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CURVE ESTIMATES'

BY MURRAY ROSENBLATT
University of California, San Diego

1. Introduction. There is a large class of problems in which the estimation of
curves arises naturally (see [15], [34]). It is curious that one of the earliest extensive
investigations of this type involves the estimation of the spectral density function
when sampling from a stationary sequence ([1], [17], [27], [33]). Even though the
simple histogram has been used for years, it was only later that the simpler question
of estimating a probability density function was dealt with at some length ([26],
[25], [9]). Because the final character of the usual results obtained in both problem
areas is quite similar, and the arguments are much mors transparent in the case of
the probability density function, we shall develop the results for the probability
density function first. Later some corresponding results for spectra will be given.
The similarities and differences in the two areas will be noted. Since the literature
is rather extensive by now, any presentation of theory as given can only be a selec-
tion of topics and cannot claim to be exhaustive or perhaps even representative.
There are a number of attractive open problems that one can suggest solutions to
on heuristic grounds. A few of these problems will be examined. In most cases it is
clear that one will not use the techniques to be proposed in estimating a density
function unless there is a good deal of data (many observations), little a priori
information about the density function available, but a great need to get additional
information about the density function, even if it is fairly crude.

2. Estimating the probability density function by independent observations. Con-
sider a population with absolutely continuous distribution function F(x) and pro-
bability density functionf (x) = F’(x). A simple sequence of estimates is determined
by the choice of an integrable bounded weight function w(u) with

(1) fww)du =1

and a sequence of bandwidths b(n) | 0 as n — co. Notice that this implies that
{ w?(u) du < oo. An estimate f,(x) of f(x)

1 = x—X;
2 (X)) === ¥ w| —°
( ) f( ) nb(n) jgl ( b(n) >
is determined by a sample X, ---, X, of independent observations from the popula-

tion. If w is chosen to be nonnegative, the estimate f,(x) itself will be a probability
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1816 MURRAY ROSENBLATT
density function. Usually the weight function w will satisfy some additional regu-

larity conditions.
First consider the mean and variance of the estimate f,(x). The mean

1 X—u
(3) Ef(x) = IWJW (Tn) > f(u) du
= [w(v) f(x —b(n)v) dv
while the variance
1 1

@ ?[A]= ;[5(7)] w?(v) f(x — b(n)v) dv—(f w(v) f (x — b(n)v) dv)z] .
The mean square error can then be simply written as
(5) E|f()—f)|* = ¢*[fu(x)]+ |Ef(x)—f(x)|?

1 1

== [l_fn_) J w2(v)f(x — b(n)v) dv— ([ w(v) f(x — b(n)v) dv){l
+|fw@){ f(x—b(n)v)—f(x)} dv|.

A simple bound shows that if nb(n) — o0 as n — o0 and f is a bounded function that
is continuous at x, then there is consistency in mean square at x as n — o0. The bound
is now given. Let sup, f(x) < M. Then

(6) o*[£,(x)] £ M[nb(n)]™* [ w*(v) dv.
For each ¢ > 0 let 6(¢) = supjy<, |f(x+y)—-f(x)|. Then
(7 |Efn(x) _f(x)l = 2Mjb(n)|v|§s IW(U)| dv+6(e).

The result follows by first letting n — co and then ¢ — 0.

R. H. Farrel [14] showed that one cannot get a uniformly consistent sequence
of estimators of the density function at a point (say x = 0) for a plausible class of
density functions. He specifically showed that if C,, is the class of density functions
fon (— o0, 00) with

(a) f -continuously differentiable everywhere
(b) SupxeRf(x) é M,

then even with a sequential estimator dy of f (0), the supremum of the mean square
error

SUPrecm ElaN—f(O)l2 =75

if M 2 3 and sup; ¢, E;N < oo. However, if one requires a Holder condition for
fitself in the neighborhood of zero, a uniformly consistent sequence of nonsequen-
tial estimators of f(0) is easy to obtain. Let C,, , be the class of continuously
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differentiable density functions satisfying conditions (a) and (b) and the additional
requirement

© |fO)—f©)] = My|* for |y|=1

with M, ¢ > 0 independent of f. The types of bounds obtained in (6) and (7) indicate
that the sequence f,(0) is uniformly consistent in mean square if n— oo and nb(n)— oo,

Jor fe Cy e
A number of people have suggested using the integrated mean square error

®) E[|£(x0)—f(0)|*dx = [ E|£,(x)—f(x)|* dx

as a global measure of how good the estimator f,(x) is over R. Notice that
0 1 w w ‘
2 < 2 B
) j T S f - J " G-l do s
1 ° .
=5 w*(v) dv.
Further

(10) 2o (BA() —/(x)* dx = [, {[ 2 ww)[f(x — b(mu) —f (x)] du}? dx
S Af2, |ww)|[2., {f(x—bmu)—f(x)}* dx du

where
(11) A = [|w(u)| du
if fe L%, Let
1 (” .
(12) J)=5-1 e p(A)dA.
Then

(13) f"_"w {f(x—bmu)—f(x)}*dx = _fiow |¢(/1)|2| exp[—ib(n)ul]—1 |2 dA.
Since |exp[—b(n)ud] —1| < b(n)|ul| it follows that (10) is bounded above by
Ab(n)* [, [w(w)|u? du [, |p(2)|*4* dA.

We make use of (9) and (10) and note that if f,(x) is a sequence of estimators of f(x)
derived from a weight function w with

(14) fww)|u? du < oo,

then the integrated mean square error of f, tends to zero uniformly as n, nb(n) — oo
for all f with [ |f(x)|%dx, [|f(x)|*dx < k < co. The condition [ |f(x)|*dx <
k < oo actually implies that | | f(x)|*dx < k+1.

For convenience assume that f and its first two derivatives are continuous and
bounded. Then simple approximations can be given locally for the variance and
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bias of f,(x) as n — 00, nb(n) — oo, if [ |w(u)|u*du < co.Itis then immediately clear
from (3) and (4) that

15) Z[fn(x)] = flf( )) Wz(v) dv

if f(x) > 0 and (assuming [ w(u)udu = 0) that
(16) Ef,(x)—f(x) = b(n)*f"(x) | w(u)u® du +o(b(m))*.
Notice that if f(x) = 0 with f"(x) > 0, then

LA = A pr3) w0 o

as n — o0, b(n) — 0.

