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SOME REMARKS ON ASYMMETRIC PROCESSES!

By P. W. MILLAR
Cornell University and University of California, Berkeley

This paper contains three results: (a) an exact measure function for
the zero set of a real-valued asymmetric Cauchy process, (b) an upper
bound for the Hausdorff dimension of the zero set of a real process with
stationary independent increments, and (c) an exact lower function at
infinity for the completely asymmetric Cauchy process.

1. Summary. Proposition 1 gives the exact Hausdorff measure function for
the zero set of a real-valued asymmetric Cauchy process. Proposition 2 gives
an upper bound for the Hausdorff dimension of the zero set of a real process
with stationary independent increments. Finally, in Proposition 3 is an exact
lower function at infinity for the completely asymmetric Cauchy process.

2. Results. Let X = {X(¢), t = 0} be a real-valued stochastic process with
stationary independent increments having no Gaussian part. Then Eei***) =
exp {t¢(u)}, where

(2.1) d(u) = au + §=_ [ei*® — 1 — iux/(1 + x})]u(dx) .

If support v C (0, o) and if §}|x|v(dx) = oo, it will be convenient to call Xa
(completely) asymmetric process. If

(2.2) $(w) = [u][1 + i(sign u)h log |u]]

where h = 2bjr,b=p —q,g=1—p,1 = p =0, b >0, then Xis called an
asymmetric Cauchy process; if b = 1, X is a completely asymmetric Cauchy
process, and in this case formula (2.1) holds with @ = 0 and v (dx) = const.
x~*dx, x > 0. If b =0, then X is the symmetric Cauchy process. Assume
henceforth that X is a standard Markov process, with X(0) = 0. Refer to
Blumenthal and Getoor [2] for definitions of terms used below.

At the symposium on Markov processes and potential theory at Madison
in 1967, Orey ([11], page 125) asked whether 0 were regular {0} for the com-
pletely asymmetric Cauchy process. Port and Stone [12] subsequently showed
that indeed 0 is regular for {0} whenever X is any asymmetric Cauchy process.
This is a very curious fact, since, if X is the symmetric Cauchy process, 0 is
not regular for itself, and hence in certain cases singletons are more likely to
be regular for X than they are for the symmetrization of X. Very recently,
Bretagnolle [5] has given the precise criteria (for general X) under which 0
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will be regular for itself. In particular, this will be the case whenever X is a
completely asymmetric process (as defined above; see [5], page 33). Here is
an amusing proof of this last fact that seems to shed additional light and to
give some intuition as to what is going on. According to Shtatland [14], if
X is completely asymmetric, then almost surely lim sup,_, X(#)/t = + co and
lim inf, , X(#)/t = — oo, implying that X passes from above 0 to below 0 “in-
finitely often” as r— 0. Since the process has only upward jumps, it must
therefore hit 0 whenever it passes from above to below. Since it does this for
arbitrarily small times, 0 is regular for itself. A more vigorous argument using
the same idea will show for completely asymmetric X that every i-excessive
function is continuous—a fact established by other methods and in greater
generality by Bretagnolle [5].

Since 0 is regular for itself when X is asymmetric Cauchy, but not if X is
symmetric Cauchy, one might conjecture that perhaps as X becomes “more
symmetric” (e.g., as b | 0), then the zero set Z(w) = {t = 0: X,(») = 0} should
become “smaller.” That this is not so in the sense that the correct measure
function for the zero set changes with b is a consequence of the following result.

PROPOSITION 1. Let X be an asymmetric Cauchy process. Then an exact measure
function for the zero set of X is

Q(t) = log log [log t|/|log 1| .

The exact measure function for the zero set of the real stable process with
index @ > 1 was calculated by Taylor and Wendel [16].

Proor. Let {T,, t = 0} be the subordinator associated with inverse local
time. According to a theory that is now standard (this theory is explained in
[2] or [3]), we need only find the correct measure function for the range of
{T,}. Tt is well known that Ee~*"t = exp {—tg(«a)}, where g(a) = [u*(0)]™* — 1
(see [3] or [2], Chapter VI). Here u*(0) = {; e *!f,(0) dt, where f,(x) is the
density of X,. By Lemma 2.1 of [8],

(2.3) lim, . u%(0) log a = 2p/nh?
in the asymmetric Cauchy case.

Let r(f) = (np/2b*)Q(t). According to Fristedt and Pruitt ([7], Theorem 3),
the exact measure function f for the range of a subordinator having exponent
g is given by f(#) = h7'(f), where h(t) = log|log #|/g~*(t"* log|log t|). Using
(2.3), one then verifies that r(h(f)) ~ tas ¢ | 0. Since h(f) is strictly increasing
and continuous for ¢ near 0, and #(0) = 0, r(u) ~ h™*(u) as u — 0, completing
the proof of Proposition 1.

The following corollary is an immediate application of Theorem 2 of Fristedt
and Pruitt [7].
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CoROLLARY. Let {L,, t = 0} be the local time at O for an asymmetric Cauchy
process. Then there is a positive, finite constant ¢ such that

lim sup,_, L,|log #|/log log |log t| = ¢ a.e.

According to Proposition 1, the Hausdorff dimension of zero set of an
asymmetric Cauchy process is zero. The following proposition gives an upper
bound to the dimension of the zero set Z of an arbitrary process with stationary
independent increments, and includes as a special case the fact stated in the
preceding sentence. Let 8 = inf{a = 0: ., |¥|"v(dX) < oo}, where v is the
Lévy measure of the process X.

