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Let Xi» < Xpr < -+ - < X,» be the order statistics of a size n sample

from any distribution function F not necessarily continuous. Let a;, 8;,
(j=1,2,---,n) be any numbers. Let P, = Pla; < X;*» < 8;, j=
1,2,---,n). Arecursion is given which calculates P, for any F and any
a@;j, ;. Suppose now that F is continuous. A two-sided statistic of
Kolmogorov-Smirnov type has the distribution function
Pxs = P[sup n¥¢(F) - |F» — F| < 2],

where F» is the empirical distribution function of the sample and ¢(x)
is any nonnegative weight function. As Pxs has the form P,, its calcu-
lation as a function of 2 can be carried out by means of the recursion.
This has been done for the case ¢(x) = [x(1 — x)]-%. Curves are given
which represent 2 versus 1 — Pgs for n = 1, 2, 10, 100. From additional
computations, the precision of a truncated development of 1 — Pks in
powers of 1-2 has been determined.

1. Introduction. Let Z be any random variable with distribution function
P(Z £ z) = F(z), not necessarily continuous. Let X" < X" < ... < X" be
the order statistics of a size n sample from F(z). Let {a;, 8;;j=1,2, ..., n}
be any numbers which we call a-boundaries and $-boundaries respectively.
We are interested in the probability

(l) Pn:P(aj<X,-”§ﬂ,-;j=1,2,"',11)-

In the two special cases a; = —co, and 8; = +oo0, (j= 1,2, ..., n), this
probability will be written P, and P, respectively.

Such probabilities are related to the statistics of the Kolmogorov-Smirnov
type. Suppose that F(z) is continuous and let

2) L = sup, ni[F(z) — F(2)]¢.[F(2)] »

3) M = sup, ni{F(z) — F*(2)]u[F(2)] »

where F*(z) is the empirical distribution function of the sample and ¢,(x),
¢y(x) are some nonnegative weight functions. A two-sided statistic of the
Kolmogorov-Smirnov type has the distribution function P(L < 1, M < )
which is of the form (1) for well-chosen boundaries. The distribution of a one-
sided statistic is P(L < 2) or P(M < 2) and has the form of P, respectively P,.

In Section 2, a recursion formula for P, is given which is valid for any F(z)
and any boundaries (8). As can be expected, the function F{(z) is involved only
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as F(a;)and F(8;), (j= 1,2, ---,n). An elementary proof of the formula is
given in Section 3, where it is incidentally shown that this formula is only one
of the simplest recursions among a set of similar recursions implying the same
amount of computation.

In the one-sided case, recursion (8) evidently can be simplified. The simplified
formula for P, is (9) and was already obtained by Noé and Vandewiele (1968) for
a continuous F(z). Faster recursions than (9) are known for P, and P, but they
are not suited to numerical computation because they involve small differences of
large numbers (Wald and Wolfowitz(1939), Daniels (1945), Noé and Vandewiele
(1968)). On the contrary, formulas (8) and 19) involve sums of nonnegative
terms only. As regards the two-sided case with a continuous F(z), Wald and
Wolfowitz give a general recursion for P, but involving integrals such that it
is not directly usable. An usable recursion is given by Noé and Vandewiele
but only for the special case a, < B,. Steck (1971) expresses P, by means of
certain determinants.

Recursion (8) also calculates the power of a test {a; < X;* < §,} with respect
to an alternative hypothesis F’(z), because this power is expressed by (1 — P,’)
where P,’ is defined as in (1) replacing the probabilisation P(Z < z) = F(z)
by P(Z < z) = F'(z).

For Kolmogorov-Smirnov type statistics, the particular weight function

“) $u(x) = u(x) = [x(1 — 0]

is sometimes chosen because it assigns, in a certain sense, the same weight
to each point of F(z) and because it has certain asymptotical properties of
optimality as for the power of the test. See Anderson and Darling (1952),
Vandewiele and de Witte (1966), Borokov and Sycheva (1968). Tables of
significance points for the corresponding one-sided test were calculated by Noé
and Vandewiele by means of the general formula (9), and by Borokov and
Sycheva by means of a formula restricted to this particular weight function.
Section 4 of the present paper is devoted to the corresponding two-sided test.
Several curves represent P, as a function of 2. The precision of a truncated
power series for P, is given too.
2. The recursion. Without loss of generality we assume
(3) =S - Sa,, b=h=-=8..

