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CHARACTERIZATIONS OF THE MULTIVARIATE NORMAL
DISTRIBUTION USING REGRESSION PROPERTIES!

By F. S. GorDONZ AND A. M. MATHAI
C. W. Post College and McGill University

1. Introduction. In a previous paper [2], the authors obtained a series of
characterizations for many univariate distributions using the property of cubic
regression for a cubic statistic on a linear one. These characterizations were
obtained by solving a differential equation in the characteristic function of
an arbitrary population. .

In order to obtain characterizations of multivariate distributions analogous
to those determined in the univariate case, it is necessary to utilize a concept
for the derivative of any quantity, be it scalar, vector or matrix, with respect
to the vector variable ¢ = [z, - - -, ¢,]. This derivative is similar to that pre-
sented, for example, by Wedderburn [7]. On the basis of several properties
which this derivative possesses, a vector differential equation is obtained in
the characteristic function using the assumption of cubic regression for a cubic
statistic on a linear one. For appropriate conditions on the coefficients of this
equation, a series of characterizations for the multivariate normal distribution
is obtained within the class of those populations whose characteristic functions
can be expressed in a certain type of infinite series expansion. This expansion
is one in the vector variable ¢ and its transpose #’, with coefficients which are
determined in terms of the vector derivatives of the characteristic function.
In particular, in the univariate case (p = 1), it is shown that this infinite
series reduces to the usual Taylor series expansion about the origin and there-
fore, the corresponding univariate class of populations includes all those whose
characteristic functions are analytic.

Throughout the present work, the symbol 0 is used to represent the scalar
zero element, the zero vector and the null matrix. The particular usage is
always clear from the context.

2. Generalized differentiation with respect to a vector variable. We begin by
defining the derivative of any scalar, any p X 1 vector, or any p X ¢ matrix
with respect to the vector variable

t=[tyty - 1,].
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206 F. S. GORDON AND A. M. MATHAI

For this purpose, we introduce the vector differential operator
V=[i,i, i]
ot, ot, ot,

and define the derivative of any quantity X as VX, where the product is taken
in the sense of the usual matrix product. Thus, for a scalar f{¢), we have

_Tof) afn . af
v = [ L0, 29, ..., atJ’

al x p vector; fora 1l x p vector Y = [y, ---,y,], we have

N

0 0 L I |2 ay;
VY — ____] 2 oy W
[E)t1 ot, at, | - L5

Yo
a scalar; for a p X ¢ matrix X = [x;,],

0x; 0x; 0x;
VX:[ p_ 21Nt TR L. NP av],
25 at;” = b, ot

al x q vector.
In addition we also introduce the transpose of this operator, (V) = V', a
column differential operator. Using this transpose operator, we are able to

consider

9 W,

ot ar, o,
V'Y = [yvyzﬁ ""yp]=

9 WL

at, a, o,

We can form also such higher order combinationsas VV'(+), V'V(.), VV'V(.),
and so forth, by alternating V and V’ to maintain consistency in size so that
the respective multiplications exist.

3. Vector derivatives of multivariate characteristic functions. We now apply
the preceding general theory to the characteristic function of a stochastic row
vector

X =[x, Xy -+ -5 X,
namely,
h(t) = E(e**'),
where tisa real 1 x p vector. For the various derivatives of the characteristic
function, we readily obtain

(1A) Vh = i[E(x,¢%"), E(x,e"X’), - - -, E(x,¢*%")]
= iE(XeX')
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and, similarly,
(1B) V'h = iE(X'e"%) .
Moreover,
V'Vh = iV[E(x,e%), E(x€*X"), - - -, B(x,e)]

E(xpeX)  E(x,x,e"X') . .. E(x,x,eX")
(lc) =7 E(xleeitX')
‘ E(x,,:)é'le“X') E(x, X, €X'y . . . E(x%"X")
= — E(X’XeitX')
and similarly,
(ID) YVh = izE(Zgg:l szeitX’)
= — E(XX'eitX’) .

In the same manner, we can continue by applying the appropriate operator
to obtain

(1E) VV'Vh = — iE(XX Xe'*")
and also
(1F) VIVVh = — iE(X'XX'e!*") .

For future reference, rather than singling out particular groupings of the
above set of six equations, we shall refer to them as equations (1).

4. Some properties of vector polynomial regression. In the ensuing theory
for cubic regression, we shall require the following definition and theorem.

DEerINITION. We say that the stochastic 1 X p row vector X has odd
polynomial regression of order 2m 4 1 on the stochastic 1 x p vector Y if

) BX|Y) = 570 b YYYY  ace.
where m is a nonnegative integer and the 8’s are real constants, provided that
the conditional moment E(X/Y) = E(X/Y = y) exists.

THEOREM 1. Let X and Y be two 1 X p stochastic vectors and assume that the
expectations E(X) and E[(YY')'Y], r < m, exist, for m a nonnegative integer.
Then X has odd polynomial regression of order 2m + 1 on Y if, and only if, the
relation

E(Xe™') = 57 oy E[(YY) Y]
holds for every real 1 X p vector t.
Proor. Suppose that X has odd polynomial regression of order 2m + 1 on Y.
We make use of the well-known property

) E(U) = E[E(U]V)]
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for all U and V to say that
E(Xe'Y') = E[E(Xe*™Y'|Y)].
Now since ¥’ is a scalar, once the value of Y is given, the above expression

can be written as
E(Xe''Y') = E[e'Y'E(X]Y)] .