With additional conditions on f (in terms of smoothness) and on w one can improve
the rate at which the bias tends to zero. Such a discussion has been given in Bartlett
[2] and we shall briefly indicate how this might be done. However, it will be clear
that in order to bring this about weight functions which assume negative values
must be used. In many situations such weight functions would not be plausible.
Suppose that f and its first four derivatives are continuous and bounded. Further, let
w be such that

17) [w(uyudu = [wuyu?du = [wuyudu =0, [|w(u)|u*du < co.
Then

(18) Ef,(x)—f(x) = 41! b(n)*f (x) [ w(u)u* du+o(b(m)*.

A weight function satisfying the conditions (17) is given, for example, by

2
w(u) = ) <1 —%) e

There have been discussions in the past about the “optimal” shape of a window
or weight function in spectral analysis (see [24]). The arguments usually given have
been of an asymptotic character and it is a mistake to take them too literally from
a finite sample point of view. But even asymptotic arguments if used and inter-
preted with care can yield meaningful ideas. Let us briefly consider a simple dis-
cussion due to Epanechnikov [13]. Under the assumptions leading to (17) and (18),
the local estimate of mean square error obtained is

(19) E|(9- 0 = Lys W) do - AT/ G Tl du?

( by (b(n))2>
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The rate at which the mean square error tends to zero as n — oo is maximized (if
J w(uyuPdu # 0) if we set

(20) b(n) = Kn~ /5

with K the constant

1)

K _[ 4f (x) [ w(v) dv }1/5
T LU fwtdv)® |
The mean square error then becomes
(22) E|f(x)—f(x)]* = 2°°[f(x) [ wP(v) dv]*'?| 7 (x) [ w(w)o* do|**n~*/% + o(n™*/)

and this suggests that the integrated mean square error [ E | fu(X)—f (x)]zdx will
be no smaller than

B[ f(x)* If”(x)|2/5 dx [ w?(v) dv]*>(f w(v)o? dv)*/>n=*/°

to the first order as n — co. However, this would require locally scaling (n) with
K depending on x when estimating f(x). If the scaling were to be global with K
independent of x, we would expect

1
~\'E|f,,(x)—f(x)|2dx = rT(n)jw2(v) do+3b*(n) |2, | /"(x)|? dx ([ w(u)u® du)?

1
+0 (nb(n) + b“(n)) .

This suggests taking b(n) = Kn~'/° with
B 223 [ w(v) do] '3
T (U axy > {f w(uyu? dup?l

leading to
(23) [Ef,()=/()[2dx = 25[[wi(0) do]**[] | /"(o)|? dx ([ wlw)o? do)?] /n =43
+o(n™*%).
The estimate (23) can be obtained rigorously under the assumptions that
(i) fis bounded, twice continuously differentiable with f, f" € L*

(ii) w is bounded nonnegative and symmetric with | wuyu’du < oo.
For then we can make use of the simple bound

J L w@)f(x—b(n)v)dv]* dx = [ ww)w@'){[f(x —b(n)v) f(x — b(n)v")dx} dvdv’
< [fw(v)do]® [f(x)*dx

and the estimate f(x—b(mu)—f(x) = —b(n)uf'(x)++b(n)*u>f"(x—0b(n)u). The
estimate implies that {[ w()[ f(x — b(n)u) —f(x)ldu}* = {J w(u)kb(n)*u>f"(x — 0b(n)u)
du}?. The expression for K and (23) can then be obtained with a small additional
argument by using (4) and (10).
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The type of discussion has been carried out several places some time ago. Epanech-
nikov’s simple observation is that one simply ought to look for the weight function
w minimizing
(24) Jw*(v)dv
subject to the restraints
(i) [wydo=1

(25) (i) w() =w(—v)

(i)  [v*w(v)dv = 1.

If 5w represents a small deviation for an extremum subject to the restraints (i)—(iii),
the variation of

& W) do+ A, {[§ w(v) dv—1} + 2,{[§ w(w)v? dv—%}
should be zero (4, and 4, are multipliers) and one is therefore led to
2 [& w(v) dw(v) dv+ 2, [§ ow(v)do+ A, [§ Sw(v)v? dv = 0.
Thus
2w()+ A +4,02 =0,  wb) = (=4 —1,0%)/2.

The function w(v) is zero at
v = t(=Ai/A)h
To have a function that is integrable and symmetric one ought to set
w) =(—A—ApY)2  if o] £ (—A1/Ay)*
=0 otherwise.

The constants A,, 4, are determined by the conditions (i) and (iii). Then 4; =
—357% ), = 3t~ % 50 that the conjectured function is

(26) w(v) = 257 (1 —0v?/5) if |v| <s*
=0 otherwise.

This is a nonnegative weight function. Consider a variation dw(v) about (26) which
is such that [dw(v)dv = 0, [v*6w(v)dv = 0 and dw(—v) = dw(v) with dw(v) = 0
for |v| = 5% Then

Jw(@)+6w(@))? dv = [ (w(v) + 0w (v))> dv—35~*{f (w(v) + ow(v)) dv—1}

27 +357 [ (w(v) + Sw(v))p* dv—1}
= [w()?*do+ [ {2w(v) =357 =357 %} ow(v) dv
+ [ (5w(v))* dv

> [w?(v) dv+ [ (5w(v))* dv



CURVE ESTIMATES 1821

because the integrand in the second integral of line (27) is zero for |v| < 5* and
nonnegative for |v| = 5% Thus the function w(v) given by (26) gives an absolute
minimum for (24) under the restraints (i) to (iii) in the class of nonnegative weight
Sfunctions. Exactly this variational problem was solved by Lehmann and Hodges
in a nonparametric investigation [21]. Condition (ii) could be replaced by (ii)’
f uw(u)du = 0.

However, one should note that if weight functions w with negative values are
allowed, expression (24) can be made as small as is desired even though the re-
straints (i)-(iii) are satisfied. We reproduce a small part of a table of Epanechnikov
(this is the point of greatest interest in his paper) to show how insensitive (24) is to
the shape of w when dealing with nonnegative weight functions satisfying (i)-(iii).
The minimizing weight function (26) is referred to as w,.

TABLE 1
w L = [w*(u) du r = [w2(u) du/fwo*(u) du
Wo 3.5~% 1
1/6*—[yl/6  if |y =6 64/9 1.015
0 if |y >6
Qn)~* e722 2-1g-% 1.051
13-4 if [y =3* 13-% 1.077
0 if |y > 3t

From this table it is clear that one does almost as well with the Gaussian or even
the rectangular weight function as one does with the optimal nonnegative weight
function w,. In computation, there would be clear advantages in dealing with a
bandlimited weight function like w,.

