant for all s and a. The generality is
useful, however, because it extends Theorems 1 and 3 to noncooperative stochastic
games based on Markov renewal programs ([6] and its references) rather than
discrete-time Markov decision processes. It can be shown that a discounted Markov
renewal program is equivalent to a discounted discrete-time model whose discount
factor is a function of the state occupied and of the action taken.

For an outcome of T, let X,’ and «,’ be player i’s reward and discount factor in
9, define ay’ = 1, 7€ Q. Then, using V* = Y2, X,/ [[%=1 % (G' = liminf;_, T™!
Z,T= 1 X)) is tantamount to the terminating case (non-terminating case).

A stationary policy J; for player i is a sequence of probability vectors (D, s € S)
such that D,'is a randomized strategy for player iin y,if y, = I';. Thus, D,' = (D)
is a K-vector with D}, = 0and Y . 4D} = 1. The set F of feasible D, is the K—1
dimensional unit simplex. Then © = X, 5 Fis the set of all §; and © = X;.o 7 is
the set of N-tuples 6 = (d;, -+, dy) of all the players’ stationary policies. No class
of policies larger than w is considered in this paper. The players’ stationary policies
excluding those of player iis n~ = m—x and for § € & we use the (abused) notation
8 = (6,6 )enxn~. Finally, let 8, denote the modification of & whereby

= 1land Di; = 0if j # k.

Suppose (only for this paragraph) that the players, except for the ith, adhere to
6" e n~. It is essential to our results to observe that player i confronts a Markovian
decision process. For an arbitrary (possibly non-stationary) measurable sequential
policy let V' = E(V' |y, = I') and G,/ = E(G' | y, = T;). With either criterion
in a finite game it follows from Blackwell [2] or Derman [9] in conjunction with [8]
that player i experiences no loss of optimality from restricting his policy to =.

For any é € =, let v,/(5) and g,'(6) make explicit the dependence of V' and G’
on the policies. Let v;° and g, be the associated n-vectors of v(5) and g,'(8), s € S.

DErINITION 1. A stationary policy € w is an undiscounted equilibrium point
(UEP) iff

(2.1) g5 =max{g(, ;- | pen}, ieQ.
DEFINITION 2. A stationary policy d en is a discounted equilibrium point

(DEP) iff

(2.2) vy = max {v[, ;-1 | peT}, ieQ.

If n = 1 then (2.1) and (2.2) reduce to the definition [17] of a Nash equilibrium
point. If N = 2 and the rewards are zero-sum (constant-sum) then the definitions
characterize a minimax solution.
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Recent workers in the field of dynamic programming have obtained various
expansions for quantities such as G, an expected average gain per game played.
Thus motivated, we shall define a subset of the UEPs. For § € m given by {D.} let
a, be the actions taken by the players in state s;

(23) P{as‘s =(a1"“>aN)} =]_—1jeQDgaj‘

Let P; be the stochastic matrix with elements p,,(6) = Eq,,(a,’) and for i e Q let
rs' be the n-vector with components r,/[6] = E,r(a,) s € S; r,/[6] is the expected
gain under ¢ to player i each time that I' is played. It is well known that for each
P; there is a unique stochastic matrix P;* such that (1/T) Y /=, Ps' = P;*. Then it
follows from Blackwell [2] that for each 6 € ® and i € Q there is a unique pair of
n-vectors (g;s', w,’) such that

(2.4a) P(,g(,i = gai, Pa*gai = a*ra‘i
(2.4b) réi+P‘5W5i = W5i+g¢;i
(2.4¢) Pé*w,,i =0.

DErFINITION 3. A stationary policy J € = is a (g, w)-equilibrium point ((g, w)EP)
iff (2.1) and

(2.5) ws' = max {w{, 5-1 | pen}, ieQ.

3. Existence.

THEOREM 1. Every finite noncooperative stochastic game has a DEP.

Proor. Following Nash [17], we construct a continuous mapping t:n — 7 whose
fixed points are DEPs and conversely. Let

3.1) Pal(®) = Ef(a)4,(a)

be the expected discounted transition probability, and let P;' be the matrix of
PL(5). Then

3.2) vy = Zﬂo(Pai)t"&i =(I—-PH'rs
as geometric convergence follows from (3.1) and 0 < B,(a) < 1 for all s, a, and i.

Let v5(6) = 1[0+ Y. P(05)0,/(8) and iu(8) = max {0,v}(6)—v,(5)}. Then
7:m — n with § = 1(9) is defined by

(3.3) D—;k =(Dik"'d)ik(a))/(l+ZjeA¢;;j(5))’ keA,seS,ieQ.

The continuity on & of v,’( - ) and v%( - ), hence of ¢%( - ) and 7, follows from (3.2)
and the convexity of #. The existence of a fixed point of 7 is given by the Brouwer
fixed point theorem.