However, using (2), the latter is equivalent to
E(Xe"') = E[e7" 57, fuysa( VY'Y Y]
= D70 fusn EYY) Y.
Conversely, if we are given the above equality, we equivalently have
E[¢#7(X — X 70Byyn(YY)V)] = 0.
Hence, we again use the result of (3), to say
E[E{e™ (X — S2ofyn (YYPY) Y}] =0
But, taking the integral in the Lebesgue-Stieltjes sense, this is the same as
§e T E[X — 51 fuya( YY)V Y[Y]dF = 0,

where Fis the distribution function of the stochastic vector Y. However, since
by assumption, all the elements in the row vector E[X — Y7 B,; (YY) Y /Y]
are bounded, we take the Fourier transform applied to functions of bounded
variation to obtain

E[X — %0 fyn(YVYYY]=0  ae.
which, when evaluated, gives
E(X|Y) = 5754 By YYVY e
as required.
Note that we have considered only the odd powers in the polynomial
expression in order to maintain consistency in size. The even power terms

will be considered separately in a later section as a problem in quadratic

regression.

A necessary and sufficient condition for the existence of odd polynomial
regression of order 2m + 1 for the stochastic vector X on the stochastic vector
Y can also be obtained in terms of the function

fit, t,) = E{expli(t,X’ + t,Y")]},
where
L= [tu: bigy =+ 0 t“,] s
t, = [tzv ygr *+ 2 tz,z]

are 1 X p row vectors of arbitrary real constants. We shall find it convenient
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to let V, and V, represent the differential operators corresponding to ¢, and t,,
respectively.

THEOREM 2. Under the conditions of Theorem 1, a necessary and sufficient
condition for X to have odd polynomial regression of order 2m + 1 on Y is that

4) Vlf(tv t2)|t1=o = 2T (— 1)j1323'+1 (¥, Vzl)jvzf(o’ L) .
Proor. We have
V. flti, t,) = {E[x, exp(i(t, X" + ,Y"))], - - -, E[x, exp(i(t, X’ + t,Y"))]},
so that, evaluating this expression at #, = 0, we find
®) Vifits )= = iE(Xe2"") .
In order to evaluate the right-hand side of (4), wefirst consider
V.0, ) = i[E(yie), E(y,e'), - - -, E(p,e")]
= iE(Ye'2"") .
If we further apply V, to this equation, we have
V/V.0,1) = —E(Y'Yes"") .
Proceeding in this manner, successively applying first V, and then V" to f(0, ,),
we finally obtain
(V,V)YV, A0, t,) = (—1)E[(YY') Ye's" '] .
Hence, since this statement is true for all integral j, we can evaluate the
right-hand side of (4) as

6)  Era(—1YBua(VaVYVf0, 1) = i Tl fuyn E[(YY) ¥e™ ]

However, from Theorem 1, we know that a necessary and sufficient condition
for X to have odd polynomial regression of order 2m + 1 on Y is

E(Xe'™') = 31m, By;a E[(YY') Y]
Comparing with (5) and (6), we see that this last statement is equivalent to
Vlﬂt19 t2)|t1=0 = ;{L=0 (_ l)jABZj+1(V2V2,)jV2ﬂO’ tZ) ’
which proves the theorem.

5. Derivation of the fundamental vector differential equation. Suppose that
we are given a set of n stochastic 1 x p row vectors X;, - - -, X, which are
independently and identically distributed. We begin our study of the cubic
statistic

S= DikmunX; XX, + 30,6X;,

a stochastic 1 x p row vector, where a,,,, and ¢, (forall jk,m =1, .-, n)
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are real constants. We assume the statistic ' has regression on the linear

statistic
L= z ; X, i

a stochastic 1 X p vector, of the cubic form
@) E(S/Ly = B,L + B,LL'L  a.e.
where B, and S, are real constants.
Using Theorem 1, (7) holds if, and only if,
8) E(Seit’)y = B, E(Le*’) + B, E(LL'Le*") .
We first derive the differential equation which results from the cubic regres-
sion assumption in terms of the characteristic function of the population.
To begin, we see that the left-hand side of (8) becomes
E(Se) = 31, 4 mOin B X/ X eY) + 305 ¢, E(X €M) .
Now, since the X;(j=1, ---,n) are independent stochastic vectors, this
reduces to
E(Se') = 31, ;5 E(X; X[/ X;€" %) E[exp i }4;1X,]
+ Dier @ E(X; X, €55 ) E(X, e K ) E[XP i Ty 1t X0']
+ 2wy E(X € K ) E(X} X; ¥ )E[€XP i 31 p0; 11X, ]
+ X ieri B(XG X, X e)
+ Zj#k#majkm E(XjeitXJ')E(Xkleith’)E(XmeitXm')
X E[exp [ Zr*j,k,mtXr,]
+ ;¢ E(X; et i)E(exp i 3.t X)) -
However, because the X;(j=1, ---, n) are also identically distributed, we
can make use of the results of (1) to obtain the simplification
E(Seitty = ¥, a,,; (VV'VRA + 3., a5 — VV'h)(—iVh)h"*
+ Dier @i —IVR(=V'VR)A" ™ + Z
+ Diekem Gim( —IVR)(—IVR)(—iVR)A"
+ X (—iVhh
= i4,(VV'Vh)h"~t + id,(VV'h)(VR)h"~?
+ id(Vh)(V'Vh)h*—* + Z