When nb(n) — oo as n — oo (b(n) — 0) the central limit theorem can be used
to get a normal approximation to the probability distribution of f,(x). Some idea
as to the error in the approximation is given by the Berry-Esseen theorem. Specifi-
cally, if the weight function w is bounded and nonnegative with f continuous,
bounded and positive then

(28) [PLo(f,() ™ [£,(0) = Ef()] = x]=®(x)| £ K[(nb(n))*

where K for sufficiently large n is bounded above by

(29) 9 fw(u) du {fw(u)*du} [ f(x)]~*.
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If f is twice continuously differentiable with f{x) = 0 and f"(x) > 0, one would
require nb(n)*> — oo and [ w(v)v’dv < oo for asymptotic normality of the estimate
f.(%). It is of some interest to see whether one can get better and more detailed
approximations for the distribution of such estimates when using a simple band-
limited weight function w(u) (say triangular or even uniform). Steepest descent
methods (see Daniels [12]) may be useful. An alternative procedure would be to
condition the number of summandsin (2) that are nonzero, if the weight function
is bandlimited. Approximations suggested by a paper of Kolmogorov [23] may
then be helpful.

It is clear that corresponding results can be obtained for estimates of multi-
dimensional probability density functions. Just a few remarks will be made in the
case of two dimensional estimates. Let w(u, v) be a bounded integrable weight
Sfunction with

(30) jw(u,v) dudv = 1.

Again let b(n) be a linear bandwidth tending to zero as n — c0. The population is
assumed to have an absolutely continuous two dimensional distribution function
F(x, y) with continuous probability density

0 0
f(x’y) za?a_yF(x’y)

The estimate f,(x, y) of f(x, y)

1 n x—=X; y—-Y;
GV 11 = ey £t )

is computed from a sample (X;, Y;), ---, (X,, Y,) of independent observations from
the population. Assume that f and its partial derivatives up to second order are
bounded and continuous. Further let

(32) J | wu,v)|u? du dv, | |w(u,v)|v*dudv < oo

with

(33) [w(u,v)ududv = [w(u,v)vdudv =0.

Then the variance and mean of f,(x, y) are given asymptotically by

(34) a*[f(x, »)] = n~'b(n) " *f(x, y) [ w(u,v) du dv

and

(35)  Efu(x,y) =£(x, y) +3b()[ fea X, )2 0+ 21X, YIMy 1 +1,y(x, )Mo 2]

+o(b(n)*)
as n — oo, b(n) = 0. Here the m, ; are the moments

(36) fusvPw(u, v) du dv
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of the weight function w. The estimate is asymptotically normal if nb(n)? — oo as
n — o0. A more detailed discussion of multidimensional density estimates can be
found in [7] and [13].

3. The process [f,(x)— Ef,(x)]. In this section the object is to study the process
[f.(x)— Ef,(x)], over an interval (say x € [0, 1]), suitably normalized so as to obtain
a nontrivial result as n — co. The simple result obtained will be derived under
unpleasant and completely impractical conditions. However, heuristically the result
ought to hold under reasonable conditions. As we shall see, the type of result
obtained suggests that limit theorems for sequences of random processes over
finite intervals whose length is asymptotically unbounded may be of considerable
interest. The asymptotic behavior of the process [f,(x) — Ef,(x)] at a special set of
points x; €[0, 1], j = 1, ---, n, has been considered by Woodroofe [38]. To make it
easier to follow the argument, the exposition is broken down into a number of
stages. At the end the assumptions made in these stages are put together to get a
coherent result. The argument is due to joint work with Peter Bickel.

(i) Consider the estimate f,(x) of f(x) given by (2). Let us look at the covariance
of fu(x), £u(¥)

1 X—u y—u
(37) Cov (f;n(x)’f;x(y)) = nb(n)z JW ( b(n)) w ( b(n) )f(u) du

1
- ;Jw(z)f(x —b(n)z)dz jw(z)f(y—b(n)z) dz.

From remarks made in Section 2, it is clear that to get a nontrivial limiting distribu-
tion at a fixed point x as n — 0o, one ought to look at

(38) (nb(m)*[£,(x)— Efu(x)]-

We shall be interested in (38) as a process with parameter x varying over a finite
range, say 0 < x < 1, for convenience. To get a reasonable limiting covariance
function, the scale in x has to be renormalized so that we look at

(39) (nb(n))*[ fu(b(n)x)— Ef,(b(n)x)]
with 0 < x < b(n)~ . Thus
(40)  nb(n)Cov [ f,(x),fi(x +ab(n))] = [ w(z)w(z+a) f(x—b(n)z)dz
—b(n) [w(z) f(x—b(n)z) dz [ w(z) f(x +(x—2)b(n)) dz
and (40) tends to
(41) £(x) [ w(z)w(z + o) dz

as n — oo and b(n) — 0 if f is bounded and continuous at x while w is integrable
and bounded. For asymptotic normality of (39) as n — co, we require that
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nb(n) — . Let us now assume that f is continuous and bounded away from zero
on [0, 1]. Then we could look at

(42) (nb(m)* /(O] * [ £u(x) — Ef,(%)]
so as to get the limiting covariance function
(43) (o) = [w(z)w(z +a)dz,

with the proper change of scale.

(i) We now compare the process (42) with the process obtained by looking at
(42) at the points x; = jc(n) where j =1,2, -, [b(n) " 'c(n) '] ([y] denotes the
greatest integer less than or equal to y here) and interpolating linearly over the
range 0 < x < b(n)~'. To estimate the difference between these two processes it
will be enough to look at

(44)  SUPo <x<pmy -+ (nb(M)¥| £,(b(m)x) — Ef,(b(n)x)
— £ (b(m)[x/c(n)]e(n) + Ef,(b(m)[x/c(n)]c(n))-
The expression (44) can be conveniently rewritten as
(45) SUPo<x<bm- 1("b("))%| I {exp [ —itb(n)x]—exp [—itb(n)[x/c(n)]c(n)]}
“h(b(D){@ () — (1)} dt|

where

(46) h(t) = [ ™ w(u)du
and

(47) Put) =n"1 Yo e,

¢o(t) = Eexp(itX)
if h € L. Notice that the second moment
(48)  E(suPo<x<pim-+ (nb(m)*|-+-)?
< nb(n)E{supo<<pm-1 | |1 —exp [ith(n){x— [x/c(n)]e(m)}]|?|h(b(n)1)| dt
[ [hb(mD)] @u() = @(1)|* dt}
and that the right-hand side of inequality (48) is bounded by

(49) nb(n)3c(n)? j t2|h(b(n)t)| dtj' |h(b(n)t)|E|<p,,(t) - cp(t)|2 dt.
However,
(50) Elp()—o®)|* £n™ "

It follows from (49) and (50) that (44) tends to zero in probability as n — oo if
(&Y c(n)[b(n)— 0



CURVE ESTIMATES 1825

(b(n) — 0) and h, t*h € L. Van Ryzin’s paper [36] should be referred to for a related
set of estimates.