Furthermore we exclude trivial cases assuming

(6) a; < By Jj=L2--n.
Let now {ry, 72+ - *» Fan_1> 72n} b€ the 2n boundaries arranged in non-decreasing
order. Leta,=f, =7, = —oo and a,,; = B,;1 = Vaus1 = + 0. We thus

have7, < 7 <+ <72 < Tonsa- Letg(m), (m =0, 1, ..., 2n), be the number
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of a-boundariesin {yy, 71, - -+, 7.} Leth(m) —1,(m =1,2,-..,2n 4 1), be
the number of B-boundaries in {74, 75, - -+, rm_y}. In particular g(0) =0,
9(2ny=n,h(1)=1,h(2n+ 1) =n + 1. Clearly onehasform =1,2,...,2n+ 1

(7) Ayn) S Tme1 = T = Agimony1
ABh('m)—l -l - - ABh(m) .

Letp,, = F(r,,) — F(ym_1), (m = 1,2, - .., 2n + 1). The probability P, defined
by (1) can be calculated by the following recursion which is proved in Section
3 and which involves F(z) in the form of the probabilities p,,. It is understood
that p,° = 1 even if p,, = 0. )

Qo(o) =1 .
Qz(m) = Zi:h(m)—l Cik . Qk(m - 1) : Pmiﬁk
(8) i:h(m+1)_1:h(m+1),"'3g(m_1),
Qyim1yn(m) =0 m=12,...,2n
P, =0,2n).
At the beginning of a step m of this recursion, including step 1, the numbers
Ohimya(m — 1), Qpy(m — 1), -+, Q,,,_y(m — 1) are available. Since clearly

g(m) < g(m — 1) + 1, stepm provides the analogous numbers for m + 1 instead
of m. From (6) one verifies that h(m + 1) — 1 > g(m — 1) never holds and
hence that the summation involved in (8) never is void.

In the one-sided case 8, = + o0, (j= 1,2, ---,n), one has y, = a,,, (m =
0,1,---,n),7,=+4+oc0,m=n+ 1,n+2,...,2n + 1), and hencep,, =0,
m=n+2,n+3,.---,2n4+1), gm)=m, (Im=0,1, ..., n), h(m)=1,
(m=1,2,.-..,n+ 1). Recursion (8) then becomes

0,0) =1
Qim) = 2i,C¥- Qu(m — 1) - p,i7*
) i=0,1,...,m—1,
Qm(m)=0 m=1,2,....,n+1
where p, = F(a,,) — F(a,,_,), m=1,2, ..., n+ 1). This is recursion (12)

(13) of [4]. (Corrigenda in [4]: In formula (12), >iz{ should be read };i_,.
Formula Q;(a;) = 0 should be added).

For a continuous F{(z), it is pointed out in[4] that, in the practically important
region, P, can be closely approximated from P, and P, by means of the inequali-
ties P, + P, — 1 < P, < P, . P,. In a symmetrical case, i.e., when P, = P,,
onecanapproximate P, = P, from P, by these inequalitiesrewritten P} < P, =
P,<(1+P,)/2. Asthesuminvolved in (8) hasfewer terms than the sum involved
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in (9), it would be interesting to investigate to what extent the latter approxi-
mation saves computation with respect to an exact calculation of P, = P,.

3. Proof of the recursion. Let r and ¢ be any numbers such that r <¢. Let
B, (r,t)be theevent {a,,, < X' < B, r < X' < t;j=1,2, ---,i =1}
when i — / > 0 and let it be the certain event wheni — ! = 0. Let R, i(r, ) =
P[B, (r, t)]. In particular R, , (—o0, +00) = P,.

Let s be any number such that r < s < ¢t. The event B, ,(r, f) can be realized
in a number of mutually exclusive ways: exactly (k¢ — /) components (k — I =
0,1, ...,i—I)out of the sample considered are located in (r, 5], the remaining
(i — k) components then being located in (s, £]. It follows that

(10) R ir t) = L Tl - Ryu(rs 5) - Ry (s, 1) -

Ifa,<r<t<Bponehasby(S)a, , Ssr<t <8, (=12,---,i—D.
Then B, (r,t) = {r < X' <¢t;j=1,2,...,i —1}. Hence

(11) if a;<r<t<8p,, then R, (r,t)=[F(t)— F(r)]".
Furthermore it is clear that |

(12) if a;=t then R, (r,t)=0,

(13) if B, <r then R (r,t)=0.