4 iA(VR)Y(V'h)(VRYR—* — iC(Vh)h*—
where
Z = Y095 E(X; X)) X e,

A, = 2555 Ay = Xisk Yjic s
Ay = 2en Bji» Ay = Yliskem Ykm >
C = Zj Cj .
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We now consider the right-hand side of (8) and, again introducing the
characteristic function and its derivatives, we obtain
B E(Le*™"y + B, E(LL'Le't’)
= b 2 E(X;e" %R + By 35 B(X, X X ¥ 53 )bt
T By Zjer B(X; X4 ) E(X, et Xx )
+ By Ljur E(X, ™% ) E(X} X %5 )=
+ By 2w E(X; X,/ X;€M)
T By Dieirm B(X; 05 ) E(X)/ €5 ) E(X,, X" A7
= —inB,(Vh)h"* + inBy(VV'Vh)h»—1
+ in(n — 1)By(VV'A)(VR)A** + in(n — 1)B,(Vh)(V'Vh)h"—2
+ W+ in(n — 1)(n — 2)B,(VA)(V'R)(Vi)>~2
where .
W= e BE(X; X\ X; ) .
Substituting these results into (8) while simultaneously dividing each ex-
pression by 4" for convenience, we easily obtain
i(n8y — A)(VV'VA)/h + iln(n — 1B, — AJ[(VV'h)/Y(Vh)/h]
+ i[n(n — 1)B; — A;][(Vh)/h][(V'Vh)/h]
+ i[n(n — 1)(n — 2)B, — AJ(VA)/RI[(V'h)/RI[(VA)/R]
+ i(C — nB)(Vh)/h + (W — Z)|hi" = 0 .
We now impose the condition a;,; = §; (for all j, k = 1, ..., n) in order that
the term (W — Z)/h" disappears. The above equation therefore becomes
(8 — A)V'VR)h + [nGn — 1)B, — AJ(VV'R)/R][(VA)/A]
9) + [n(n — 1)8, — AJ(VR)/AI(V'Vh)/A]
+ [n(n — 1)(n — 2)8; — AJ(VA)/RI[(V'R)/R][(Vh)/A]
+(C — np)(Vh)h = 0.
Before attempting to solve this differential equation, it is convenient to
introduce the transformation
h=e or g=log(h).
It is easy to see that the first derivatives of 4 can therefore be written in terms
of g as
Vh = e?Vg Vh = eVg.

Applying the appropriate operator, it is also possible to evaluate the higher
order derivatives of z directly from the definition of V, in terms of g. However,
the calculations are very tedious and can be eliminated by recourse to a series
of five lemmas which we now discuss. The first four of these lemmas can be
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verified by direct calculation. The proof of the fifth is not so apparent and,
accordingly, we outline the details.

LeMMA 1. If f(t) is any scalar function of the 1 X p vector t = [t,, - -+, t,]
and if Y(t) = [y, + -+, y,] is any 1 X p vector function of t, then
V(YY) = (VNHY + f(VY') .
Lemma 2. If f(t) is any scalar function of the 1 X p vector t and if Y(f) =
[y, -+, y,) is any 1 X p vector function of t, then

V(fY) = (V)Y + AV'Y).

CoroLLARY. If f(t) and g(t) are any two scalar functions of the 1 X p vector
t, then

V'(f9) = (Vf)g + (V'9) .
LemMmA 3. If f(¢) is any scalar function of the 1 X p vector t and if A(t) =
[a.;5(?)] is any p X p matrix function of t, then

V(f4) = (V)4 + f(V4) .
LemMmA 4. If Y(¢) is any 1 X p vector function of the 1 X p vector t, then
V(YY) =2(V'Y)Y'.
LEMMA 5. If Y(¢) is any 1 X p vector function of the 1 X p vector t, then
V(Y'Y) = (VY)Y 4+ Y(V'Y) .
Proor. Consider

»nonye e h
a9 a}yzyl W N

V) = [at ot ot
2

’ ot

b

VoV Vebar Vo
P P P ay.
2y, )’1 + Zﬂu }{, )’1 + Zj*l}’ji’ ) Zi*pl)’p
ot; ot;

) )
+ Zj#pyj _a;y_g + Zyp a}t)::l

- i, 9); il
= [Z: —('9_t7y1’ ’ Za a1, ==J»
0 )
[:Z i Vi = yl R} Z i Vi yp:|
— (VY)Y + Y(V'Y).

With the help of these five lemmas, it is now a simple matter to evaluate
the higher order derivatives of 4 in terms of g(=log #). We have already seen
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that

(10) Vh = e*Vg,

(11) V'h = e?V'g .

Now, applying Lemma 2, to (10), we see that

(12) V'Vh = e?(V'g)(Vg) 4 e'(V'Vg) .
Similarly, applying Lemma 1 to (11), we find

(13) VVh = e/(Vg)(V'g) + e(VV'9g) .

Further, using Lemma 3 on (12), we obtain
VV'Vh = e?(Vg)(V'9)(V9) + eﬂV[(V’g)(Vg)] + e'(Vg)(V'Vg) + e’(VV'Vg) ,

since, obviously, V(4 + B) = VA + VB for any matrices 4 and B of the correct
size. In order to evaluate the term V[(V'g)(Vg)] we apply Lemma 5. This
leads to

VI(V'9)(V9)] = (VV'9)(V9) + (V9)(V'V9) -

Therefore, we find that
(14) VV'Vh = e(V9)(V'9)(Vg) + es(VV'g)(Vg) + 2e(Vg)(V'Vg) + e?(VV'Vg) .
Moreover, applying the Corollary following Lemma 2 to (13), we have
VYV = e(V'g)(Vg)(V'g) + eV'[(Vo)(V'9)] + e(Vg)(VV'g) + eo(V'VV'g) .
We use Lemma 4 in order to evaluate the term V/[(Vg)(V'g)] and so obtain
VI(Va)(V'9)] = 2(V'V9)(V'9) s
and, as a consequence,
(15) V'VVh = e'(Vg)(Va)(V'9) + 2e7(V'Vg)(V'9)
+ e?(V'g)(VV'g) + e?(V'VV'g) .