(iii) Let &;, E¢; = 0, i = 1, ---, n be independent identically distributed random
k vectors. Set
(52) pi=E|éli|3/E%C%i’ i=1,-k
where &,; is the ith component of the random variable &,. F,(x) is to denote the
distribution function of n™*Y7_, ¢ and G(x) the k-variate normal distribution

function with means zero and the same covariance structure as F,(x). Sazanov’s
Theorem 3 in [31] then states that

(53) SUDy ¢ g |[Fu(%) = G(x)| £ C"(R)[Li= 1 pin™*]?
where C"(k) = Ck* with C an absolute constant. In our context k = [c(n)b(n)] ™'
(the number of points x; = je(n) in 0 < x < b(n)~') and p; < C'b(n)"* for all i
with C’ an absolute constant. The estimate of the error on the right side of (53)
becomes
Cuc(n)—7/3b(n)—5/2n—l/6

with C” an absolute constant and if we take c(n), b(n) — 0 sufficiently slowly as
n — oo, this estimate of the error will tend to zero.

(iv) The covariance function of the process (42) is

(54) {f()f ()} *b(n)” [ jw (’;(;')‘) W (%) () du

—b(n)? fw(z)f(x —b(n)z) dsz(z)f(y —b(n)z) dz] .

Let (Y, (x), 0 < x < 1, be the Gaussian process with mean zero and covariance
function (54). By using the Sazanov theorem, one can approximate the process (42)
at the points je(n)b(n), j = 1, -+, [c(n)b(n)] "*, in distribution by the Gaussian pro-
cess o Y,(x) at those same points. The type of argument used in (ii) shows that the
supremum of the absolute difference between  Y,(x) and the process obtained from
oY, by linearly interpolating between the points je(n)b(n), j = 1, -, [c(n)b(n)] ~*
tends to zero in probability as n — oo if ¢(n)?/b(n) — 0 and b(n) — 0. Let

(55) 1 Y,(%) = o Y,(x) + [(b(m)/ f(x))* [ w(z) f(x — b(n)z) dz]U

where U is a normal random variable with mean zero and variance one independent
of the process , Y,. The process ; ¥,(x) can be written as

_ 3
Y() = (b(m)~* f w (%‘)(j%) JB()

where B(u) is a Brownian motion process with —oo < u < oo. Here B(u) is a
Gaussian process with increments over non-overlapping intervals independent,
B(0) = 0, and

E|B(u)—B(v)|2 = |u—v|,EB(u) =0,
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for —o0 < u, v < co0. Further, the process ; ¥,(x) can be approximated in the sup
normover 0 < x < 1 by

Y0 =(b<n))'*f (’;( ))dB(u)

This can be seen by making use of an idea from a paper of Garsia, Rodemich, and
Rumsey [16]. Let
(56) U(x) = 1 Y,(x) =, Y,(x).

We are interested in estimating sup, <<, |U(x)|. U(x) is a Gaussian process with
mean zero and covariance function

! xX—u S(w) S\
B i (i

Let
AR(X’ y) = R(X, X) +R(y’ _V)—ZR(X, Y)

The following Lemma is an immediate corollary of Theorem 2.2 of [16].

LEMMA. Let U(x), 0 £ x = 1, be a Gaussian process with mean zero and co-
variance function R(x, y). Consider p(u) a nonnegative even function that is continuous
and nonnegative for u = 0 and such that

1dp(u)
.=
If
AR(x, y)
fo fo p(x— Y)dXdy =
then

SUPp<sct |UX)| £ |U(O)|+B*‘[ dp(w)

where B is a nonnegative random variable with

'[P AR(x, y)
<c ———dxd
- Jo,[o p*(x—y) '
and ¢ an absolute constant.

We shall now apply this Lemma to estimate E[supy<,<; |U(x)|]* where U(x)
is the Gaussian process (56) with covariance (57). In this case

AR(x,y) = [a(x,u)—a(y,u)]* du

1
b(n)

x—u\[[f@)\
=i | () -1

with
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We clearly have

|AR(x, y)| < e )j{a(x u)*+a(y,u)?} du.

Let f be continuously differentiable with f, f* bounded and f bounded away from
zero on the interval [0, 1]. It then follows that

1
pomyl aCew)* du < Ky fw(2)*[f(x = b(n)2) —f ()] dz
< K,b(n)* fw(z)*z%dz < K 3b(n)?

if [w(z)?2%dz < oo with the K, constants. The uniform bound [AR(x,y)| <
4K b(n)? for AR(x, y) is obtained. However, another bound will be required for
|AR(x, y)| when x is close to y. Let y—x = ab(n) with || < M < co where M isa
constant. Then

— 2 _ + 2
|AR(x, y)| =< 2[j<w(z)—w<%+z>> [(%) - 1] dz

j (b( )+Z>f(x b(m)2){f(x)"*~f(y)"*} dz

< K4 [w'(2)*dzo? + Ko

if w' is continuous and bounded and in L2. Thus |AR(x, y| £ Keo® if y—x = oab(n)
with || < M < oo. Let us set p'(w) = u” %, 0 < u, in applying the lemma since
o dp(u)/u = (G u~*du is finite. Also

JIJIAR(x’y)d d <KJ b’ Kf ~
——— dxdy £ x+ ———dx
0 Jo PP(x—Y) V= b(n)2<|x|<2 X |x|§b(n)1b(n)2|x|

< K”b(n)*|log b(n)|.

Notice that the Gaussian process Y(x) = ,Y,(xb(n)) has the desired covariance

function
r(o) = [w(z)w(z +a)dz.

