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A GENERAL QUALITATIVE DEFINITION OF ROBUSTNESS!

By Frank R. HAMPEL

University of California, Berkeley, and University of Zurich*

Two very closely related definitions of robustness of a sequence of
estimators are given which take into account the types of deviations from
parametric models that occur in practice. These definitions utilize the
properties of the Prokhorov distance between probability distributions.
It is proved that weak*-continuous functionals on the space of probability
distributions define robust sequences of estimators (in either sense). The
concept of the ‘‘breakdown point™ of a sequence of estimators is defined,
and some examples are given.

.

1. Introduction and motivation. The setup of robust estimation can be described
as follows (compare Hampel (1968); for the background, see Tukey (1960), Huber
(1964), (1968a), among others). We assume that the process generating the observa-
tions under consideration can approximately be described by some parametric
model (e.g. the model of independently and identically normally distributed obser-
vations), and we want to estimate the parameters of this model (or some function
of them), i.e. we want to find a statistic whose distribution is close to these para-
meter values. However, we know that the parametric model is not quite true;
and therefore we require that the distribution of the estimator changes only slightly
if the distribution of the observations is slightly altered from that of the strict para-
metric model with certain parameter values. (In order that this be possible one has
to presuppose a certain smoothness or “‘robustness” of the parametric model itself.)
We now have to specify the types of deviations to be allowed for. One may try to
distinguish three main reasons for deviations from the parametric model: (i) round-
ing of the observations; (ii) the occurrence of gross errors; (iii) the model itself may
only be an approximation to the underlying chance mechanism, e.g. by virtue of
the central limit theorem. It turns out that a literal quantitative description of (i)
and (ii) is given by the Prokhorov distance between probability distributions, and
this distance, leading exactly to weak*-convergence, also takes care of (iii). More-
over, the Prokhorov distance can be defined on very general spaces. It seems reason-
able also to describe the differences between the distributions of the estimators by
this distance, as it corresponds roughly to what can be detected in practice (even
better than the Lévy distance). Thus one is led to require that the distribution of the
estimator be a continuous functional (with respect to Prokhorov distance) of the
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underlying distribution “at” the parametric model. However, if we talk about an
““estimator,” we usually have in mind a whole sequence of estimators, with the
number of observations n tending to infinity; and it may be (e.g. as with the arith-
metic mean) that for increasing » the true underlying distribution has to be closer
and closer to the parametric model in order to keep the distribution of the estimator
near that which it would have under this model. Such a sequence of estimators
would show quite a bad behavior for larger n, and we therefore require in addition
that the continuity be uniform in n. On the other hand, this is all one can require,
since (trivial and artificial cases excepted) there will always occur a nonzero asymp-
totic bias for any sequence of estimators in every neighborhood of any distribution
in the parametric model. Thus we make this our formal definition of robustness.
Later on, we shall give a very closely related, but slightly stronger definition of
robustness, which is based on the Prokhorov distancé in the n-fold Cartesian
product of the sample space with itself and which therefore allows also for some
weak dependence between the observations and for slight changes of the underlying
distribution from observation to observation. The sufficient conditions for robust-
ness that are derived are the same for both definitions; essentially it is shown that a
weak*-continuous functional on the space of distributions defines a robust sequence
of estimators. Either of the two definitions leads to a simple dichotomic classifica-
tion of sequences of estimators which is widely applicable. After defining the con-
cept of the “breakdown point,” which might prove useful in practice, we give some
examples of estimators (mainly for a location parameter). For a more detailed
investigation of robustness, one ought to consider a quantitative theory; however,
there it seems advisable to separate several quantitative aspects of robustness, so
that the theory becomes more complicated. Therefore, a quantitative theory is not
treated in this paper. For a more extensive discussion, see Hampel (1968).

2. Definition and some properties of the Prokhorov distance. Let (Q, «7) be a
measurable space such that Q = {w, ---} is a complete separable metric space and
o denotes the g-algebra generated by the topology. For A cQ, 4 € « let A® denote
the set of all points whose distance from 4 (i.e., from at least one point in 4) is less
than e. Let P and Q be two probability measures (or, more generally, two finite
measures) on (Q, &#). Then their Prokhorov distance n(P, Q) is defined by n(P, Q) =
inf {e:P(4) £ Q(A%)+eand Q(4) < P(4°)+¢forall 4 € «}. An equivalent defini-
tion requires the two sets of inequalities to hold only for all closed sets 4. Moreover,
if the two measures have the same total mass (i.e., if P(Q) = Q(Q)), as is the case
for probability measures, then the second set of inequalities is implied by the first
one and hence can be dropped. It is easy to verify that the Prokhorov distance
actually has the properties of a distance taking values between 0 and 1. Prokhorov
(1956) has shown that the topology induced by this metric is the one of weak* con-
vergence in the sense of convergence of the integrals of all bounded continuous
functions.