Introducing the substitution 4 = e together with its derivatives given by
equations (10) through (15), the differential equation (9) finally assumes the
simpler form

(B — A)(VV'Vg) + [(mf, — 4, — A)I(VV'9)(V9)
(16) + [n(n + 1)8; — 24, — A,)(V9)(V'V9)
4 [n(m* — n + By — A — Ay — A, — A](VO)(V'9)(V9)
+ (C —np)(Vg) =0.
Before proceeding, let us determine the initial conditions on the functions

hand g. We know that
h(t) = E(e**'),
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so that
(17) h(0) = 1.
Further, from (1),
Vh(0) = iE(X) = iy,
say, while
V'h(0) = iE(X") = iy’ .
Also, for £ = [o;;] = E(X — p)'(X — p), it is easy to show that
VVA(0) = —EX'X) = — X — ',
VWh(0) = —E(XX') = — Y2 0, — p
using the fact that ¢,; = E(x; — p;)*. <Finally, the initial conditions on g =
log & can be obtained from the above initial conditions on 4 and from (10)
through (13). Thus

(18) 9(0) = 0,
(19) Vg(0) = VA(0) = i,

(20) V'g(0) = V'h(0) = iy’ ,

(21) V'Vg(0) = V'VA(0) — [V'g(0)][Vg(0)] = — 2,
(22) VV'g(0) = VV'A(0) — [Vg(0)][V'9(0)] = — 3.1 0,; -

6. Fundamental results on “integration” of vector differential equations. In this
section, we develop a number of mathematical tools which will prove essential
in obtaining solutions to the fundamental vector differential equation (16) to
give certain characterizations of multivariate distributions.

We indicate, in the following two lemmas, the conditions under which it is
possible to “integrate” the differential operator V to obtain a unique answer.

LeMMA 6. If s(t) is a scalar function of the vector variable t = [t,, - - -, 1],
then a necessary and sufficient condition for the relation Vs = 0 to hold is that s
is a constant.

Proor. Suppose that Vs = 0, the zero vector. Therefore,
as _ os _ as

a_tl__a_tz__.. _3—tp_

which implies that s is independent of each of the ¢, and hence is a constant.
Conversely, if s is a constant, it is obvious that

Vs=0.
We immediately have the following corollary.

CoROLLARY. If s(t) is a scalar function of the vector variable t = [t,, - - -, ¢,],
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then a necessary and sufficient condition for the relation V's = 0 to hold is that
S is a constant.

LemMAa 7. If Y = [y, ---, v,] is a vector function of the vector variable
t =[t, -, 1], then a necessary and sufficient condition for the relation V'Y = 0
to hold is that Y is a constant vector.

ProoF. We consider V'Y = 0, the zero matrix. Since the operator V’ is
applied in turn to each of the p scalar components of the row vector Y, the
corollary following Lemma 6 guarantees that each of the components of ¥
must be constant.

As before, the converse is obvious. .

Unfortunately, the above “integration” process breaks down as an inverse
to the derivative of any vector or matrix in which addition of components
occurs when the differential operator V is applied. To circumivent this dif-
ficulty, we restrict ourselves to a particular class of scalar functions, those of
the vector variable ¢ for which an infinite series expansion in the variables ¢
and ¢’ exists and is convergent. In order to meaningfully discuss such infinite
series, the following set of results on interchanging infinite summation with
V-derivatives is essential.

LEMMAS. LetY; = [y;;, + -+, y;,] be al X p row vector forevery j=1,2, . ...
For any given k, (k =1, - .., p) let 3,7, y;, be a convergent series in the differ-
entiable scalar functions y;, (j = 1,2, - - -) of the vector variable t = [t,, - - -, t,]
such that 0/0t, 3.7_, y;, = z,., converge uniformly. Then

(23) V(Z;;l Yj,) = Z;‘o:l V(Yj’) and VI(Z?:I Yj) = Zf:l V,Yj .
Proor. For finite n, it is easy to show that
25 V(YY) = V(T35 Y/').
Thus, we can reduce the infinite summation to
(24) 2o V(YY) =lim, 7, V(Y/) = lim,_ V(37., Y)),
so that, comparing equations (23) and (24), we need only show that
(25) V(X Y/)=lim,_  V(31., Y.

For the right-hand side of this equation, we note that

w9 . 0y .y,
V(DL ) = j=1%+zj=l ay;:Jr 3 g;:

Therefore, in the limit, the right-hand side of (25) becomes

. . oy,
lim, . V(X1 ¥,) = D5, Do 4 o4 3y, Din
ot ot,
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For the left-hand side we have

0 <o 0 e
e 2Vt o X Vip
t2

ot
Since the y;, are scalars for any choices of j and k, the problem therefore

’ a oo
V(X Y)) = T Vi +
t )
reduces to showing

0 - o 0y
N LV = 2Nia a};:’

for every k = 1, ..., p. We introduce the substitutions

251 Vit = fu?) 2 Yie = fil?)
for any fixed k=1, ..., p. For fixed k, the sequence of functions {f,,}
satisfies all of the conditions in Theorem 7.17, Rudin [6], and so

0 . 0
— f.(t) = lim —_ t),
20 = timy 2 £t

which completes the proof of the first equation (23). The second is proved
similarly.

CorOLLARY 1. Let Y 7., s; be a convergent series in the differentiable scalar
Sunctions s; (j = 1,2, ...) of the vector variable t = [t,, - - -, t,] and such that

0
5,: 2518 = Zyy,

converges uniformly for eachk = 1, ..., p. Then

V(X5 s) = 25 V(sy)
and
V() = L7 V'(s) -

COROLLARY 2. Let A, = [a},] be a p X p matrix for everyr= 1,2, .... For
any fixed j,k (j, k=1, ..., p), let 3,7, a}, be a convergent series in the differ-
entiable scalar functions aj, (r = 1,2, - - .) of the vector variable t = [t,, - --,t,]
such that, for each fixed j and k,

a n r

P a’
r=1%j5k
at;

converges uniformly. Then
V(Z::I Ar) = ::1 V(Ar) *

Proor. The proof of this corollary follows directly from Lemma 8 by con-
sidering each of the matrices 4, (r = 1, 2, - . -) as a system of p column vectors.