We should now like to apply the result on the asymptotic distribution of the maxi-
mum of a Gaussian process as given, for example, on pages 271-272 of Cramér -
and Leadbetter [11] to the process Y(x) on therange0 < x < b(n)~!. Assume that
the covariance function r(x) of the process Y(x) as given by (43) is an even function
that is continuously differentiable up to fourth order and such that

(58) r(e) = O(|o| ™)
as || — oo for some & > 0. Let
(59 4o =1(0)

A, = r(0).
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Then the result cited in [11] indicates that

A+z
60 cxs7ho TY(X) = P et
(60) P[maxozxzrlo Y(x) £ (2logT) +(210g T);J —e

as T — oo where
(61) A =log {(—24,/A0)*[27}.

The estimates made in (ii), (iii) and (iv) (or obvious modifications of them) indicate
that under appropriate conditions on f and w the distribution of the process (42)
can be sufficiently well approximated by that of Y(x) so as to obtain the following
theorem.

THEOREM. Let f be continuously differentiable and bounded away from zero on
[0, 1]. Assume that the bounded, integrable weight function w used in the estimate f,
(see (2)) is twice continuously differentiable with (1+v*)|w"(v)| bounded and has a
Fourier transform h(t) with (1 +t*h(t) € L. Then if n~''** = O(b(n)) as n — oo, it
follows that

b k2
(62) P[maXons i (Z—%) {/(x)—Ef(x)} = {2logb(n)" '}

A+z g
* @logb(m) Dt |7 ¢

as n — oo, where

(63) a = [wi(u)du
and
Bt 2
(64) A =10g-27r , B= ——C;Et—z(f w(z)W(z+1)dz)|,—o-

The interest in the theorem given above is not in the detailed conditions. The result,
in particular, must hold under much weaker requirements on b(n). It is rather in its
asymptotic nonparametric character and the ideas behind the proof. Notice that
in the proof one approximates the process (42) in distribution with a corresponding
Gaussian process.

The heuristics that suggest a result like that in the above Theorem also imply an
asymptotic nonparametric character (under appropriate conditions) for
f A=)

(65) dx

0 f(x)

when suitably normalized. There are the corresponding open questions for two-
dimensional (and higher dimensional) density functions. For, example, let f,(x, »)
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be the estimate given in (31) of the density function f (x, y). The marginal density
estimates are

(66) gu(x) = [ fux, y)dy

h(y) = [ fu(x, y) dx.

A natural statistic to test independence over [0, 1] x [0, 1] is given by

J : j % ) = 90|
o Jo Su(x,9)

and its distribution should be investigated.

(67)

dxdy

4, Probability density estimates for dependent sequences. It is also curious and
pleasantly surprising that the asymptotic results on the behavior of probability
density estimates obtained in Section 2 still hold even when sampling from a
stationary process, if appropriate and rather reasonable conditions are satisfied.
This is not true at allif the distribution function is estimated (see Billingsley [3, page
195] for a discussion) and the fact that it holds when estimating the probability
density is due to the /ocal character of the estimate.

Let {X,,j = -, —1,0, 1, ---} be a strictly stationary process. Assume that the
instantaneous distribution function

F(x) =P[X; £ x]

is absolutely continuous with continuous spectral density f(x) = F'(x). We wish
to estimate f(x) by f,(x) as given in (2). The assumptions on the weight function w,
the density function f, and the bandwidth b(n) are the same as those in Section 2.
The results on the bias of the estimate as given in (16) hold under the same condi-
tions as in Section 2 since dependence has no effect on the bias. Let us now consider
the covariance of the estimate. At this point the character of the dependence must
be examined. Let the two dimensional distribution functions

(68) Fj(x’y)=P[X0§x’X]§y]’ ]9&0’

be absolutely continuous with continuous density functions
0 0
(69) Fix9) = 325 F i ).

The covariance of f,(x) and f,(») is
(70) Cov 4,00, £,(»)] = n™2b(n) "2 Y= _(n—| j]) Cov [w(b(n) ™' (x~X,),
w(b(n)™'(y—X))]
with
(71)  Cov[w(b(n)™!(x—Xo)), w(b(m)™ ' (y—X))]
= b(n)? [ [ w(u)w(){ fi(x —b(n)u, y— b(n)v) —f (x = b(n)u) f(y — b(n)v) } du dv
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if j # 0 and
(72) Cov[w(b(n)™"(x— X)), w(b(n)™ " (y = X,))]

= b(n) [ w(u)w <u+ b(n )>f(x b(n)u)du

—b(n)? [ w(u) f(x — b(n)u) du | w(v) f(x — b(n)v) dv.
Thus, if
(73) Yisol i) —f) M| EM < 0
for all x and y, we have
74) nb(n)[Cov (fu(b(n)x),f,(b(m)y)] = [ w()w(u +y —x)f(x = b(m)u) du+O(b(n))
for all x and y as n — oo. The first term on the right of‘(74) is
S(x) [ w)w(u + y —x) du+ O0(b(n))

if f has a bounded continuous derivative. Additional conditions on the type of
dependence are required to get a result on the asymptotic normality of the estimate
fu(x). A standard result making use of the conditions will be described. The details
of the proof can be found in [29]. Let 4, and &, be the backward and forward
Borel fields generated by the random variables {X;;j < n} and {X;j > m} re-

spectively. The stationary process { X} satisfies the condition S if for every F, .«
measurable random variable Y(k > 0) with EY? < oo, EY = 0,

(75) E|E(Y|4#,)|* < a(k)EY?

where

(76) a(k) = 0(k™*7%)

for some ¢ > 0 as k — oo. If { X} satisfies condition S and the other requirements
already specified, then

{Jw?(v) dv} ~*(nb(m)*[£,(x) — Efu(x)]

is asymptotically normal with mean zero and variance one as n — o0, nb(n) — oo,
b(n) — 0. The paper of Roussas [30] discusses related questions.

The papers of Van Atta and Chen [34] and Frenkiel and Klebanoff [15] look at
estimates of univariate and multivariate probability density functions without
mentioning the estimation problem explicitly. They are interested in the probability
density of the distribution of a component of the velocity in grid turbulence as well
as the bivariate distribution of velocity components at the same point in space but
with a time difference. They find that the univariate distribution appears to be
normal but not the bivariate distribution.