Let Q x Q be the Cartesian product of Q with itself, with the distance between
two points defined as the maximum of the distances of their respective coordinates,
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and with the product topology and product ¢-algebra induced by this metric. For a
given ¢ let D(e) be the set of all points in Q x Q whose distance from the diagonal is
less or equal to &. Let P and Q be two probability measures on Q. Then Strassen
(1965) (Corollary to Theorem 11) has shown that n(P, Q) < ¢ if and only if there
exists a probability measure R on Q X Q with marginals P and Q such that
R{D(e)} = 1—e.

If Q is the real line, then the Lévy distance A(P, Q) between two probability
distributions is obtained from the above definition of the Prokhorov distance by
simply restricting the sets A4 to be intervals of the form (— oo, x] (resp. [x, o0)).
From this it follows that always A(P, Q) < =(P, Q); in general this inequality is
strict. Convergence in Lévy distance is equivalent to convergence in Prokhorov
distance. Furthermore, as to the Kolmogorov distance (P, Q) (which is obtained
from the definition of the Lévy distance by replacing A° by A), it is well known that
always A(P, Q) < k(P, Q). For the Kolmogorov distance and Prokhorov distance
no such inequality holds; however, convergence in Kolmogorov distance is a
stronger property than convergence in Prokhorov (or Lévy) distance.

3. Sequences of estimators. Let (Q, <) be defined as above. Let & =
{F, G, -+, P, Q, ---} denote the set of all probability measures on (Q, &), and for
eachn = 1let #, = {F,, -+, P,, ---} = & be the set of discrete probability meas-
ures whose atoms have probabilities equal to 1/n or to a multiple of 1/n.

Obviously each finite sequence {w,, -+, w,} of observations in Q defines an
F,e &, in a natural way; and conversely, each F, determines a sequence up to
permutations. In considering only F, we neglect the information possibly provided
by the permutation (in accordance with the usual models of statistics, in which F,
is “sufficient” for the sequence) being well aware that in practice sometimes this
information is very important (which means, of course, that in these cases the
usually assumed model of independent identically distributed observations does
not hold).

As above, n(F, G) denotes the Prokhorov distance between F and G. Let R* be
the k-dimensional Euclidean space, with the distance between two points given by
the maximal distance between respective coordinates. A sequence {7,}(n = 1) of
estimators is now defined to be a sequence of measurable mappings 7,: %, — R*.
(This definition includes simultaneous estimation of location and scale, of the cell
means in some replicated experimental design, of some real-valued functional of a
continuous stochastic process, etc.) In general, the value T, (F) (for F € &#,) depends
not only on Fbut also on #n; however, often n does not enter explicitly (as is the case
for most estimators in the examples below), so that Fe &#, n &, implies T,(F) =
T,(F). An important special case occurs if a mapping 7 (with values in R*) is
defined for all F € &# and if T, is simply the restriction of T'to & ,.

Let w,, w,, -+- be independently identically distributed according to some distri-
bution F, and let F, be the (random) measure corresponding to the first #n observa-
tions. The mapping 7T, from %, to R* thus induces a probability measure in R*
(the distribution of T, under F) which will be denoted by Z(T,). F, converges
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weakly to F (a.s.) (see, e.g., the book by K. Parthasarathy: Probability Measures
on Metric Spaces), and it might be that T,(F,) converges in probability to (‘““is
consistent for’”) some value which will then be denoted by T,,(F); in this case we
might say that, under F, {T,} is a sequence of estimators for T, (F). (Note that even
if T, = T | #, for some T, T,(F) does not have to coincide with T(F), although
T.(F) would appear to be a more natural value of the mapping at F. If T (F) exists
for all F, we might define a new sequence of estimators {7} based on the old one
by putting T, = T, | #,.)