We now consider the possibility of expressing a scalar function f{r) of the
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vector variable ¢ = [t,, - - -, ¢,] as an infinite series of the form
(26) f(t) = a, + bt + a,tt’ + br'tt +a(tt) + - ..

= Do @u(t') + Xl by (1)
where the a@; are scalar constants and the b; are 1 X p vector constants for
each j. In order for this series expansion to be meaningful, we must be able
to uniquely determine each of the coefficients and to be assured that the

resulting series is convergent for all values of ¢ under consideration.
In particular, if we evaluate the given series at ¢ = 0, we immediately have
a, = f(0) .
The remaining coefficients will be obtdined in terms of the V-derivatives of
f(r) evaluated at ¢t = 0.

In order to evaluate the first derivative of f{¢), we must be able to differ-
entiate such terms as a(¢t')* and bt'(t¢')*, where a is a scalar constant and
b=1b, ---,b,]isa vector constant. Corollary 1 following Lemma 8 guar-
antees that such termwise differentiation of the infinite series is valid. Thus,
we see that

(27) Va(ery] = aV' (53, 152
= 2kat'(tt')*,

while
(28) V@) (er) ] = [V/(er))(#')* + (b)V[(12')"]

= b'(tt')* + 2k(eb' )t ()
using (27) as well as the fact that b’ = b’ = }}?_, b;t;, a scalar.
Hence, the termwise differentiation of the infinite series for f{¢) leads to
(29)  Vft) = Zin 2kay £ (0) 7 + 270 ban(8) + X 2k(thy, )1 (1)
which, for the case t = 0, reduces to

V'f(0) = b, .

b, = VA0).

We now evaluate the second derivative of f{¢), VV'f{#), and, for this purpose,
we must consider the derivatives of terms of the form #(z')*~*, b'(z¢')* and
(eb")'(¢t')+*. Termwise differentiation of he infinite series for V/f{¢) given in
(29) is justified in this case by referring to Lemma 8. As a result of Lemma
1, we have
(30) V£ (et = (p + 2k — 2)(et')

(31) Vb’ (2t )] = 2k(bt’)(et')*
(32) V(') = (p + 2k — 1)(bt')(tt')*!

That is,
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after some simple calculations. Therefore, by differentiating the infinite series
for V'f(¢) given by (29) termwise, we obtain
VVA(t) = S 2kan(p + 2k — 2)(t'Y 4 Dy k(b))
(33) + 2D 2k(p + 2k — 1)(bypn )(20')
= Yoy 2kay(p + 2k — 2)(et')k
+ i 2k(p + 2k) by 1)(2)
Evaluating this expression at + = 0, we find

a, = (1/2p)VV'f{0) .
We now notice that, except for constant scalar _coefﬁcients, the forms of
f(¢) and VV'f{(¢) are identical.
Thus, we find that the general expressions for the higher order derivatives
are given by

(34) (VWY f(r) = kijr 7 k! )’ 1—[ [p+ 2k — ety
+2 7 ’i P TP + 206 — j o+ DIbuent )tV
and
V(VV')fir) = k=ilzr+l W__{‘J;T)]T ]1:[ [P+ 2(k — j)layt'(et'y—r
(35) B2 s L 20— Doy

21‘+1 e
2 E e

X (tl)(ttl)k>('r+l) .

These two formulae are proved by a lengthy, though relatively straightforward
induction argument.

We are now able to calculate the coefficients in the expansion for f{7) given
in (26) by using (34) and (35). Thus, if we evaluate the expression (34) at
t = 0, we find that the only nonzero term in this series expansion occurs for
k = r and gives

(36) a,, =

H [P + 2(k — j+ Dbyt

1
2 5 [p + 2r = D]
Similarly, we evaluate (35) at ¢ = 0 and again find that the only nonzero term
occurs for k = r and is

(V') A0) -

1
2 5 lp + 2(r — J+ 1]
a 1 X p vector constant.

(37) by oy = V(VV') £(0) ,
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Hence, the expansion for f{¢) becomes
fir) = f0) + VAO)Y 1
38 o Nk \k
(38) + Erggrr a7 OI)
1 Nk ey

TR (p 2= DI SO
We restrict our attention in future discussions to those functions f{¢) for which
the above series expansion exists and converges. We refer to the class of all
such scalar functions of the variable ¢ as the class of pseudo-analytic functions
of type I of the vector variable ¢.

We now digress for a moment to show that the series expansion for the
function f{#) given by (38) is, in reality, a generalization of the standard Taylor
series expansion for a function of a single variable about the origin. That is,
if we choose p = 1, the function f{s) depends on the single variable s and,
furthermore, the vector constants by, (k = 1,2, ...) reduce to scalars.
Obviously, for p = 1, the V-derivative reduces to the usual derivative d/ds.

If we therefore set p = 1 in the defining equation (36) for the ay, (k = 0,
1,2, ...), we find that

+ 2

1 d*
e R T [ + 2(k — )] ds™

However, we note that
(2k)! = 2k(2k — 1)(2K — 2)(2k — 3)---4-3.2.1 = 2%! []%_, 2k — 2j + 1).

f0).

As a consequence, we have that
1 d*
aﬂk = =7 T ok
(2k)! ds*
Similarly, we set p = 1 in (37) to obtain
1 d2k+l
by, = % : PYE]
2K TTA 1 + 2(k — j + 1)] ds™*
However, as above, we find that
2k + 1)! = 2%k! TT%, (2k — 2 + 3),

1 A2+t
b2k+1 = (Zk—+—1_)—' Es%T f(O) .

Substituting these coefficients into the expansion for f{s), we find that
— vy 1 [d* 25 - 1 dar 1
fls) = Zk=om [1—1?; f(O):|s + 2% 2 + 1)! |:ds2"“ f(O):IS
1 4"
k! ds*

S0).