A recent refinement in the “theory” of turbulence suggested by Kolmogorov is
discussed in a paper of Yaglom [39]. The refinement suggests that a local spatial
average of the energy dissipation might have a lognormal distribution. Currently,
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experimental results are being analyzed to estimate the probability density of such
a local average of the energy dissipation to see whether it is reasonably approxi-
mated by a lognormal density.

5. Expansions in orthogonal functions. There are many ways of estimating a prob-
ability density function from a sample of independent observations on a popula-
tion. Thus far in this paper, only estimates of the form (2) have been considered.
Still another interesting class of estimates has been suggested by Van Ryzin [36].
An obvious class of estimates is also suggested by the notion of an orthogonal
expansion. Just a few remarks will be made on this class but they will be enough to
show that qualitatively results similar to those already obtained would be expected.
However, it should be noted that there are still many open detailed questions.

Let {¢ (x)} be a complete orthonormal family of functions with respect to a given
nonnegative weight function w = w(x). Then if the probability density function f
is in L?(w), the Fourier expansion

(77) 25 ¢;(x)
with
(78) ¢; = [, (x)w(x)dx

will converge to fin L?(w). Let F,(x) be the sample distribution based on a sample
of n independent observations X,, X,, ---, X, from the population with absolutely
continuous distribution function F(x) and continuous probability density f(x)=
F'(x). It is plausible to estimate c¢; by

(79) ¢;*(n) = [ @, (M) dF,(x) = ™" Tiey 0 (KW(Xy).
Then

(80) Ec* =¢,

and

81 Cov(c;*,¢,*) =n""'Cov (@, (XIW(X), p(X)W(X))

= Yo, ()W (x) (%) dx — ;6. }.

In all the cases we shall think of, the functions ¢; will be continuous in the domain
in which they are defined. Consider a sequence of weights {«;(n)} that are zero
except for a finite number of values of j. Let the estimate of f(x) be

(82) Sfu(x) = Zj Cj*(”)“j(")(/’j(x)-
The bias
(83) Ef(x)—f(x) =Y. cj(a;(n) = Do (x)
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and the covariance
(84) Cov(£,(0).fu(») =n"'Y; . 0,0y (n)
Af o) (wyw(u) f(u) du—c;é,}.

If the Fourier expansion of f converges to f absolutely, one would obviously require
that

(85) aj(n) > 1

as n — oo for each fixed j. The integrated weighted mean square error has mean
value

(86) E[|£n(x)—/(x)|*w(x)dx = [ o[ f,(x)]w(x)dx + [ |Ef(x)—f(x)|* dx
=n"' Y o (m)|H{[ o) | wP(u) £ () du— || *}
+ 3 |ej[*fos(m) 1|2

It is sometimes convenient to rewrite f,(x) in the form

(87) L0 =7 w(X k(x, X))
where
(88) ko(x,u) = Y 0,(n) @ (x) ()

is a “generalized” kernel function (see G. S. Watson [37] for a related discussion).
The variance of f,(x) can then also be written as

(89) n ™ {f W)k, (x, w) |21 (u) du — | [ w(u)k,(x, u) f(u) dul|?}.

The asymptotic behavior of the kernel function k,(x, ) is obviously of importance
in determining the behavior of the variance (89) as n — oo as well as the asymptotic
distribution of f,(x).

We consider the case of the trigonometric functions

ijx

(90) (pj(x)=(3;)—%, —t<xZn,wx)=1,

because it is simple and is amusingly like the case of spectral estimation. Here
91 ky(x,u) = k,(x—u) =Y ;o ,(u) &Y,

For economy in computation one would require a;(n) = 0 for ]]l = n. In fact, the
usual situation will be that in which a;(n) = 0 for |j| = m(n) with m(n) = o(n).
Assume that

(92) [ky(x—u)du = ay(n) = 1.

For convenience, assume that k,(u) is a nonnegative weight function that behaves
asymptotically like a 6 function, that is, given any ¢ > 0

(93) Jiuts e kn(w) du =0
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as n — o0. Asymptotic unbiasedness of the estimate f,(x) follows since
(94) Efy(x) = [ ky(x,u) f(u) du — f(x)

as n — oo if f is bounded and continuous. The variance o[ f,(x)] is given asymptoti-
cally by

95 o [£,(0)] = ~& k(u)? du

A similar argument shows that
(96) E|k (x, X)— Ek,(x, X)|4gf(x)jk(u)4du.
A sufficient condition for (87) to be asymptotically normal with mean Ef,(x) and
variance (95) as n — oo is that
[k (u)*du
n([ ()2 du)?
by the Liapounov form of the central limit theorem. Suppose we look at the case
of simple truncation.
(98) ai(n) =1 if |j| < m(n)
=0 if |j|>mn)

)

or the Fejer weights

(99) am) =1=|jlim it |j|<m(n)
=0 it |j| > m(n).

Then

(100) [ ky(u)? du = c;m(n)

[ ky(u)* du = c,m(n)?

with ¢;, ¢, > 0 so that (97) is satisfied if m(n) = o(n) as n — co.

Similar computations will now also be carried out for orthonormal polynomials
with respect to a weight function. The conditions assumed will be somewhat re-
strictive but the results obtained are of interest because they suggest what ought to
hold under much weaker conditions. Let w(x) be a weight functionon —1 < x =1
with pi(x),j = 0, 1, ---, the orthonormal polynomials with respect to this weight
function. We wish to consider estimating a continuous density function f(x) on
—1 £ x £ 1 by (87) with

(101) ko(x,u) =Y (n)p(x)p(u).
Let x = cos 0, z = € and

(102) h(8) = w(cos 0)|sin 6|.
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Assume that w is such that h(0) is a positive continuous function on the unit circle
z=2¢% —0 <0 < n(6 = —nisidentified with 8 = n), and h satisfies a uniform
Lipschitz condition. Let ¢, (z), n =0, 1,2, ---, with z = % —n <0 <, be the
orthonormal trigonometric polynomials with weight function 4(6) generated from
1, z, z2, ---. The coefficient of z" in ¢,(z) is x,. Then by [32, page 292]

(103) pa(x) = (2”)—%{ $2:0 )} {z7"2u(2) +2"P2u(z™ 1)}
forn = 1. Also, if
1 (™ é*+re
(104) g(h;re) =g(re®) =exp {271 J_ 2 l(,log h(A) dl}
then by [18, page 51]
(105) lim,, ,, x, = [g(0)] ™"
lim,, ,, ¢,(0) =