4. Robust sequences.

DEerFINITION. (i) A sequence of estimators {7} is robust at a probability measure
Fiff

(A) Ve > 035 > 0 VG Vn:
{n(F, G} < 6 = (L HT,),Z(T,) < &}.

(ii) A sequence {T,} is robust in a neighborhood of F iff there is an # > 0 such
that n(F, G) < n implies {T,} is robust at G. A sequence {7} is robust at a class
& < & iff it is robust at all Fe &. A sequence {T,} is robust (everywhere) iff it is
robust at all Fe &.

The following definition is of a technical nature.

DEerFINITION. Let a probability measure F and a sequence of estimators {7,} be
given. Then condition (B) is fulfilled for Fand {7} iff

(B) Ve> 0V > 038 > 0Vn38, c #,:{F(&,)
> (1—g}a{F,e E,AG, e F,An(F,, G,) <
= |Tn(Fn)_Tn(Gn)l < 8}'

(F(.) denotes the probability measure induced by F in the space being considered,
respectively.)

LEMMA 1. Let F and {T,} be given. Then condition (B) implies (A) (robustness of
{T,} at F).

ProoF. Let ¢ > 0 for (A) be given. In condition (B), choose the same ¢, and
choosen = ¢/2. Let 65 > 0and {&,} (n = 1) be the objects whose existence is given
by (B) (for the given choice of ¢ and #). Put 6 = min {552, 3¢%}.

Let G be such that n(F, G) < 8. Then Strassen’s theorem implies the existence
of a probability measure Q in the product space QxQ with points @ = (w;, ®,),
such that the marginals of Q are F and G and that Q{®: |o,, w,| 2 6} < & (where
|-+| denotes the metric in Q). Let D = {@: |w;, w,| 2 6}. But Q(D) < & implies
immediately by a variant of Chebyshev’s inequality (for nonnegative random
variables) that for » independent observations @; in QxQ, Q{(# of &; € D)/n =



QUALITATIVE DEFINITION OF ROBUSTNESS 1891

6%} < 6%, for all n (this bound is quite crude, but sufficient for our purposes). Now
let F, resp. G, be the distributions determined by the first resp. second coordinates
of the @; (i < n); then (# of ®; € D)/n < &* implies n(F,, G,) < 8*. Therefore
O{F, € &,An(F,, G,) < 6%} > 1—¢/2—6* = 1—¢; hence (B) implies O{|T(F,) -
T,(G,)| < & > 1—¢ and by Strassen’s theorem (&L ¢T,, L :T,) < &, for all n.

DEFINITION. A sequence of estimators {T},} is continuous at Fiff
Ve>036>03nVn,m=nyVF,F,:
{F,e F,AF,e F ,A(F,F,) < SAn(F,F,) <6
= |T(F,)~T.(F,)| < .

This definition is analogous to that of a weak*-continuous functional T (which
henceforth will be called “continuous” for short), making use of the Prokhorov
distance.

Obviously, if {T,}is such that T, = T’ | #,, for some T and all n, then continuity of
T at some F implies continuity of {7,} at F (but not conversely). Furthermore, in
this case {7} is consistent for T(F) under F. In general we have:

LemmaA 2. If {T,} is continuous at F, then, under F, {T,} is consistent for some
To(F), i.e.,ZL(T,) = T(F) (weakly).

ProoF. For a sequence ¢; | 0 choose &;| 0 and #,1 oo such that the continuity
condition is fulfilled for n, m > n, (for each i). Let A, = R¥ be the closure of the
set {T,(F,):n(F,, F) < 8, n > n;} for each i. The 4, form a monotone decreasing
sequence of compact sets whose diameters (< 2g,) tend to 0, hence they converge
to a single point T (F). But F{F,:T,(F,) € A} » 1 as n — oo for each i (because
F, converges a.s. to F), hence T,(F,) — T,,(F) in probability. (We even get T(F,) —
T,(F) a.s., but we will not need this result.)

In the following theorem, let Q" be the n-fold Cartesian product of Q with itself,
endowed with the product measure and with the metric given by the maximum of
the coordinate distances. Then T}, can be considered as a point function from Q"
to R¥ (invariant under permutations of the coordinates).

THEOREM 1. Let a sequence of estimators {T,} be such that
() T, is continuous as a point function on Q" for every n;
(ii) {T,} is continuous at F.

Then {T,} is robust at F.