0).

so that

= Z Zo=0 ﬂO)s" )
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which is precisely the Taylor expansion for the function f{s) about the point
s =0.

It is important to realize that, in calculating the coefficients of the given
series expansion (26), the order of differentiation was arbitrarily chosen. That
is, we could just as easily have begun by first applying the operator V to the
expansion for f{t), instead of the operator V’ as was done in the previous
development. We now study the corresponding class of scalar functions of the
vector variable t = [¢,, - - -, t,], f(¢), whose infinite series expansion is given by

(39) S() = i an (') + X, b2k+1t"(tt')k )
where the a; are scalar constants and the b, are 1 x p vector constants for
each j. In this case, we determine’these coefficients by first applying the
operator V to f{¢), then V', and so forth. We shall call the class of functions
S(t) for which the resulting series expansion exists and is convergent as the
class of pseudo-analytic functions of type II of the vector variable ¢.
Following a derivation which closely parallels the one leading to (38), we
obtain as the series expansion for the second class of functions

f0) = A0) + [VAOI + (1/2)V'VA0))r
Sy 1 ’ k ! 1\ k—1
(40) + T gty 52w =y 1TV AOrE)
1
PR imlp + 2k —j+ 1))

7. Some characterization theorems based on the fundamental vector differential
equation. We now characterize the multivariate normal distribution by using the
property of cubic regression for the vector statistics S on L discussed in Section
5. For some suitable choices for the coefficients in the fundamental vector
differential equation (16), (that is, for some particular relations between the
coeflicients of the statistic S and the regression coefficients), we obtain such
characterizations by using the results of the previous section which ensure that
a unique inverse exists, in certain instances, for the differential operator V.

+ e, [V(V'V) A0) ]2 (22')" .

THEOREM 3. Let X,, - -, X, be aset of n(1 X p) independently and identically
distributed stochastic row vectors (a sample from a population), each with finite
moments E(X), E(X'X) and E(XX'X). Suppose that

nB, — A, =0,

nin+ 1)8, — 24, — 4, =0,

nn—n+ )8, — A — A, — A4, — A4,=0,
C—npy=o(mfy — A4, — 4,) # 0,

where ¢ = Y»_,0;;. Then, in the class of populations whose characteristic
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functions are pseudo-analytic of type 1 of the vector variable t, a necessary and
sufficient condition for S to have cubic regression on L is that the population be
multivariate normal with characteristic function

h(t) = explipt’ — (1/p)o)t] .
Proor. If we impose the given conditions on the coefficients of the funda-
mental vector differential equation, it reduces to

(VV'g)(Vg) = —a(Vg) .
We post-multiply this equation by (V’g), thereby obtaining

(@.1) (V9 T2 (50) = = o Tt (32)-
However, >1%_, (dg/dt;)* > 0, for if not, we would have necessarily that
g _
aT,. =
for every j=1, ..., p. Thatis, Vg =0, which implies that g, and consequently

h, is a constant. Therefore, the differential equation (41) assumes the simpler
form
(42) VWg=—0.

Applying the differential operator V' to this equation, we obtain V'VV'g = 0,
and consequently,

(VWW)yg=0 for r>2
and

V(VWYyg=0 for r>1.

Therefore, g(¢) can be written as an infinite series expansion of the type given
by (38), which reduces to the convergent expression
(43) 9(t) = 9(0) + [V9(0)] + (1/2p)[VV'g(0)]¢t" .
The initial conditions on g(¢) given by (18), (19) and (22) enable us to simplify
(43) and finally obtain
h(t) = exp[g(r)] = explipt’ — {x((1/p)ol)!] ,
which is the characteristic function of a multivariate normal distribution with

variance-covariance matrix
2 = (1)p)al.

Conversely, suppose that the population is multivariate normal and has char-
acteristic function

h(t) = explipt’ — $1(1/p)oD)?]
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Thus,
9(t) = log h(t) = ipt' — t((1/p)sl)t’ ,

so that

Vg =iy — (l/p)at .
Taking the transpose, we obtain

Vg = iy’ — (1fp)ot’,
from which we can also calculate

VV'g = —0.

Substituting these results into (16) and using the conditions on the coefficients
given in the hypothesis, we see that the function g(r) satisfies the fundamental
vector differential equation and therefore S has cubic regression on L, which
proves the theorem.

THEOREM 4. Let X, - - -, X, be a set of n(1 X p) independently and identically
distributed stochastic row vectors, each with finite moments E(X), E(X"), E(XX'X).
Suppose that

np; — 4, =0,
n2ﬁ3—Al—A2=0,

nmw—n+ 1B, — A — A, —A4,— A4,=0,

(C —nB) =[nn+ 1)8, — 24, — A;]Z +0.
Then, in the class of populations whose characteristic functions are pseudo-analytic
of type 11 of the vector variable t, a necessary and sufficient condition for S to have
cubic regression on L is that the population be multivariate normal with character-
istic function
h(t) = explipt’ — L1Z1'],
where X is a constant multiple of the identity.

Proor. If we impose the given conditions on the coefficients of the funda-

mental vector differential equation, it reduces to

(44) (Vo) (V'Vg) = d(Vg),

where
d= np, — C .
n(n 4 1), — 24, — 4,

We now attempt to “integrate” the above equation. Using Lemma 4, we find
that,

V'(VgV'g) = 2(V'Vg)(V'9g),
and taking the transpose of both sides, we obtain
V(VgV'g) = 2(Vg)(V'Vg),
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since the matrix V’Vg is symmetric. Hence, the differential gquation (44) can

be rewritten as
V(VgV'g — 2dg) = 0.