Further, by [18, page 53] one knows that

(106) $u(2) = 2"lg(h; ) + =L o)

with the O(1) uniform in n and z. Assume that |oj(n)| < 1 with a;(n) = 0 for
lj| = m(n) where m(n) = O(n) and
lim,_, , a;(n) =1

for each fixedj. Then, if the expansion of f in terms of the orthonormal polynomials
P, is absolutely convergent, the estimate f,(x) will be asymptotically unbiased. To
avoid difficulties arising from possible singularities at x = +1, we shall assume
that

(107) fe(1—x*)7%

is bounded on —1 = x < 1. The object is to again determine the asymptotic
behavior of the variance of f,(x) and sufficient conditions for asymptotic normality
of £,(x). From (103) and (106) it follows that

(108)  k,(x,y) = Za AP (X)pi(y)

=5 Zoz (n)(l +¢2'( 2

) {Z"/g(h;Z)H"/g(h,Z")

log j
+'j—0(1) #9lg(h;z)+2' " Ig(h; 2~ 1)+— o(1)
where x = cos 8,z = €,y = cos &, z’ = €. Let

(109) c,(0) = Z;=1 a;(n) e'?
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and assume that
(110) |en(®)] = M(e) < 0 for 6] = .
Then

1 n
(111) az[fn(x)]=nf (@) e, ) () s 2~ (lf (x)z)%fnic,,(e)vde

asn— oo, if |[x+1| 2 & > 0 and

(112) (log m(n))* = o({ |c,(0)| dO)*.
Further,

(113) Fw)|k,(x, w)|*f (w)du < A%, |c,(0)]* a6
with 4 a constant, as n — oo, if [x+1| = & > 0 and

(114) (logm(n))* = o[ |c,(0)|*d)?.

Thus, a sufficient condition for f,(x) to be asymptotically normally distributed with
mean Ef,(x) and variance o[ f,(x)] as n — oo, given the requirements already
specified, is that

§|en(0)]* a6

1) e @F "

as n — 0. The condition required on the weight function w(u) is appropriate for
the Chebyshev polynomials of the first kind but not for the other classical ortho-
gonal polynomials. For just the Chebyshev polynomials of the first kind one would
go through a direct and simple computation to get the results (111) and (115). The
interest in deriving (111) and (115) under the conditions we have specified is that
it suggests what ought to hold more generally for density estimates based on expan-
sions in orthonormal polynomials on a finite interval. The case of classical ortho-
normal polynomials other than the Chebyshev polynomials of the first kind should
be considered. Notice that asymptotic results like those obtained for expansions
in the trigonometric functions can be derived for expansions in terms of the eigen-
functions of certain types of Sturm-Liouville problems by using the remarks made
on page 117 of [18].

6. Spectra and stationary processes. There are many extended developments of
the theory of stationary processes and discussions of spectral estimation [17], [33].
We shall briefly remark on some of the results that relate or are comparable to
those already mentioned on estimation of the probability density.

Let X(¢t), t = -, —1,0, 1, ---, be a discrete time parameter r-vector (column
vector) valued stationary process with real-valued components. If second order
moments exist, then

(116) X(t) = [~ dZ(2)
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where Z is an r-vector valued process (with complex-valued components) of orthog-
onal increments such that
(117) EdZ(A)dZ(u) = 6(A+p) dF(A), —T<Au<m.
In formula (117), § is the Kronecker § symbol
o(A) =1 if A=0
=0 otherwise,

Fis an rx r matrix-valued Hermitian non-decreasing function (F(1) — F(y) is posi-
tive semidefinite if 1 = p), and 4’ denotes the transpose of 4. Since the components
of X(¢) are real-valued

(118) dZ(=7) = dZ(%)

and dF(1) = dF(—2)'. In the case of a Gaussian process, the full probability struc-
ture is determined by the first and second order moments. It is convenient to assume
that EX(t) = 0.

The covariance matrices

(119) r(t) = EX(1)X(t+1)
are related to the second order spectral distribution function F by
(120) H1) = [ e dF(Q).
If the existence of all moments is assumed, we have
(121) my, ot s t) = EX, (8) - X (8) = my, o (1 b+ 1)
where X,(¢) is the ath component of X{(z). Assume that the moments have Fourier
representations.
(122) mg,, . 4ty 001
=T exp (I 5o 1w dG,, oW, W) dGy, .. f (Wi, W)
= E([[tdzZ,,(w))

with the functions G of bounded variation. The stationarity of the process X(¢)
implies that

(123) dG =0 unless Y}{w;=0 modulo 2.

The assumed representation (122) can also be written as

(124) ¢4y 0ty 5 th)
= [T exp (i) t;w)e{dZ, (w))sj =1, k}dF, . (Wi, W)
=c{dZ,(w);j=1,--,k}
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where c is the corresponding cumulant function. It is convenient to assume that
the cumulants ¢,, ... 4, (t;, -, t,) are in L, as functions of their k—1 (or k) ¢ argu-
ments (see Condition I in (137)). This can be regarded, if assumed up to order k,
as a curious mixing condition of kth order. This then implies that

(125) dF,, .. oWis s WA W)) = Ffar e Wi WL w)) dwy - dw,

(n(w) = 0if w # 0 modulo 2x and is equal to one otherwise) where the cumulant

spectral density f is continuous and a function of only k—1 variables w since
* w; = 0 modulo 27.

Let us first look at a real-valued stationary process X(¢) (r = 1) and consider

estimating its spectral density of second order. Such an estimate is given by

1 X )
(126) M) =% ¥ wMRM e
’ 2772 v=—N
with
(127) w, " = [ M Wy(h) da
and
1 N
(128) RM=< Y -« X(X(x).
Nr,r= 1,t—t=v
Formula (126} could also be written as
(129) M) =", Wy(A—a) M (o) dot
with
(N) 1 N —itA :
(130) I™M(x) =5 ’; X(f)e ,

the periodogram, and it is convenient to assume that

(131) Wy(u) =AyBy " *W(By ™ 'u) if lu| <7
with By | 0 as N — oo and Ay a normalizing factor so that

(132) [ Wy(u)du =1.