Proor. We shall show that condition (B) is fulfilled. Let e > Oand# > 0 be given
(for (B)). By Lemma 2, there exists T,,(F), and there exists a §, > 0 and n, such that
n(F, F,) < 20, implies ITOO(F)—T,,(F,,)] < ¢/2forn = ny; and there exists n, = n,
such that F{n(F, F,) = S0} < nforn = n,. Hence we can take &, ={F,:n(F, F) <
do} for n = ny.

For each n < n, consider T, as a function on Q" = {w, ', ---}; denote the metric
on Q" by ] B2 | and the product measure by F". Then for each w € Q" there is a
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= §(w)>0 such that |o, | < & implies | T, (w)—T,(»")| < &/2; hence o',
" € Uy(w) (open J-neighborhood) implies |T,,(cu/)—T,,(w”) < e&. Let {a;}, o; > O,
a; | 0 be some sequence; define 4; = {w:d(w) > o;} and B; = | J{Usy2(w): 0 € 4;}
(open). Since | J4; = Q = | B, there is a j with F*{ ),’ B} > 1—n. Define 6,/ =
s’ Bi, and 8, = min {a;/2, 1/no}. Then for o’ € &, |o', ®"| < 8, there is an w
with 6(w)/2 > J, and @' € Uy, »(w), hence o” € Uy, (w) and |T ()~ T ("] < e
Let &,” (open) be the symmetrization of &,’, i.e., the set of all points which by
means of a permutation of their coordinates can be transformed into a point of
&,’. Then &,” enjoys the same properties as mentioned for &,’, and it corresponds
toaset & < #,. Let F,eé&,, G,€&,, n(F,, G,) < 0, (£ 1/ng), then for some
corresponding o', " we have o’ € &,", |o', »”| < §,, hence |T(F,)—T,(G,)| < &
Now define 6 = min {6;: 0 < i < ng}; this é and the &,(n = 1) satisfy condition (B).

COROLLARY. Let T:F — R* be such that T is continuous at Fand T, = T | F s
considered as a function on Q", is continuous with respect to the metric in Q", for all
n. Then {T,} is robust at F.

THEOREM la. Let {T,} be such that {T,} is continuous at F and that for every n,
T, is continuous as a point function on Q", except for a set of F"-measure 0 (where
again F" denotes the product measure on Q", determined by F on Q). Then {T,} is
robust at F.

(This slightly stronger version of Theorem 1 follows directly from the proof of
the theorem.)

Continuity of {T,} or T at F is not implied by robustness and consistency at F.
However, the following simple statement holds:

LeMMA 3. Assume {T,} is robust at F and consistent at all G in a neighborhood of F.
Then T,(G) is continuous at F.

PROOF. Assume thereis an ¢ < % and a sequence {G,} with G; - F and |Too(F)—
Tw(Gi)| > 2¢, hence (T (F), T,(G;) = 2¢ (for all i). Robustness at F implies
that for some j and G; = G, (L (T,), L (T,)) < ¢ for all n. ButZ «(T,) - To(F)
and Z4(T,) — T, (G), which leads to a contradiction.

COROLLARY. Assume {T,} is robust and consistent at all Fe & . Then T, is con-
tinuous at all F, T, | F, yields a continuous point function on Q", and {T.} defined
by T, =T, l F , is robust and consistent, tending to T (F), at all F.

THEOREM 2. Let T:F — R* and {T,} be defined by T, = T | %, for all n. Then
the following three conditions are equivalent:

(i) T is continuous at all F;
(i) {T,} is robust and consistent, tending to T(F), at all F;
(ili) VK c &, K relatively compact, Ve > 036 > 0VFe F VG e F:

{Fe Kan(F, G) < & = |[T(F)~T(G)| < &}.
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PROOF. (i) < (ii) has been shown since the pseudo-metric induced by the
Prokhorov distance in Q" via %, is numerically always less or equal to the (product)
metric in Q" (defined above), as follows directly from the definition of the Prokhorov
distance. (iii) = (i) by putting K = F. Conversely, (i) implies uniform continuity
on the closure of K, and the usual proof shows that even (iii) is implied. ((iii) gives
a technical criterion somewhat similar to, but not identical with condition (B).)

5. An alternative formalization of the intuitive concept of robustmess. Let
{(Q", &™)} (n = 1) be the sequence of n-fold Cartesian products of (Q, &) with
itself. P,, Q,, --- denote probability measures on Q". If F is a probability measure
on Q, then F" denotes its product measure on Q".