let now 1<m<2n+land r<y, <.t Ifi<gm—1)and
h(m) é ! + 1’ one has by (5) and (7) a; é Cl,g('m,—-l) é Tm—1 § Tm é IBh(m) é ABl+1'
Hence by (11), since F(7,) — F(yn_1) = Pum>

(14) if hm) —1=<l<i<gm—1) then R (rn—Tm) =Pu'"-
If gom — 1) + 1 < i, one has by (7) and (5) 7,, < a,(n_1)s1 < ;. Hence by (12)

(15) if gm—1)<i then R, (r,7,)=0.

If I + 1 < h(m) — 1, one hasby (5)and (7) 8,1 < Brimy—1 < 7m—1- Henceby (13)
(16) if I<him)—1 then R, (rn_.,?)=0.

Setting s = r,,_, and ¢t = r,,, one has by (10), (14), (16),

(17) if max[l,h(m) — 1] i< gm—1)

then R, (7, 7n) = 2w Ciol e Ry (P Tmei) * P’ % s

where the summation is over {max[l, h(m) — 1] < k < i}.

From relations (17) and (15), quite a set of recursions can be devised for the
calculation of R, ,(— o0, + o0), all implying the same amount of computation.
We choose one which formally is as simple as possible. Let usset r = —co
and / = 0. Clearly

(18) Ro,o(_oo’ ) =1, Ry, (=00, 7)) =P,.
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Let us write Q,(m) for R, (—co, r,). Relations (18), (17), (15) then prove
formula (8).

4. The particular weight function (4). In this section, we suppose that F{(z)
is continuous. We consider the distribution of the two-sided Kolmogorov-
Smirnov type statistic, i.e., P(L < 2, M < 1) where L and M are defined by
(2), (3). We choose the weight functions (4). It is well known that the cor-
responding distribution function does not depend on F(z). One verifies that it
has the form P, provided that F(a;), F(8;), (j = 1,2, - - -, n) satisfy
(19) jin = a; + a1 — a))]t

(J—1Dn=>b; — an[b:‘(l — bylt,
where a; and b; stand for F(a;) and F(8;). We thus write
(200 1 — P, =1~ P{sup, ii{F2)[1 — F)]}H|F"(z) — Fz)| < 7} -

The curves of Figure 1 represent (1 — P,) as a function of 2 forn = 1, 2, 10,
100. They were calculated on a computer by means of recursion (8) applied
to the values of F(a;), F($,) drawn from (19), They allow to carry out, with
moderate accuracy, the corresponding test for any level of significance. The
same curves were obtained approximately by Vandewiele and de Witte by
means of a Monte-Carlo method.

Vandewiele and de Witte also gave the first five terms of the development
of (1 — P,) in powers of i~ in the case a, < b,, i.e., in the case 4* = n.
(Corrigenda in [6]: the last term is erroneous and should be corrected as follows):

1 — P, =22+ (3 —5n)a~* 4 (16 — 96n~! + 82n~%)A~"
(21) + (124 — 1760n~! 4 47790~ — 3145n=%)2°
+ (1224 — 33696n! + 198636n~* — 380616n—°
+ 214454n=4)27 1
4o
Neither the general term nor a general truncation error bound are known. By
reversion of this series one obtains
AP=27(1—-P,) —27%3 — Sn!)(1 — P,)?
—27%(14 — 132n7* 4 114n7%)(1 — P,y
— 277(151 — 4035n7! ++ 12981n~2 — 9105n~%(1 — P,)*
— 2792706 — 139992n~" 4 1041576n* — 223900n~*
+ 1334894n~*)(1 — P,y

These truncated series provide excellent approximations of (20) when 2 is
sufficiently large, even if 2* = n does not hold. A numerical comparison of
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Fig. 1. The variable 2 defined by equation (20) as a function of (1 — P,) for n = 1,2, 10
and 100.

(21) with exact calculations has given the following results for » < 100. Taking
the five terms, the relative error on (1 — P,) is smaller than 10~* when 2 > 4,
than 10~* when 2 > 5 and than 10~ when 2 > 6. Taking the first two terms
only this error is smaller than 102 when 2 > 6. For smaller » the convergence
is somewhat more rapid.

The curves, power series and error bounds corresponding to the one-sided
case with the particular weight function (4) are given in [4].
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