Assume W), is periodically extended with period 27n. Then if W has a finite second
moment, is nonnegative and symmetric about zero and NBy — oo, we can show

that
(133) By [EM () ~f(D)] = J“ZW(u)du’i—z(i)+0(BN'3)
and

(134)  Cov {f™(),f M (w}
= 21N~ |~ Wy(A— ) Wy(p+a) f*(er) dar
+ [ Wy(A— )Wy (u— ) f () da+O(N ™)}
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By (131) and (134), it follows that
limy_, o ByN Cov {f™(2), /M (u)}
(135) =0 if A#u
= anz(l)jﬁn W2(u)du if A=p#0,7
=4nf2(/"1)j’i,,W2(u)du if A=p=0,n

when 0 < A, u < =. If we look at the asymptotic mean square error of estimates,
the analysis of Epanechnikov given in Section 2 still holds and one is led to the
weight function W(u) given in (26). The weight function W(u) (26) is bandlimited
but it leads to a sequence w,™ that is not bandlimited. But this need not be too
frustrating since direct Fourier analysis via the fast Fourier transform (see [10])
may be preferable. One would directly compute the periodogram and then smooth
it. The asymptotic results obtained in spectral estimation differ a bit from those
obtained in estimating the probability density function. The basic range over which
(135) holds is 0 < A < = with a slightly different result at A = 0, n. On the other
hand, the results obtained in (15) for probability density estimation hold over the
entire range of the independent variable x. Also, in the asymptotic formulas for the
variance of the estimates, the constant f(x) in (15) is replaced by 2af (1) in (135).
Notice that if we rescale locally in the covariance result (134) for spectral estimation,
let A = u+Bya (4, 4 # 0, n) and then normalize appropriately, as N — oo one
would expect a Gaussian process with covariance function

(136) [ W(b+a)W(b)db.

This is again very much like what was obtained in Section 3 when estimating a
probability density function. It would be interesting to look at the functionals of a
global character such as (65) mentioned in Section 3, when estimating the spectral
density. The applications of second order spectral techniques are legion and the
development of theory is due to many people—Bartlett [1], Tukey [33], Grenander
and Rosenblatt [17], Parzen [24] and others.

The success of these second order techniques suggested that it might be worth-
while developing ways of estimating higher order spectra for situations in which
there are nonlinear or nonGaussian effects. Tukey [33], Van Ness [34], Brillinger
and Rosenblatt [4] developed a certain theoretical background. There have been
a limited number of applications of which a few are mentioned here—the work of
Hasselman, Munk and MacDonald [19] on bispectra of ocean waves, Haubrich [20]
on earth noise, Brillinger and Rosenblatt [5] on sunspots, D. Cartwright [8] with a
4th order analysis of tides and surges, and Huber, Kleiner, Gasser and Dumermuth
[22] on electroencephalographs. We shall just briefly mention some asymptotic
results due to Brillinger and Rosenblatt[4]. Let c,, ... 4 (vy, -, v4—y) and f5, .. (41,
-++, A,—1) be the cumulant functionc,,, ... , and cumulant spectral density f;,, ... ,,
looked at as functions of k—1 variables. First assume

(137) I ok s= =00 |03Chs oy (D15 s Vm )| < 00
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forj =1, -, k—1and any k-tuple a, ---, a, with k = 2, 3, ---. Condition I implies
that f;, . .(41, "+, 4 ) has a bounded uniformly continuous gradient. Let W be
a weight function with

(138) W(—uyg, - —u) = Wiy, uy, -, uy)

and set

(139) Wy(uy, - u) = By * "' W(By tuy, -, By~ luy).
If

(140) d,M(A) = 350 X (D) exp (—ide),

then

(141) IV (s ) = Qo) "IN 1 dEP(A),

with Z{‘ 4; = 0 modulo 27, is a kth order analogue of the periodogram. Consider
the estimate

(142) (N)m,ak(’ll, "'a’lk)

aig,

=(Qr) T INTkH Z Z WN</11_T"”"1"_—I\I—

§1= —o00 Sk= — 00

of 5 T I sy 27
N’ ) N ay, o, ax N’ s N

of fu,, ...,a (415", 4) where it is understood that ) { 1; = 0 modulo 27. In (142)
O(uy, -+, u)) = 1 if Y'fu, =0 modulo 27 but Y., u; # 0 on any nonvacuous
proper subset J of {1, ---, k}. Make the additional assumption

k=1
(143) 1II ’W(ul,m,uk_l,— Y u,»)
1 1
1 $\ —(k+e—1)
§A<1+<Z uf))

b

fori=1,---,k—1with 4, ¢ > 0.
Under assumptions I and I1
Cov{fa . aas s M a0 (W5 o5 )}
(144) =2aN"'Y p % [ Wy(Ay—ay, -+, Ay — o)
Wpg By, s et BO [TEn(ey+ Byt o)
N fapas (@) doty - doydBy -+ dB+O(By **2N 1)

if By* !N — o0 as By — 0 and N — co. The summation in (144) is over all permu-
tations P on the integers 1, ---, k and it is understood that

k2, =Y¥u, =0 modulo 2.



1840 MURRAY ROSENBLATT

Let X(r) be a stationary process satisfying assumption I. Assume that ;f®,
j=1,--,b, are spectral estimates of order k; < --- < k;, whose weight functions
satisfy assumption II. Let the bandwidths By’ be such that

(145) By >0, (By?) 'N-ow

as N — oo with By® < --- < By®. Bandwidths of estimates of the same order
are assumed equal. Then, the estimates are asymptotically jointly normalas N — co,
with estimates of different order asymptotically independent, and estimates of the
same order having

(146) lirnN-voo BNk_ IN Cov [fa(lp?'-,ak('lla BT} lk)’f;z(xpi,)'“,ak'(ﬂl’ ) ”k)]
=2n ZP PR —up(y nlk—up(k)f;u.at;n)("{l) : “f;lkyal;(k)(j'k)
.jo—ooo j W(ty, - 1) W(tpy, "',TP(k))(S(Z{(Tj) dty - dry.

For a detailed discussion and interpretation of these results, [4] and [5] should be
referred to. There are some marked differences between the case of spectral esti-
mates and probability density estimates. In the higher order spectral case, asymp-
totic variances have products of 2nd order spectra in their principal term while in
the case of probability density estimates, the multivariate density itself (see (34))
itself comes in. The stationarity and the real-valued character of the components of
the time series imply that ) f w; = Oand f(wy, wy, -+, W) = f(=wy, =Wy, 1, —Wy)
so that there are additional symmetries or restraints. This also leads to inhomo-
geneity on lower dimensional manifolds in w space unless one is careful. Related
ideas are used by Brillinger [6] in a discussion of the spectral analysis of point
processes.
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