Let {)" be the space Q" modulo the group of permutations of the coordinates,
which stands in a natural 1:1 correspondence to & ,,; let the metric on Q" called
subsequently n-metric, be the metric thus induced by the Prokhorov distance in
.. The topology (and o-algebra) generated by this new metric on Q" coincides
w1th the topology (resp. o-algebra) on Q" modulo coordinate permutations. Con-
sidering measures on " amounts to considering measures that are invariant under
permutations of the coordinates; however, every measure on Q" can be sym-
metrized to yield this property, and two measures that give rise to the same in-
variant measure cannot be distinguished anyway by the type of estimators used
here. The probability measures on " corresponding to those on Q" (symmetrized
if necessary )will be denoted by #", 2,, 2,, etc. For convenience of printing, & T,
may be replaced by Z[FIT,.

DEFINITION. A sequence of estimators {7,} is II-robust at F iff Ve > 035 > 0
vavQ,:{n(F", 0,) < & (using the m-metric in Q") = n(L[FT,, Z[Q,IT,) < &}
A sequence of estimators is IT-robust (everywhere) iff it is II-robust at all Fe #.

This definition allows for some dependence within the n-tuples of observed
outcomes, and it also allows for slight changes of the distributions underlying the
different observations. Thus we get rid of the strict assumption of independent
identically distributed observations.

THEOREM 3. IT-robustness (at some F, or everywhere) implies robustness (as
defined earlier).

Proor. It is sufficient to observe that, for F, G on Q, n(F, G) < é implies
n(F", G") < 6% for all n, as has been shown in the proof of Lemma 1.

Counterexample. Robustness and IT-robustness are not equivalent. Take, e.g.,

= the real line. Consider a point @, e Q" (or, equivalently, a sequence of n
observations, disregarding the order, or a point in Q" up to coordinate permuta-
tions) whose coordinates are all different from each other. The highest probability
this point can have under a product probability measure F* obviously is achieved
only if the corresponding measure F on Q is carried by those 7 different values, i.e.,
if it is a multinomial distribution; and then the probability is n! [[i=; p; (with
Y p; = 1). This is maximized if p; = 1/n for all i, so the maximal probability @,
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can have is n!/n" which tends to zero as n — co. Now choose™a point w, € Q and
choose a sequence of points @&, € Q" such that for each n all coordinates are different
from each other and from w, and such that their maximum distance from w, tends
to zero as n — oo. Define F as the point mass 1 in ,; and define J, as the point
mass 1 in @,, for each n. Finally, define {T,}, T,: #, — R, by: T, = 1if the distri-
bution corresponding to §, occurs, T, = 0 otherwise. Then {7}} is robust at F,
however, as not only product measures may be close to F” (take §,), {T,} is not
IT-robust at F.

THEOREM 4. All the theorems, lemmas and corollaries proved in Section 4 about
robustness remain true if “robust” is replaced by “II-robust™.

Proor. It is sufficient to show that condition (B) implies II-robustness. But this
follows immediately from the last sentence of the proof of Lemma 1: Given ¢,
choose the quantities in condition (B) e = ¢, 3 = &/2; take a 5 = dp(ep, 1) and
define 6 = min (8, £/2); then replace 6* by J in the aforementioned sentence.

6. Definition of the breakdown point. Before mentioning some examples, we shall
state a definition which is useful in practice by telling us, loosely speaking, “how
far” the robustness of an estimator extends.

DEFINITION. Let {T,} be a sequence of estimators. The breakdown point 6* of
{T,} at some probability measure F is defined as follows: o* = 6*({T,}, F) =
sup {6 < 1: 3 a compact set K = K(6) which is a proper subset of the parameter
space such that n(F, G) < 6 = G{T,,€ K} » 1 as n — oo}.

The breakdown point tells us up to which Prokhorov distance from the para-
metric model (or, typically, up to what fraction of gross errors) the estimator still
gives us some indication of the original distribution within the parametric model in
the sense of excluding part of the parameter space. (Compare also the similar,
but less general concept defined in Hodges (1967).)

7. Examples. The following examples have been investigated in more or less
detail and are given briefly without proofs. Q is the real line in all cases.