However, since VgV'g — 2dyg is a scalar, Lemma 6 guarantees that
VgV'g — 2dg = ¢,
a constant. From the initial conditions (18), (19) and (20), we see that ¢ =
— pp' and therefore,
(45) VgV'g = 2dg — pp’ .
Within the class of pseudo-analytic functions of type II, the function g(¢) can
be written in the form
(46) 9(t) = e au(tt)" + Lo bunn (1),
where the first three coefficients can be evaluated, using the conditions (18),
(19) and (21), as
a, = g(O) =0
a,] = 1V'Vg(0) = —4%.
We now determine the remaining coefficients to see that the series indeed
converges. If we apply the differential operator V to (46), we see that
Vg = o buna(t) + Xoies 2kby  1(1) 7 + T 2kay, (1t')F
(48) = b, + 2a,t + (bytt’ + 2b,t't) + 4da,1(tt')
+ [by(2t')? + 4byL1(tt)] + - - .
Similarly, it is easy to obtain
(49) Vg = b/ + 2a,t' + (b/tt’ + 2b,t't') + 4a,t'tt
+ [bS(tt') + 4b Y] + - -
We now substitute (46), (48) and (49) into (45) and consider “powers” of ¢.

The constant term is
bb = —pp' + 2da, ,

which is consistent using (47). The first order term is
2a,b,t' + 2a,tb = 2db,t’,
or equivalently,
2a,b,t' = db,t' .

However, comparing the final condition of the hypothesis with (47) we see
that d = 2a,, so that the above equation for the first order term is also con-
sistent. In order to determine the remaining coefficients in the series expansion
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for g(z), it is necessary to distinguish between two possible situations:

@) p£0 (i) p=0.
For the case ¢ % 0, we calculate the second and third order terms in (45).
The second order term reduces to

2b, b/t + 4b,t'b,t' + 4altt’ = 2dazt
which, by virtue of the relation d = 2a,, is equivalent to
(50) bb/tt = —2b,t'b,t" .

However, since p = 0, it follows that b, # 0 also, from (47). By direct
evaluation of (50), it is then easy to verify that we must have

b,=0.
Further, the third order term reduces to
4a,(b,t')tt' + 6ay(b,t')(tt') = d(b,t')tt
and again, using d = 2a,, the above equation becomes
(51) a bttt = —ay(b,t") 1t .
Since b, = 0, b, ++ 0 and ¢ is arbitrary, we must have
a,=20.

For the case ¢ = 0, we again consider the second and third order terms, as
well as the fourth order term. The second order term is given by (50). Since
b, = ip = 0, this equation is satisfied for arbitrary b,. The third order term is
given by (51). Since b, = 0 and a, + 0, it follows that

b,=0
and a, is arbitrary. Since b, = b, = 0, the fourth order term reduces to
4a,a,(tt')* = a,a,(t'y,

which implies that
a,=0.

Therefore, in both cases, we obtain
b:-x =0 a, = 0.
We now introduce the function

Z,=a, for n even
=b, for n odd.

To calculate Z, for n = 5, we note that it will involve all products of the form

Z;Z,; (j=0,1,---,n).
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However, for n > 5, either j or n — j must be greater than or equal to 3, so
that, by induction,
,=0 forall n>5.

As a result, using (47), the expression (46) for g(f) reduces to
9(t) = ipt' — LEr,
where
2= —2&121.
Hence,
h(t) = exp[ipt’ — $tZr'],
which is the characteristic function of the multivariate normal distribution.
As in Theorem 3, the converse is obtained by direct calculation.

In order to investigate more fully the condition that X be a constant multiple
of the identity matrix, we substitute the normal characteristic function

h(t) = exp[ipt’ — $tZr']

into the fundamental vector differential equation (16). For g = logk, we can
easily calculate

Vg =ip — X Vg =iy — Z¢
(52) V'Vg = - VV'g = —0
VVVg =0 V'VVg=0.

Denote the coefficients of the terms in the fundamental vector differential
equation (16) by d,, d,, d,, d, and d;, respectively, so that for the case of the
multivariate normal distribution, this equation reduces to

(53) —dyo(ip — 1Z) — dy(ip — tZ)Z
+ dy(ip — )i — Bt)(ip — £Z) + dyfip — 12) = 0.

We look at “powers” of ¢Z in order to determine what types of relationships
are necessary between the coefficients, where, by “powers”, in this case, we
mean the alternating terms (12), (:Z)(tZ)’, (tZ)(tX)'(t), and so forth. Equation
(53) must hold true for every value of . Therefore, since the coefficient of
(tZ)(t2)(tZ) is d,, it is necessary that d, = 0. Substituting this value for d,
into (53), we find

(tZ)dy 0l + d, 2 — dI) — ip(dyol + d,Z — d;1) = 0.
Again, because this latter equation must hold true for every possible value of
t, the condition which we must necessarily have is
dyol +d,2 —dI=0,

or equivalently,
2 = (1)dy)(d; — dyo)l .
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That is, Z must be a constant multiple of the identity matrix.

THEOREM 5. Let X, -- -, X, beaset of n(1 X p) independently and identically
distributed stochastic row vectors, each with finite moments E(X), E(X'X), F(XX"X).
Suppose that

n2ﬁs“‘A1_A2:0,

n(n + 1)g, — 24, — 4, =0,

nmw—n+ 1), — A —A4,— A4, —A4,=0,
C— n,@l =0,

nB, — A, +0.

Then, in the class of populations whose characteristic functions are pseudo-analytic
of type 11 of the vector variable t, a necessary and sufficient condition for S to have
cubic regression on L is that population be multivariate normal.