It remains to show that the set of fixed points of 7 coincides with the set of DEPs.
If 6 is a DEP then Howard’s [13] policy improvement algorithm implies ¢, (8) = 0
for all s, k, i, so & is a fixed point. If § is a fixed point then (3.3) yields ¢, = D},
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Y ¢ for all s, k, and i. Thus ¢%(8) = 0 if D}, = 0. Suppose Z Y (6 >0
for some i. Then DY = ¢4/ ; j q.’)s, for all s and & such that Dy > 0. However,
for some s € S and j € 4 there is D}; > 0 and ¢; = 0:

U (5) Zk :Die>0 Dskvsk(é) = min {Usk(a) l keA and Dik > 0} = Uij@), say,

S0 ¢ 1(5) =0< ng. Therefore, ¢:,(5) = O for all s, k, and i which implies by [13]
that ¢ is a DEP. []

Unlike the case N = 1, i.e. Markovian decision process, generally we cannot
assert the existence of a DEP in pure strategies. This precludes exploiting Theorem
1 to prove the existence of UEPs or (g, w)EPs. Moreover, a UEP need not exist;
Gillette [11] has a counterexample.? Let B denote the finite set of pure (unran-
domized) policies in .

THEOREM 2. A finite noncooperative stochastic game has a (g, w)EP if for every
6 € B, P; has exactly one communicating class of states.

Theorem 2 does not require that the communicating classes coincide. However,
it does rule out games with several disjoint classes for the same § € B—a property
of Gillette’s counterexample. On the other hand, a simple modification of the
reward structure in Gillette’s example (a7; = 0 on page 185 of [11]) yields a game
with a UEP but not meeting the condition of Theorem 2.

Proof. The method of proof is similar to that of Theorem 1 but depends on
Veinott’s [24] algorithm and a result by Denardo [6]. Again, following Nash [17],
we construct a continuous mapping t:m — . Let ¢.(8) = @+ bl +cl, where

ag, = max {0, ), p.u(5; k)gul(é) 9@} by =0 if Do Dk ask >0 and by =
max {0, 7,541+ Yy PaBs0w, (0) —g,i(®) — w(@)} if Y, Snal =05 =0 if
Y, Y bl > 0 and chy = max {0, Y pus (50)2,(8)— /) — 2, @)} if X,y Y b = 0
where by [2], [24] for each 6 € &, i € Q, z; is the unique solution to

(3.4) Z‘si'l'W‘;i =Paz‘5i, Po*z‘si = 0;

w,(8) and z,/(5), s € S, are the components of w," and z,'.

Again, let (3.3) define 7. Continuity of 7 on ©t will be shown below. Then Brouwer’s
theorem asserts the existence of a fixed point. To show that a fixed point J is an
equilibrium point, we have as in Theorem 1 that ¢}, = 0 for all s, k, and i. There-
fore, Veinott’s algorithm [24] implies J is a (g, w)-equilibrium point. Conversely,
if ¢ is an equilibrium point then all ¢}, = 0 from [6] so § is a fixed point.

It remains to show continuity on m of g,( - ), w,'( - ), and z,’( - ). Suppose g,'(9),
P;, and P;* are continuous on n. Then continuity of w,'( +) and z,/( -) follows from
(2.4b, ¢), (3.4), and [2]. For continuity of g,( -), it suffices to show continuity of
P; and Ps* and to verify that P; has one communicating class of states.

2 T am grateful to Eric V. Denardo for pointing out the example and for noticing an error in an
earlier version of this paper.
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m is a convex set with finite extreme point set B. Therefore, d € m implies P; =
Y wen %P, with o, = 0 and > .o, = 1. Hence, the assumption of this theorem
and Theorem 1 in Schweitzer [21] ensure the needed class structure. The continuity
properties are an easy consequence of the class structure. []

4. Necessary and sufficient conditions. Characterizations of equilibrium points
are useful to infer qualitative properties of solutions to particular games. Also,
they may facilitate computation of an equilibrium point. For the special case of a
(static) noncooperative game, i.e. |S| = 1, the following results were exploited in
[23] to develop a finite algorithm.

A characterization of the DEPs is given by

THEOREM 3. & is a DEP iff {D.} is part of a solution to

(4.12) =0, 1. =0, ) keA,seS,ieQ;
(4.1b) YeaDh =1, seS,ieQ,
(4.2) vy = A+ 1[5 ]+ Y e s Ph(SEv. ked,seS,ieQ,
(4.3) Zi eQ Zs e SZk €A ;tikDik =0.

PRrOOF. (4, D, v) satisfies (4.1)~(4.3) iff D generates é € © and J attains
(4.4) vyt = maxy . 4 {rTu] +Yu Pa(Oudvi'}s seS,ieQ,

which by [13] is necessary and sufficient for (2.2). []

A characterization of UEPs analogous to Theorem 3 is

THEOREM 4. ¢ is a UEP iff {D.} is part of a solution to

(4.5a) =0, ph=0 DL=0, keA,seS,ieQ,
(4.5b) YieaDi =1, seS,ieQ,
(4.6) El o) = A+ rsili(sik] + Y0 P00, 5 keA,seS,ieQ,
4.7 YuPal0u)S) = &' — s ked,seS,ieQ,
(4.8) YieaYses tiea(Pt i) Dy =0.

PROOF. (&, A, u, w, D) is a solution to (4.5)-(4.8) iff D generates 6 e ® and o
attains

(49) ési + a)si =maX; 4 {rsi[éik] + Zu psu(éik)wui}a
(410) 5si = maxk eAZu psu((s.ik)éuia S€E S? iEQ,
which by [2], [6], [13] is necessary and sufficient for (2.1). [
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