PROPOSITION 2. Let X be a one-dimensional process with stationary independent
increments, and having no Gaussian part. Suppose (a) 0 is regular for {0} and (b)
Y(R) = +oo. ThendimZ <1 — 1/Ba.e.

This bound was obtained by Blumenthal and Getoor [3] under an additional
integrability assumption on the exponent ¢.

Proor. It follows from (a), (b), and the hypothesis of no Gaussian part that
B = 1. Perhaps the easiest way to see this is to refer to the result of Kesten
on the hitting probabilities of single points ([9], Theorem 1) and his remarks
on pages 7—38 of the same memoir. Let G(w) = {(t, X,(»): 0 < t < oo} be the
graph of the process X. To prove the proposition, it is enough to prove

(2.4) 1 +dimZ<dimG<2—1/8 ae.

Under hypotheses (a) and (b), it follows from the results of Kesten that the
process X hits points. Using this fact together with (a) and (b), one need only
make fairly routine modifications in a proof given by Blumenthal and Getoor
to obtain the inequality on the left ([4], see pages 313-314). To prove the
right-hand inequality, it will be enough to prove it for the graph of X with ¢
restricted to [0, 1]. Moreover, it can be assumed without loss of generality
that the Lévy measure of X is concentrated on a finite interval. (This trunca-
tion procedure is explained, for example, in [10].) Define

My, = SUpoaye, [X(t + (k — Do) — X((k — D)), k=1,2, .

Then M, M,,, --- are independent, indentically distributed and satisfy
E|M, |* < M(a)e, where either a« = 2, or 2 > a > §, and where M(a) is a
constant depending only on « and the exponent of the process ([10], Theorem
2.2). If R(k, ¢) is a rectangle with center ((k — 1)¢, X((k — 1)¢)) and with sides
2e, 2M, ., then R(1,¢), - - -, R([¢™'] + 1, ¢) is a cover of {(t, X(w)): 0 <t < 1}.
Each of these rectangles can be covered by [¢7'M, .] + 1 squares of side 2e.
Let C,(¢), Cy(¢), - - - denote this cover of {(¢, X,(w)):0 < t < 1} by squares.
Then, using the letter ¢ to denote a positive finite constant (whose value may
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change from one place to the next),and defining 4, to be thesum 3, [diam C,(¢)]",
we see that

As é ¢ Z;c;ll (1 + Mk,se_l)er é ¢ Z;c;ll Mk,serHl + cer—«l .

The last term goes to zero as ¢ — 0, provided y > 1. The expectation of the
first term is less than

ce’ 1 Zf:l EM, < cem e[ M .
where eithera =2o0r2 > a > 5,
é C[M(a,)]llaer—-ZJrl/a .

This last term goes to zero if y > 2 — a~'. Hence, if y >2 — a™, 4, > 0in
L, norm as ¢ — 0. A subsequence therefore converges to zero a.e., and this
implies dim G < 2 — a™'. But a = f, so the proof is complete.

REMARKS. (a) The argument giving the right-hand side of (2.4) is an adap-
tation of an argument of Blumenthal and Getoor ([4], pages 314-315), which
in turn was an adaptation of an argument of Besicovitch and Ursell [1].

(b) The argument giving (2.4) fails if X is n-dimensional, n > 2. Let y be
the index introduced by Pruitt [13], and let 8 be the index above. Then it is
easy to show that in n-dimensions, » > 1: max{l1, y} < dim G < max {1, g}.

We close with a result closely related to the preceding, which gives a lower
function at infinity for the completely asymmetric Cauchy process. This should
be compared to the results obtained by Takeuchi and Watanabe [15] for the
symmetric Cauchy process. Apparently the question for the other asymmetric
Cauchy processes is still open.

PROPOSITION 4. Let X be the completely asymmetric Cauchy process with
o) = §5 e — 1 — jux/(1 + x*)]x"*dx. Thenliminf,__ X(7)/(tlogt) = 1a.e.

t—o0

Proor. Write X(7) = X'(t) + X?*(f), where X*(¢) is the sum of the jumps of
X up to time ¢ that exceed 1, and where X'(f) = X(f) — X*(t). Then X'(¢) has
moments of all orders, 0 < EX'(f) < oo, and so X'(¢)/tlogt— O a.e. as t— oo,
by the strong law. It therefore suffices to consider only X*(¢), which has Lévy
measure concentrated on (1, co), and which is a subordinator with Ee~*¥ 2 —
exp {—tg(u)}, where g(u) = {;°[1 — e **]x"*dx. Integrating by parts, g(u)=1—
e + u (e x'dx. By a Tauberian theorem, {>e **x"'dx ~ log(u™") as
u — 0, implying that g(u) ~ ulog(u~*) as u — 0. By a lemma of Fristedt and
Pruitt ([7], Lemma 4), if y > 1 then lim inf,_, X*(¢)/h(f) = 7 — 1 a.e., where
h,(t) = log |log t|/g~*(yt* log [log ¢|). Using the asymptotic result for g above,
one finds that A (f) ~ y~'tlogt (t — oo) so that liminf, . X*(?)/(tlog f) =
(r — 1)/r. Since y > lisarbitrary, let y T + oo to get liminf, ,, X(¢)/tlogt > 1.
Also, by Lemma 5 of [7], if y < 1, then liminf,  X*(¢)/h () < r a.e., so
lim inf X(#)/(tlog ) < 1 a.e. This completes the proof.
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REMARKS. The integral test of Fristedt [6] shows that

limsup, .., X*(¢)/(tlogt) = + oo,

and so lim sup,_., X(¢)/tlog t = +co. The same integral test gives (for exam-
ple) lim sup,_., X(#)/tlog® t = 0, etc.
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