(i) The arithmetic mean is nowhere robust (and nowhere continuous). The same
holds both for the standard deviation and the mean deviation; however, there still
is a difference in the “non-robustness” of these two estimators which sheds some
light on the old dispute between Fisher and Eddington about their use as measures
of dispersion (see Tukey (1960) and Hampel (1968), page 92). The median is robust
(and continuous) at F if and only if F ~1(2) contains no more than one point; its
breakdown point is 4. It is not robust in any open set of distributions. The a-trimmed
mean (0 < a < 1), defined as ([;~* F~'(¢) dr)/(1—2a) (in the obvious way), is
robust and continuous at all distributions, with breakdown point a. Perhaps it
should also be remarked that the linear functions of the order statistics which are
asymptotically optimal for the logistic respectively for the Cauchy distribution are
nowhere robust and have breakdown point 0. In general, the breakdown point of a
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linear function of the order statistics is equal to the smaller one of the two fractions
of mass at either end of the distribution which receive weights identically equal to
Zero.

(ii) The following definition yields a class of location parameter estimators
(compare Huber (1964); see also Hampel (1968) for generalizations): Let y( - ) be a
monotone non-decreasing function on the real line which takes on negative and
positive values; define the estimator 0 as the solution (if it exists) of [ y(x — ) F(dx) =
0 (where F may be the empirical distribution function) or more generally as a value
such that [Y(x—0+¢e)F(dx) = 0 and [ ¢ (x—0—¢) F(dx) < 0 for all ¢ > 0 (if the
solutions fill an interval, one may take its midpoint to enforce uniqueness). Then
Y defines a robust sequence of estimators at Fif and only if y is bounded and the
solution of the defining equations for 6 (with F) is unique. An important class of
examples are the Huber-estimators H, (k) (0 < k < oo) for the mean of a normal dis-
tribution with variance 1, defined by y, (x) = x for |x| < &, ¥, (x) = k - sign(x)
for |x| > k. They are robust at any normal distribution (and many others) with
breakdown point 4. Another example is the “¢-estimator” (see Hampel (1968),
page 66) with Y(x) = ¢(x)—%, where ¢ is the cumulative distribution function of
the standard normal distribution. It is robust at all distributions, and at normal
distributions with variance 1 it behaves locally like the Hodges-Lehmann-estimator
(see (iii), below), but its breakdown point is 3. One may note that arithmetic
mean and median can also serve here as examples with y(x) = x resp. Y(x) =
sign (x).

(iii) Another class of location parameter estimators can be obtained from two-
sample rank tests in the following way (compare Huber (1968b); see also Jaeckel
(1969) and Hodges and Lehmann (1963)): Let J( - ) be a monotone non-decreasing
function on the open interval (0, 1) which takes on negative and positive values
and which is integrable with | o J(t)dt = 0. For given F define Go(x) = [F(x)+1—
F(26 — x—0)], then the estimator 0 is the (or a) solution (if it exists) of [J(Ge(F~(¢)))
dt = 0, or again more generally a value 0 such that [J(G,(F~'(?))) df < 0 and
[J(Gy-o(F~'(2))) dt 2 0 for all & > 0. If the solution is unique for F, then the
sequence of estimators defined by J is robust (and continuous) at F. An example is
again the median, withJ(z) = sign (t—1). Another example is the Hodges-Lehmann-
estimator which can be defined by J(¢) = 2¢—1; it is robust (and continuous) at the
normal (and many other) distributions with breakdown point 1 —27% ~ 0.29 (see
also Hodges (1967)). Finally, J(t) = ¢ ~'(z) (where ¢ denotes again the standard
normal distribution) defines an estimator which is asymptotically equivalent to the
estimators derived from the Fisher-Yates (normal scores) test and the van der
Waerden test. It is robust (and continuous) at the normal (and many other) distri-
butions with breakdown point 2(1—¢((2 log 2)*)) ~ 0.24. (It may be noted that
the investigation of robustness and breakdown point both in (ii) and (iii) is simpli-
fied by the location invariance and by the monotonicity of the functions defining
the estimators. Hence, e.g. the evaluation of the breakdown point amounts to
determining the smallest contaminating mass that when moved towards infinity,
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can carry the value of the estimator beyond all bounds. In the case of (iii), this leads
to the equation [;/7 J(r) dt+ 15, J(t) dt = 0 for the breakdown point 3.)
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