Proor. If we impose the given conditions on the coefficients of the funda-
mental vector differential equation (16), it reduces to VV'Vg = 0. We therefore
have

V'Vyg =0, r>=2
V(V'V) g =0 r>1.

Thus, we can expand g(¢) as an infinite series of the type given by (40), which
reduces to
9(t) = 9(0) + [V9(0)]¢" + 3[V'V9(0)]7" .
Since this expansion exists and converges, g(¢) is a member of the class of
pseudo-analytic functions of type II. The initial conditions on g() given by
(18), (19), and (21) enable us to simplify the above expansion still further to
obtain
9(t) = ipt’ — LtEt .
As a consequence,
h(t) = explipt’ — $tZt'],
which is the characteristic function of a multivariate normal distribution.
The converse follows easily from the given conditions on the coefficients of
the fundamental vector differential equation and from (52).

8. Characterizations of multivariate normal distributions using quadratic and
constant regression. For our preceding study of cubic regression, it was neces-
sary, in order to maintain consistency in size, to consider only the odd powers
in the polynomial expansion for E(X/Y), where X and Y are row vectors. It
has already been pointed out that it is possible to consider separately the even
terms. For this purpose, we introduce the following definition.

DEerINITION. The stochastic p X p matrix Z has even polynomial regression
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of order 2m on the stochastic 1 x p vector Y if

EZ|Y) = 3m B, V(Y)Y ,  ae.
where m is a nonnegative integer and the 5’s are real constants, provided that
the conditional moment E(Z/Y) = E(Z|Y = y)exists. This definition is entirely

analogous to the definition of Section 4 for odd polynomial regression. Cor-
responding to Theorem 1, we also have the following result.

THEOREM 6. Let Z be a p X p stochastic matrix and Y be a 1 X p stochastic
vector and assume that the expectations E(Z) and E[(YY') Y'Y | exist, for all non-
negative integers r < m. Then Z has even polynomial regression of order 2m on
Y if, and only if, the relation .

E(Ze"™) = L7 B[ E(YY) YY)

holds for every real 1 X p vector t.

The proof of this theorem is similar to that for Theorem 1 and hence we will
not go through the details.

We now suppose that we have a set of n stochastic 1 x p vectors X, - - -, X,
which are independently and identically distributed. We shall study the
quadratic statistic

0= 2% i X/ X, ,

a stochastic p x p matrix, whose regression on the linear statistic

L=23i.%,
a stochastic 1 X p row vector, is of the quadratic form
(54) EQ/L) = B,L'L + B,I  a.e.
where a;, (j,k =1, ..., n), B, and B, are real constants. Using Theorem 6,
a necessary and sufficient condition for (54) to hold true is
(55) E(Qe) = B, E(L/Le™) + f,E(Ie") .

It is possible to derive the differential equation which results from the quadratic
regression assumption in terms of the characteristic function A(f) for the
population and its derivatives, VA, V’h and V'Vh, studied in Section 3. As in
the cubic regression considerations of Section 5, we substitute for Q and L in
(55) and, upon evaluation of both sides, we easily obtain the vector differential
equation

(56) (1B, — A)V'Vh)[h + [n(n — 1)B, — AN[(VR)/RI(VR)/R] = Bo ,

where
Al =2.a

et T

Rather than attempting to solve the vector differential equation (56), it is

Ay, = X;,.05 .
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again convenient to introduce the transformation # = e?. Using (10), (11)
and (12), we therefore find

(57) (nBy — A)V'Vg) + (m°B, — 4, — A)(V'9)(Vg) = BT,

which is the fundamental vector differential equation for the quadratic case.
For a suitable choice of the coefficients in this fundamental vector differential
equation (that is, for some particular relations between the coefficients of the
statistic Q and the regression coefficients), it is possible to obtain a character-
ization for the multivariate normal distribution by using the property of
quadratic regression for the statistics Q on L. In this case, the characterization
is again obtained by using the results of Section 6 to uniquely “integrate” the
operator V. ‘ .

THEOREM 7. Let X,, - - -, X, bea set of n(1 X p) independently and identically
distributed stochastic row vectors, each with finite variance-covariance matrix X =
E(X — pY(X — p) and mean pp = E(X). Suppose that

np, — A, —4,=0, ‘BOIZ(Al_nﬁz)Z¢O'
Then in the class of populations whose characteristic functions are pseudo-analytic

of type 11 of the vector variable t, a necessary and sufficient condition for Q to have
quadratic regression on L is that the population be multivariate normal.

Proor. If we impose the given conditions on the coefficients, the funda-
mental vector differential equation (57) reduces to

V’Vg = COI,

¢y = Bo/(nf; — A4y) .
Applying the differential operator V to this equation, we have
VV'Vg =0,

which is precisely the same differential equation as that obtained in Theorem
5 and hence has the solution

g(t) = ipt’ — 3Er,

where

which in turn leads to
h(t) = explipt’ — 4tZt'],
the characteristic function of the multivariate normal distribution with ¥ =
—c,l.
The converse follows easily by direct calculation.

The above theorem is a multivariate generalization of a theorem first given
by Laha and Lukacs [3] in their study of univariate quadratic regression.
Furthermore, if we choose 8, = 0 in the vector differential equation (56), we
are led to the following theorem, a multivariate generalization of a theorem
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which was first studied by Lukacs and Laha [5] as a problem in univariate
constant regression.

THEOREM 8. Let X, - .-, X, be a set of n(1 X p) independently and identically
distributed stochastic row vectors, each with finite variance-covariance matrix X,
and mean p. Suppose that

A1+A2:0’ .801=A12¢0-

Then, in the class of populations whose characteristic functions are pseudo-analytic
of type 11 of the vector variable t, a necessary and sufficient condition for Q to
have constant regression on L is that the population be multivariate normal.
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